1
|
Rosain J, Le Voyer T, Liu X, Gervais A, Polivka L, Cederholm A, Berteloot L, Parent AV, Pescatore A, Spinosa E, Minic S, Kiszewski AE, Tsumura M, Thibault C, Esnaola Azcoiti M, Martinovic J, Philippot Q, Khan T, Marchal A, Charmeteau-De Muylder B, Bizien L, Deswarte C, Hadjem L, Fauvarque MO, Dorgham K, Eriksson D, Falcone EL, Puel M, Ünal S, Geraldo A, Le Floc'h C, Li H, Rheault S, Muti C, Bobrie-Moyrand C, Welfringer-Morin A, Fuleihan RL, Lévy R, Roelens M, Gao L, Materna M, Pellegrini S, Piemonti L, Catherinot E, Goffard JC, Fekkar A, Sacko-Sow A, Soudée C, Boucherit S, Neehus AL, Has C, Hübner S, Blanchard-Rohner G, Amador-Borrero B, Utsumi T, Taniguchi M, Tani H, Izawa K, Yasumi T, Kanai S, Migaud M, Aubart M, Lambert N, Gorochov G, Picard C, Soudais C, L'Honneur AS, Rozenberg F, Milner JD, Zhang SY, Vabres P, Trpinac D, Marr N, Boddaert N, Desguerre I, Pasparakis M, Miller CN, Poziomczyk CS, Abel L, Okada S, Jouanguy E, Cheynier R, Zhang Q, Cobat A, Béziat V, Boisson B, Steffann J, Fusco F, Ursini MV, Hadj-Rabia S, Bodemer C, Bustamante J, Luche H, Puel A, Courtois G, Bastard P, Landegren N, Anderson MS, Casanova JL. Incontinentia pigmenti underlies thymic dysplasia, autoantibodies to type I IFNs, and viral diseases. J Exp Med 2024; 221:e20231152. [PMID: 39352576 PMCID: PMC11448874 DOI: 10.1084/jem.20231152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Human inborn errors of thymic T cell tolerance underlie the production of autoantibodies (auto-Abs) neutralizing type I IFNs, which predispose to severe viral diseases. We analyze 131 female patients with X-linked dominant incontinentia pigmenti (IP), heterozygous for loss-of-function (LOF) NEMO variants, from 99 kindreds in 10 countries. Forty-seven of these patients (36%) have auto-Abs neutralizing IFN-α and/or IFN-ω, a proportion 23 times higher than that for age-matched female controls. This proportion remains stable from the age of 6 years onward. On imaging, female patients with IP have a small, abnormally structured thymus. Auto-Abs against type I IFNs confer a predisposition to life-threatening viral diseases. By contrast, patients with IP lacking auto-Abs against type I IFNs are at no particular risk of viral disease. These results suggest that IP accelerates thymic involution, thereby underlying the production of auto-Abs neutralizing type I IFNs in at least a third of female patients with IP, predisposing them to life-threatening viral diseases.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
| | - Xian Liu
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Laura Polivka
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
- Reference Center for Mastocytosis (CEREMAST), Necker Hospital for Sick Children, AP-HP , Paris, France
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Laureline Berteloot
- Pediatric Radiology Department, Necker Hospital for Sick Children, Imagine Inserm Institute, U1163, AP-HP, Paris, France
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Ezia Spinosa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Snezana Minic
- Clinics of Dermatovenerology, Clinical Center of Serbia , Belgrade, Serbia
- School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Ana Elisa Kiszewski
- Section of Dermatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Section of Pediatric Dermatology, Hospital da Criança Santo Antônio, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | - Miyuki Tsumura
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Chloé Thibault
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Maria Esnaola Azcoiti
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hospital Antoine Béclère, Paris Saclay University , Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | | | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Lillia Hadjem
- Immunophenomics Center (CIPHE), Aix Marseille University, Inserm, CNRS , Marseille, France
| | | | - Karim Dorgham
- Sorbonne University, Inserm, Centre for Immunology and Microbial Infections, CIMI-Paris , Paris, France
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emilia Liana Falcone
- Center for Immunity, Inflammation and Infectious Diseases, Montréal Clinical Research Institute (IRCM) , Montréal, Canada
- Department of Medicine, Montréal University, Montréal, Canada
| | - Mathilde Puel
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Sinem Ünal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Amyrath Geraldo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Sylvie Rheault
- Department of Medicine, Montréal University, Montréal, Canada
- Center of Research of the Geriatric University Institute of Montréal, University of Montréal , Montréal, Canada
| | - Christine Muti
- Department of Genetics, André Mignot Hospital, Versailles, France
| | | | - Anne Welfringer-Morin
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Ramsay L Fuleihan
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Marie Roelens
- Imagine Institute, University of Paris Cité , Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele , Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele , Milan, Italy
| | | | - Jean-Christophe Goffard
- Internal Medicine, Brussels University Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- Department of Parasitology Mycology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Aissata Sacko-Sow
- Department of Pediatrics, Jean Verdier Hospital, AP-HP, Bondy, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany
- European Reference Network (ERN) for Rare and Undiagnosed Skin Disorders
| | - Stefanie Hübner
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany
| | - Géraldine Blanchard-Rohner
- Unit of Immunology, Vaccinology, and Rheumatology, Division of General Pediatrics, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Blanca Amador-Borrero
- Internal Medicine Department, Lariboisière Hospital, AP-HP, University of Paris Cité, Paris, France
| | - Takanori Utsumi
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Maki Taniguchi
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Hiroo Tani
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
- Department of Pediatrics, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sotaro Kanai
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- Departments of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Guy Gorochov
- Sorbonne University, Inserm, Centre for Immunology and Microbial Infections, CIMI-Paris , Paris, France
- Department of Immunology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Capucine Picard
- Imagine Institute, University of Paris Cité , Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Paris, France
| | - Anne-Sophie L'Honneur
- Department of Virology, University of Paris Cité and Cochin Hospital, AP-HP, Paris, France
| | - Flore Rozenberg
- Department of Virology, University of Paris Cité and Cochin Hospital, AP-HP, Paris, France
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Pierre Vabres
- MAGEC Reference Center for Rare Skin Diseases, Dijon Bourgogne University Hospital, Dijon, France
| | - Dusan Trpinac
- Institute of Histology and Embryology, School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University , Doha, Qatar
| | - Nathalie Boddaert
- Pediatric Radiology Department, Necker Hospital for Sick Children, Imagine Inserm Institute, U1163, AP-HP, Paris, France
| | - Isabelle Desguerre
- Departments of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | | | - Corey N Miller
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | | | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Rémi Cheynier
- University of Paris Cité, CNRS, Inserm, Institut Cochin , Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Julie Steffann
- Department of Genomic Medicine, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | - Francesca Fusco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Christine Bodemer
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Hervé Luche
- Immunophenomics Center (CIPHE), Aix Marseille University, Inserm, CNRS , Marseille, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Gilles Courtois
- University Grenoble Alpes, CEA, Inserm , BGE UA13, Grenoble, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute , New York, NY, USA
| |
Collapse
|
2
|
Miller CN, Waterfield MR, Gardner JM, Anderson MS. Aire in Autoimmunity. Annu Rev Immunol 2024; 42:427-53. [PMID: 38360547 PMCID: PMC11774315 DOI: 10.1146/annurev-immunol-090222-101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| | - Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Surgery, University of California, San Francisco, California, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol 2024; 25:743-754. [PMID: 38698239 DOI: 10.1038/s41590-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Jean Donadieu
- Trousseau Hospital for Sick Children, Centre de référence des neutropénies chroniques, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
4
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
5
|
Bastard P, Gervais A, Taniguchi M, Saare L, Särekannu K, Le Voyer T, Philippot Q, Rosain J, Bizien L, Asano T, Garcia-Prat M, Parra-Martínez A, Migaud M, Tsumura M, Conti F, Belot A, Rivière JG, Morio T, Tanaka J, Javouhey E, Haerynck F, Duvlis S, Ozcelik T, Keles S, Tandjaoui-Lambiotte Y, Escoda S, Husain M, Pan-Hammarström Q, Hammarström L, Ahlijah G, Abi Haidar A, Soudee C, Arseguel V, Abolhassani H, Sahanic S, Tancevski I, Nukui Y, Hayakawa S, Chrousos GP, Michos A, Tatsi EB, Filippatos F, Rodriguez-Palmero A, Troya J, Tipu I, Meyts I, Roussel L, Ostrowski SR, Schidlowski L, Prando C, Condino-Neto A, Cheikh N, Bousfiha AA, El Bakkouri J, Peterson P, Pujol A, Lévy R, Quartier P, Vinh DC, Boisson B, Béziat V, Zhang SY, Borghesi A, Pession A, Andreakos E, Marr N, Mentis AFA, Mogensen TH, Rodríguez-Gallego C, Soler-Palacin P, Colobran R, Tillmann V, Neven B, Trouillet-Assant S, Brodin P, Abel L, Jouanguy E, Zhang Q, Martinón-Torres F, Salas A, Gómez-Carballa A, Gonzalez-Granado LI, Kisand K, Okada S, Puel A, Cobat A, Casanova JL. Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children. J Exp Med 2024; 221:e20231353. [PMID: 38175961 PMCID: PMC10771097 DOI: 10.1084/jem.20231353] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-β in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-ω and/or IFN-α2.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Maki Taniguchi
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Liisa Saare
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Takaki Asano
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Miyuki Tsumura
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alexandre Belot
- National Reference Center for Rheumatic, and Autoimmune and Systemic Diseases in Children, Lyon, France
- Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Tomohiro Morio
- Dept. of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Junko Tanaka
- Dept. of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hopital Femme Mère Enfant, Lyon, France
| | - Filomeen Haerynck
- Dept. of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Sotirija Duvlis
- Faculty of Medical Sciences, University “Goce Delchev”, Stip, Republic of Northern Macedonia
- Institute of Public Health of the Republic of North Macedonia, Skopje, North Macedonia
| | - Tayfun Ozcelik
- Dept. of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Sevgi Keles
- Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Yacine Tandjaoui-Lambiotte
- Pulmonology and Infectious Disease Department, Saint Denis Hospital, Saint Denis, France
- INSERM UMR 1137 IAME, Paris, France
- INSERM UMR 1272 Hypoxia and Lung, Bobigny, France
| | - Simon Escoda
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Maya Husain
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Qiang Pan-Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gloria Ahlijah
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Anthony Abi Haidar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Camille Soudee
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Vincent Arseguel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Hassan Abolhassani
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabina Sahanic
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Yoko Nukui
- Dept. of Infection Control and Prevention, Medical Hospital, TMDU, Tokyo, Japan
| | - Seiichi Hayakawa
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Michos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth-Barbara Tatsi
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Filippos Filippatos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Agusti Rodriguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Dept. of Pediatrics, Germans Trias i Pujol University Hospital, UAB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jesus Troya
- Dept. of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Imran Tipu
- University of Management and Technology, Lahore, Pakistan
| | - Isabelle Meyts
- Dept. of Immunology, Laboratory of Inborn Errors of Immunity, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, Leuven, Belgium
| | - Lucie Roussel
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Sisse Rye Ostrowski
- Dept. of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laire Schidlowski
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Antonio Condino-Neto
- Dept. of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathalie Cheikh
- Pediatric Hematology Unit, University Hospital of Besançon, Besançon, France
| | - Ahmed A. Bousfiha
- Dept. of Pediatric Infectious Disease and Clinical Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran i Reynals, CIBERER U759, and Catalan Institution of Research and Advanced Studies, Barcelona, Spain
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Quartier
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Donald C. Vinh
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Alexios-Fotios A. Mentis
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Trine H. Mogensen
- Dept. of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carlos Rodríguez-Gallego
- Hospital Universitario de Gran Canaria Dr Negrín, Canarian Health System, Las Palmas, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Genetics Dept., Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, UAB, Barcelona, Spain
| | - Vallo Tillmann
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Bénédicte Neven
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-bio Mérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Dept., Hospital Clínico Universitario de Santiago, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Alberto Gómez-Carballa
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Luis I. Gonzalez-Granado
- Immunodeficiencies Unit, Hospital 12 de octubre, Research Institute Hospital 12 octubre, Madrid, Spain
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Satoshi Okada
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
6
|
Paganelli R, Di Lizia M, D'Urbano M, Gatta A, Paganelli A, Amerio P, Parronchi P. Insights from a Case of Good's Syndrome (Immunodeficiency with Thymoma). Biomedicines 2023; 11:1605. [PMID: 37371700 DOI: 10.3390/biomedicines11061605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Immunodeficiency with thymoma was described by R.A. Good in 1954 and is also named after him. The syndrome is characterized by hypogammaglobulinemia associated with thymoma and recurrent infections, bacterial but also viral, fungal and parasitic. Autoimmune diseases, mainly pure red cell aplasia, other hematological disorders and erosive lichen planus are a common finding. We describe here a typical case exhibiting all these clinical features and report a detailed immunophenotypic assessment, as well as the positivity for autoantibodies against three cytokines (IFN-alpha, IL-6 and GM-CSF), which may add to known immune abnormalities. A review of the published literature, based on case series and immunological studies, offers some hints on the still unsolved issues of this rare condition.
Collapse
Affiliation(s)
- Roberto Paganelli
- Department of Medicine and Sciences of Aging, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Internal Medicine, School of Medicine, UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Michela Di Lizia
- Allergology ASL Teramo, Hospital of Giulianova, 64021 Giulianova, Italy
| | - Marika D'Urbano
- Laboratory Unit, Hospital S. Annunziata, 67039 Sulmona, Italy
| | - Alessia Gatta
- Allergology Service, ASL Chieti, 66100 Chieti, Italy
| | - Alessia Paganelli
- PhD Course in Clinical and Experimental Medicine, University of Modena-Reggio Emilia, 41121 Modena, Italy
| | - Paolo Amerio
- Department of Medicine and Sciences of Aging, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Parronchi
- Department of Experimental Medicine, University of Florence, 50121 Florence, Italy
| |
Collapse
|
7
|
Su HC, Jing H, Zhang Y, Casanova JL. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu Rev Immunol 2023; 41:561-585. [PMID: 37126418 DOI: 10.1146/annurev-immunol-101921-050835] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
8
|
Casanova JL, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest 2023; 133:e166283. [PMID: 36719370 PMCID: PMC9888384 DOI: 10.1172/jci166283] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Since 2003, rare inborn errors of human type I IFN immunity have been discovered, each underlying a few severe viral illnesses. Autoantibodies neutralizing type I IFNs due to rare inborn errors of autoimmune regulator (AIRE)-driven T cell tolerance were discovered in 2006, but not initially linked to any viral disease. These two lines of clinical investigation converged in 2020, with the discovery that inherited and/or autoimmune deficiencies of type I IFN immunity accounted for approximately 15%-20% of cases of critical COVID-19 pneumonia in unvaccinated individuals. Thus, insufficient type I IFN immunity at the onset of SARS-CoV-2 infection may be a general determinant of life-threatening COVID-19. These findings illustrate the unpredictable, but considerable, contribution of the study of rare human genetic diseases to basic biology and public health.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Mark S. Anderson
- Diabetes Center and
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
9
|
Mannstadt M, Cianferotti L, Gafni RI, Giusti F, Kemp EH, Koch CA, Roszko KL, Yao L, Guyatt GH, Thakker RV, Xia W, Brandi ML. Hypoparathyroidism: Genetics and Diagnosis. J Bone Miner Res 2022; 37:2615-2629. [PMID: 36375809 DOI: 10.1002/jbmr.4667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 01/05/2023]
Abstract
This narrative report summarizes diagnostic criteria for hypoparathyroidism and describes the clinical presentation and underlying genetic causes of the nonsurgical forms. We conducted a comprehensive literature search from January 2000 to January 2021 and included landmark articles before 2000, presenting a comprehensive update of these topics and suggesting a research agenda to improve diagnosis and, eventually, the prognosis of the disease. Hypoparathyroidism, which is characterized by insufficient secretion of parathyroid hormone (PTH) leading to hypocalcemia, is diagnosed on biochemical grounds. Low albumin-adjusted calcium or ionized calcium with concurrent inappropriately low serum PTH concentration are the hallmarks of the disease. In this review, we discuss the characteristics and pitfalls in measuring calcium and PTH. We also undertook a systematic review addressing the utility of measuring calcium and PTH within 24 hours after total thyroidectomy to predict long-term hypoparathyroidism. A summary of the findings is presented here; results of the detailed systematic review are published separately in this issue of JBMR. Several genetic disorders can present with hypoparathyroidism, either as an isolated disease or as part of a syndrome. A positive family history and, in the case of complex diseases, characteristic comorbidities raise the clinical suspicion of a genetic disorder. In addition to these disorders' phenotypic characteristics, which include autoimmune diseases, we discuss approaches for the genetic diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Luisella Cianferotti
- Bone Metabolic Diseases Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Rachel I Gafni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Christian A Koch
- Department of Medicine/Endocrinology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Medicine/Endocrinology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kelly L Roszko
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Liam Yao
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Gordon H Guyatt
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical Collage Hospital, Beijing, China
| | - Maria-Luisa Brandi
- Fondazione Italiana sulla Ricerca sulle Malattie dell'Osso (F.I.R.M.O. Foundation), Florence, Italy
| |
Collapse
|
10
|
Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 2022; 603:587-598. [PMID: 35090163 DOI: 10.1038/s41586-022-04447-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
SARS-CoV-2 infection is benign in most individuals but, in ˜10% of cases, it triggers hypoxemic COVID-19 pneumonia, which becomes critical in ˜3% of cases. The ensuing risk of death (˜1%) doubles every five years from childhood onward and is ˜1.5 times greater in men than in women. What are the molecular and cellular determinants of critical COVID-19 pneumonia? Inborn errors of type I IFNs, including autosomal TLR3 and X-linked TLR7 deficiencies, are found in ˜1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing autoantibodies neutralizing IFN-α, -β, and/or -ω, which are more common in men than in women, are found in ˜15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can apparently be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defense against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation.
Collapse
|
11
|
Sharifinejad N, Zaki-Dizaji M, Tebyanian S, Zainaldain H, Jamee M, Rizvi FS, Hosseinzadeh S, Fayyaz F, Hamedifar H, Sabzevari A, Matloubi M, Heropolitańska-Pliszka E, Aghamahdi F, Abolhassani H, Azizi G. Clinical, immunological, and genetic features in 938 patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED): a systematic review. Expert Rev Clin Immunol 2021; 17:807-817. [PMID: 33957837 DOI: 10.1080/1744666x.2021.1925543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare inborn immune error characterized by a triad of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism (HP), and adrenal insufficiency (ADI).Methods: Literature search was conducted in PubMed, Web of Science, and Scopus databases using related keywords, and included studies were systematically evaluated.Results: We reviewed 938 APECED patients and the classic triad of APECED was detected in 57.3% (460 of 803) of patients. CMC (82.5%) was reported as the earliest, HP (84.2%) as the most prevalent, and ADI (72.2%) as the latest presentation within the classic triad. A broad spectrum of non-triad involvements has also been reported; mainly included ectodermal dystrophy (64.5%), infections (58.7%), gastrointestinal disorders (52.0%), gonadal failure (42.0%), neurologic involvements (36.4%), and ocular manifestations (34.3%). A significant positive correlation was detected between certain tissue-specific autoantibodies and particular manifestations including ADI and HP. Neutralizing autoantibodies were detected in at least 60.0% of patients. Nonsense and/or frameshift insertion-deletion mutations were detected in 73.8% of patients with CMC, 70.9% of patients with HP, and 74.6% of patients with primary ADI.Conclusion: Besides penetrance diversity, our review revealed a diverse affected ethnicity (mainly from Italy followed by Finland and Ireland). APECED can initially present in adolescence as 5.2% of the patients were older than 18 years at the disease onset. According to the variety of clinical conditions, which in the majority of patients appear gradually over time, clinical management deserves a separate analysis.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Shafi Tebyanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Zainaldain
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Fatema Sadaat Rizvi
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Soheila Hosseinzadeh
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Farimah Fayyaz
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.,CinnaGen Research and Production Co., Alborz, Iran
| | - Araz Sabzevari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Orchid Pharmed Company, Tehran, Iran
| | - Mojdeh Matloubi
- Medical Immunology Department, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | - Fatemeh Aghamahdi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatric Endocrinology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
12
|
Bacchetta R, Weinberg K. Thymic origins of autoimmunity-lessons from inborn errors of immunity. Semin Immunopathol 2021; 43:65-83. [PMID: 33532929 PMCID: PMC7925499 DOI: 10.1007/s00281-020-00835-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
During their intrathymic development, nascent T cells are empowered to protect against pathogens and to be operative for a life-long acceptance of self. While autoreactive effector T (Teff) cell progenitors are eliminated by clonal deletion, the intrathymic mechanisms by which thymic regulatory T cell (tTreg) progenitors maintain specificity for self-antigens but escape deletion to exert their regulatory functions are less well understood. Both tTreg and Teff development and selection result from finely coordinated interactions between their clonotypic T cell receptors (TCR) and peptide/MHC complexes expressed by antigen-presenting cells, such as thymic epithelial cells and thymic dendritic cells. tTreg function is dependent on expression of the FOXP3 transcription factor, and induction of FOXP3 gene expression by tTreg occurs during their thymic development, particularly within the thymic medulla. While initial expression of FOXP3 is downstream of TCR activation, constitutive expression is fixed by interactions with various transcription factors that are regulated by other extracellular signals like TCR and cytokines, leading to epigenetic modification of the FOXP3 gene. Most of the understanding of the molecular events underlying tTreg generation is based on studies of murine models, whereas gaining similar insight in the human system has been very challenging. In this review, we will elucidate how inborn errors of immunity illuminate the critical non-redundant roles of certain molecules during tTreg development, shedding light on how their abnormal development and function cause well-defined diseases that manifest with autoimmunity alone or are associated with states of immune deficiency and autoinflammation.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA.
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Sedhai YR, Basnyat S. Petrified pinna and pericarditis in autoimmune polyendocrine syndrome. BMJ Case Rep 2019; 12:12/6/e229369. [PMID: 31167769 DOI: 10.1136/bcr-2019-229369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Petrified pinna refers to the calcification or ossification of the external auricular cartilage. It is an uncommon clinical entity and is most often associated with local trauma, frostbite or inflammation. Auricular calcification may be the exclusive cutaneous marker of underlying endocrinopathy. It has been most commonly associated with adrenal insufficiency and other endocrine conditions like diabetes mellitus, hypothyroidism and acromegaly. We present a 47-year-old Caucasian manwho presented with acute pericarditis with tamponade physiology, who was found to have petrified pinnae as a telltale sign of the underlying autoimmune polyendocrine syndrome type 2.
Collapse
Affiliation(s)
- Yub Raj Sedhai
- Internal Medicine, VCU School of Medicine, South Hill, Virginia, USA
| | - Soney Basnyat
- Internal Medicine, St Mary Mercy Hospital, Livonia, Michigan, USA
| |
Collapse
|
14
|
Santos E, Silva AM, Stroebel P, Marinho A, Willcox N, Goncalves G, Lopes C, Marx A, Leite MI. Signs heralding appearance of thymomas after extended thymectomy for myasthenia gravis. Neurol Clin Pract 2019; 9:48-52. [PMID: 30859007 DOI: 10.1212/cpj.0000000000000551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/20/2018] [Indexed: 11/15/2022]
Abstract
Purpose of review Thymomas appear very rarely after extended thymectomy for early-onset myasthenia gravis (EOMG). We describe 2 such cases that highlight potential early warning signs. Recent findings In their 20s, one woman and one man developed EOMG (AChR antibody-positive), requiring extended transsternal removal of hyperplastic thymi at ages 35 and 27, respectively. Their myasthenia gravis was readily controlled for the next 10 and 7 years before deteriorating in both, with appearance of late clinical features and anticytokine autoantibodies suggesting underlying thymomas, namely respiratory infections, genital herpes, chronic candidiasis, and alopecia in the woman and erythroderma and lichen planus in the man, followed by Pseudomonas, Klebsiella, and cytomegalovirus infections plus chronic hepatitis during intensifying immunosuppressive therapy. Type B thymomas were then detected. Despite surgery or radiotherapy, and intensive drug therapy, the patients died 7 and 1 years later. Summary Certain infections/dermatologic manifestations that associate with long-standing thymomas may herald their late appearance, despite previous thymectomy.
Collapse
Affiliation(s)
- Ernestina Santos
- Departments of Neurology (ES, AMS) and Pathology (CL), Clinical Immunology (A. Marinho) Hospital Santo Antonio/ Centro Hospitalar Universitario do Porto; Instituto de Ciencias Biomedicas de Abel Salazar (ES, AMS, GG), University of Porto, Portugal; Institute of Pathology (PS), University Medical Center Göttingen, University of Göttingen, Germany; Neurosciences Group (NW, MIL), Nuffield Department of Clinical Neurology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK; and Institute of Pathology (A. Marx), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ana Martins Silva
- Departments of Neurology (ES, AMS) and Pathology (CL), Clinical Immunology (A. Marinho) Hospital Santo Antonio/ Centro Hospitalar Universitario do Porto; Instituto de Ciencias Biomedicas de Abel Salazar (ES, AMS, GG), University of Porto, Portugal; Institute of Pathology (PS), University Medical Center Göttingen, University of Göttingen, Germany; Neurosciences Group (NW, MIL), Nuffield Department of Clinical Neurology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK; and Institute of Pathology (A. Marx), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Philipp Stroebel
- Departments of Neurology (ES, AMS) and Pathology (CL), Clinical Immunology (A. Marinho) Hospital Santo Antonio/ Centro Hospitalar Universitario do Porto; Instituto de Ciencias Biomedicas de Abel Salazar (ES, AMS, GG), University of Porto, Portugal; Institute of Pathology (PS), University Medical Center Göttingen, University of Göttingen, Germany; Neurosciences Group (NW, MIL), Nuffield Department of Clinical Neurology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK; and Institute of Pathology (A. Marx), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Antonio Marinho
- Departments of Neurology (ES, AMS) and Pathology (CL), Clinical Immunology (A. Marinho) Hospital Santo Antonio/ Centro Hospitalar Universitario do Porto; Instituto de Ciencias Biomedicas de Abel Salazar (ES, AMS, GG), University of Porto, Portugal; Institute of Pathology (PS), University Medical Center Göttingen, University of Göttingen, Germany; Neurosciences Group (NW, MIL), Nuffield Department of Clinical Neurology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK; and Institute of Pathology (A. Marx), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nick Willcox
- Departments of Neurology (ES, AMS) and Pathology (CL), Clinical Immunology (A. Marinho) Hospital Santo Antonio/ Centro Hospitalar Universitario do Porto; Instituto de Ciencias Biomedicas de Abel Salazar (ES, AMS, GG), University of Porto, Portugal; Institute of Pathology (PS), University Medical Center Göttingen, University of Göttingen, Germany; Neurosciences Group (NW, MIL), Nuffield Department of Clinical Neurology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK; and Institute of Pathology (A. Marx), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Guilherme Goncalves
- Departments of Neurology (ES, AMS) and Pathology (CL), Clinical Immunology (A. Marinho) Hospital Santo Antonio/ Centro Hospitalar Universitario do Porto; Instituto de Ciencias Biomedicas de Abel Salazar (ES, AMS, GG), University of Porto, Portugal; Institute of Pathology (PS), University Medical Center Göttingen, University of Göttingen, Germany; Neurosciences Group (NW, MIL), Nuffield Department of Clinical Neurology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK; and Institute of Pathology (A. Marx), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carlos Lopes
- Departments of Neurology (ES, AMS) and Pathology (CL), Clinical Immunology (A. Marinho) Hospital Santo Antonio/ Centro Hospitalar Universitario do Porto; Instituto de Ciencias Biomedicas de Abel Salazar (ES, AMS, GG), University of Porto, Portugal; Institute of Pathology (PS), University Medical Center Göttingen, University of Göttingen, Germany; Neurosciences Group (NW, MIL), Nuffield Department of Clinical Neurology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK; and Institute of Pathology (A. Marx), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Marx
- Departments of Neurology (ES, AMS) and Pathology (CL), Clinical Immunology (A. Marinho) Hospital Santo Antonio/ Centro Hospitalar Universitario do Porto; Instituto de Ciencias Biomedicas de Abel Salazar (ES, AMS, GG), University of Porto, Portugal; Institute of Pathology (PS), University Medical Center Göttingen, University of Göttingen, Germany; Neurosciences Group (NW, MIL), Nuffield Department of Clinical Neurology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK; and Institute of Pathology (A. Marx), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maria Isabel Leite
- Departments of Neurology (ES, AMS) and Pathology (CL), Clinical Immunology (A. Marinho) Hospital Santo Antonio/ Centro Hospitalar Universitario do Porto; Instituto de Ciencias Biomedicas de Abel Salazar (ES, AMS, GG), University of Porto, Portugal; Institute of Pathology (PS), University Medical Center Göttingen, University of Göttingen, Germany; Neurosciences Group (NW, MIL), Nuffield Department of Clinical Neurology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK; and Institute of Pathology (A. Marx), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
15
|
Glutamate Receptor Antibodies in Autoimmune Central Nervous System Disease: Basic Mechanisms, Clinical Features, and Antibody Detection. Methods Mol Biol 2019. [PMID: 30707437 DOI: 10.1007/978-1-4939-9077-1_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immune-mediated inflammation of the brain has been recognized for more than 50 years, although the initial descriptions were mainly thought to be secondary to an underlying neoplasm. Some of these paraneoplastic encephalitides express serum antibodies, but these were not thought to be pathogenic but instead have a T-cell-mediated pathophysiology. Over the last two decades, several pathogenic antibodies against neuronal surface antigens have been described in autoimmune encephalitis, which are amenable to immunotherapy. Several of these antibodies are directed against glutamate receptors (GluRs). NMDAR encephalitis (NMDARE) is the most common of these antibodies, and patients often present with psychosis, hallucinations, and reduced consciousness. Patients often progress on to develop confusion, seizures, movement disorders, autonomic instability, and respiratory depression. Although initially described as exclusively occurring secondary to ovarian teratoma (and later other tumors), non-paraneoplastic forms are increasingly common, and other triggers like viral infections are now well recognized. AMPAR encephalitis is relatively less common than NMDARE but is more likely to paraneoplastic. AMPAR antibodies typically cause limbic encephalitis, with patients presenting with confusion, disorientation, memory loss, and often seizures. The syndromes associated with the metabotropic receptor antibodies are much rarer and often can be paraneoplastic-mGluR1 (cerebellar degeneration) and mGluR5 (Ophelia syndrome) being the ones described in literature.With the advance in molecular biology techniques, it is now possible to detect these antibodies using cell-based assays with high sensitivity and specificity, especially when coupled with brain tissue immunohistochemistry and binding to live cell-based neurons. The rapid and reliable identification of these antibodies aids in the timely treatment (either in the form of identifying/removing the underlying tumor or instituting immunomodulatory therapy) and has significantly improved clinical outcome in this otherwise devastating group of conditions.
Collapse
|
16
|
Constantine GM, Lionakis MS. Lessons from primary immunodeficiencies: Autoimmune regulator and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Immunol Rev 2019; 287:103-120. [PMID: 30565240 PMCID: PMC6309421 DOI: 10.1111/imr.12714] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
The discovery of the autoimmune regulator (AIRE) protein and the delineation of its critical contributions in the establishment of central immune tolerance has significantly expanded our understanding of the immunological mechanisms that protect from the development of autoimmune disease. The parallel identification and characterization of patient cohorts with the monogenic disorder autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), which is typically caused by biallelic AIRE mutations, has underscored the critical contribution of AIRE in fungal immune surveillance at mucosal surfaces and in prevention of multiorgan autoimmunity in humans. In this review, we synthesize the current clinical, genetic, molecular and immunological knowledge derived from basic studies in Aire-deficient animals and from APECED patient cohorts. We also outline major advances and research endeavors that show promise for informing improved diagnostic and therapeutic approaches for patients with APECED.
Collapse
Affiliation(s)
- Gregory M Constantine
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Cheng M, Anderson MS. Thymic tolerance as a key brake on autoimmunity. Nat Immunol 2018; 19:659-664. [PMID: 29925986 PMCID: PMC6370479 DOI: 10.1038/s41590-018-0128-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
Although the thymus has long been recognized as a key organ for T cell selection, the intricate details linking these selection events to human autoimmunity have been challenging to decipher. Over the last two decades, there has been rapid progress in understanding the role of thymic tolerance mechanisms in autoimmunity through genetics. Here we review some of the recent progress in understanding key thymic tolerance processes that are critical for preventing autoimmune disease.
Collapse
Affiliation(s)
- Mickie Cheng
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
MESH Headings
- Diabetes Mellitus, Type 1/congenital
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/therapy
- Diarrhea/genetics
- Diarrhea/immunology
- Diarrhea/therapy
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/therapy
- Humans
- Immune System Diseases/congenital
- Immune System Diseases/genetics
- Immune System Diseases/immunology
- Immune System Diseases/therapy
- Polyendocrinopathies, Autoimmune/genetics
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/therapy
Collapse
Affiliation(s)
- Eystein S Husebye
- From the Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen (E.S.H., O.K.), and the Department of Medicine, Haukeland University Hospital (E.S.H.), Bergen, Norway; the Department of Medicine (Solna), Karolinska Institutet, Stockholm (E.S.H., O.K.); and the Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco (M.S.A.)
| | - Mark S Anderson
- From the Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen (E.S.H., O.K.), and the Department of Medicine, Haukeland University Hospital (E.S.H.), Bergen, Norway; the Department of Medicine (Solna), Karolinska Institutet, Stockholm (E.S.H., O.K.); and the Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco (M.S.A.)
| | - Olle Kämpe
- From the Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen (E.S.H., O.K.), and the Department of Medicine, Haukeland University Hospital (E.S.H.), Bergen, Norway; the Department of Medicine (Solna), Karolinska Institutet, Stockholm (E.S.H., O.K.); and the Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco (M.S.A.)
| |
Collapse
|
19
|
Eriksson D, Dalin F, Eriksson GN, Landegren N, Bianchi M, Hallgren Å, Dahlqvist P, Wahlberg J, Ekwall O, Winqvist O, Catrina SB, Rönnelid J, Hulting AL, Lindblad-Toh K, Alimohammadi M, Husebye ES, Knappskog PM, Rosengren Pielberg G, Bensing S, Kämpe O. Cytokine Autoantibody Screening in the Swedish Addison Registry Identifies Patients With Undiagnosed APS1. J Clin Endocrinol Metab 2018; 103:179-186. [PMID: 29069385 DOI: 10.1210/jc.2017-01957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
CONTEXT Autoimmune polyendocrine syndrome type 1 (APS1) is a monogenic disorder that features autoimmune Addison disease as a major component. Although APS1 accounts for only a small fraction of all patients with Addison disease, early identification of these individuals is vital to prevent the potentially lethal complications of APS1. OBJECTIVE To determine whether available serological and genetic markers are valuable screening tools for the identification of APS1 among patients diagnosed with Addison disease. DESIGN We systematically screened 677 patients with Addison disease enrolled in the Swedish Addison Registry for autoantibodies against interleukin-22 and interferon-α4. Autoantibody-positive patients were investigated for clinical manifestations of APS1, additional APS1-specific autoantibodies, and DNA sequence and copy number variations of AIRE. RESULTS In total, 17 patients (2.5%) displayed autoantibodies against interleukin-22 and/or interferon-α4, of which nine were known APS1 cases. Four patients previously undiagnosed with APS1 fulfilled clinical, genetic, and serological criteria. Hence, we identified four patients with undiagnosed APS1 with this screening procedure. CONCLUSION We propose that patients with Addison disease should be routinely screened for cytokine autoantibodies. Clinical or serological support for APS1 should warrant DNA sequencing and copy number analysis of AIRE to enable early diagnosis and prevention of lethal complications.
Collapse
Affiliation(s)
- Daniel Eriksson
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Frida Dalin
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Nils Landegren
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Hallgren
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jeanette Wahlberg
- Department of Endocrinology, Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ola Winqvist
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anna-Lena Hulting
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | | | - Eystein S Husebye
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| | - Per Morten Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Gerli Rosengren Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sophie Bensing
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Olle Kämpe
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| |
Collapse
|
20
|
Abstract
Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
21
|
Dalmau J, Geis C, Graus F. Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System. Physiol Rev 2017; 97:839-887. [PMID: 28298428 PMCID: PMC5539405 DOI: 10.1152/physrev.00010.2016] [Citation(s) in RCA: 393] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Investigations in the last 10 years have revealed a new category of neurological diseases mediated by antibodies against cell surface and synaptic proteins. There are currently 16 such diseases all characterized by autoantibodies against neuronal proteins involved in synaptic signaling and plasticity. In clinical practice these findings have changed the diagnostic and treatment approach to potentially lethal, but now treatable, neurological and psychiatric syndromes previously considered idiopathic or not even suspected to be immune-mediated. Studies show that patients' antibodies can impair the surface dynamics of the target receptors eliminating them from synapses (e.g., NMDA receptor), block the function of the antigens without changing their synaptic density (e.g., GABAb receptor), interfere with synaptic protein-protein interactions (LGI1, Caspr2), alter synapse formation (e.g., neurexin-3α), or by unclear mechanisms associate to a new form of tauopathy (IgLON5). Here we first trace the process of discovery of these diseases, describing the triggers and symptoms related to each autoantigen, and then review in detail the structural and functional alterations caused by the autoantibodies with special emphasis in those (NMDA receptor, amphiphysin) that have been modeled in animals.
Collapse
Affiliation(s)
- Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Christian Geis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Graus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Celmeli F, Kocabas A, Isik IA, Parlak M, Kisand K, Ceylaner S, Turkkahraman D. Unexplained cyanosis caused by hepatopulmonary syndrome in a girl with APECED syndrome. J Pediatr Endocrinol Metab 2017; 30:365-369. [PMID: 28222032 DOI: 10.1515/jpem-2016-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
Autoimmune polyendocrinopathy, candidiasis and ectodermal dystrophy (APECED) is a rare but devastating primary immunodeficiency disease caused by loss-of-function mutations in autoimmune regulator (AIRE) gene on chromosome 21q22.3. The clinical spectrum of the disease is characterized by a wide heterogeneity because of autoimmune reactions toward different endocrine and non-endocrine organs. Here, we report a 17-year-old Turkish girl diagnosed with APECED at 9 years in whom a novel homozygote mutation in AIRE gene p.R15H (c.44G>A) was found. In the clinical course of the patient, chronic liver disease due to autoimmune hepatitis has evolved resulting in hepatopulmonary syndrome (HPS) which has not been reported before in patients with APECED.
Collapse
|
23
|
Abramson J, Husebye ES. Autoimmune regulator and self-tolerance - molecular and clinical aspects. Immunol Rev 2016; 271:127-40. [PMID: 27088911 DOI: 10.1111/imr.12419] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The establishment of central tolerance in the thymus is critical for avoiding deleterious autoimmune diseases. Autoimmune regulator (AIRE), the causative gene in autoimmune polyendocrine syndrome type-1 (APS-1), is crucial for the establishment of self-tolerance in the thymus by promoting promiscuous expression of a wide array of tissue-restricted self-antigens. This step is critical for elimination of high-affinity self-reactive T cells from the immunological repertoire, and for the induction of a specific subset of Foxp3(+) T-regulatory (Treg ) cells. In this review, we discuss the most recent advances in our understanding of how AIRE operates on molecular and cellular levels, as well as of how its loss of function results in breakdown of self-tolerance mechanisms characterized by a broad and heterogeneous repertoire of autoimmune phenotypes.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
24
|
Walter JE, Rosen LB, Csomos K, Rosenberg JM, Mathew D, Keszei M, Ujhazi B, Chen K, Lee YN, Tirosh I, Dobbs K, Al-Herz W, Cowan MJ, Puck J, Bleesing JJ, Grimley MS, Malech H, De Ravin SS, Gennery AR, Abraham RS, Joshi AY, Boyce TG, Butte MJ, Nadeau KC, Balboni I, Sullivan KE, Akhter J, Adeli M, El-Feky RA, El-Ghoneimy DH, Dbaibo G, Wakim R, Azzari C, Palma P, Cancrini C, Capuder K, Condino-Neto A, Costa-Carvalho BT, Oliveira JB, Roifman C, Buchbinder D, Kumanovics A, Franco JL, Niehues T, Schuetz C, Kuijpers T, Yee C, Chou J, Masaad MJ, Geha R, Uzel G, Gelman R, Holland SM, Recher M, Utz PJ, Browne SK, Notarangelo LD. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J Clin Invest 2015; 125:4135-48. [PMID: 26457731 DOI: 10.1172/jci80477] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Patients with mutations of the recombination-activating genes (RAG) present with diverse clinical phenotypes, including severe combined immune deficiency (SCID), autoimmunity, and inflammation. However, the incidence and extent of immune dysregulation in RAG-dependent immunodeficiency have not been studied in detail. Here, we have demonstrated that patients with hypomorphic RAG mutations, especially those with delayed-onset combined immune deficiency and granulomatous/autoimmune manifestations (CID-G/AI), produce a broad spectrum of autoantibodies. Neutralizing anti-IFN-α or anti-IFN-ω antibodies were present at detectable levels in patients with CID-G/AI who had a history of severe viral infections. As this autoantibody profile is not observed in a wide range of other primary immunodeficiencies, we hypothesized that recurrent or chronic viral infections may precipitate or aggravate immune dysregulation in RAG-deficient hosts. We repeatedly challenged Rag1S723C/S723C mice, which serve as a model of leaky SCID, with agonists of the virus-recognizing receptors TLR3/MDA5, TLR7/-8, and TLR9 and found that this treatment elicits autoantibody production. Altogether, our data demonstrate that immune dysregulation is an integral aspect of RAG-associated immunodeficiency and indicate that environmental triggers may modulate the phenotypic expression of autoimmune manifestations.
Collapse
|
25
|
Marx A, Porubsky S, Belharazem D, Saruhan-Direskeneli G, Schalke B, Ströbel P, Weis CA. Thymoma related myasthenia gravis in humans and potential animal models. Exp Neurol 2015; 270:55-65. [PMID: 25700911 DOI: 10.1016/j.expneurol.2015.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
Abstract
Thymoma-associated Myasthenia gravis (TAMG) is one of the anti-acetylcholine receptor MG (AChR-MG) subtypes. The clinico-pathological features of TAMG and its pathogenesis are described here in comparison with pathogenetic models suggested for the more common non-thymoma AChR-MG subtypes, early onset MG and late onset MG. Emphasis is put on the role of abnormal intratumorous T cell selection and activation, lack of intratumorous myoid cells and regulatory T cells as well as deficient expression of the autoimmune regulator (AIRE) by neoplastic thymic epithelial cells. We review spontaneous and genetically engineered thymoma models in a spectrum of animals and the extensive clinical and immunological overlap between canine, feline and human TAMG. Finally, limitations and perspectives of the transplantation of human and murine thymoma tissue into nude mice, as potential models for TAMG, are addressed.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 13, D-68167 Mannheim, Germany.
| | - Stefan Porubsky
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 13, D-68167 Mannheim, Germany
| | - Djeda Belharazem
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 13, D-68167 Mannheim, Germany
| | - Güher Saruhan-Direskeneli
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey.
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, D-93042 Regensburg, Germany.
| | - Philipp Ströbel
- Institute of Pathology, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany.
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 13, D-68167 Mannheim, Germany.
| |
Collapse
|
26
|
Wolff ASB, Kärner J, Owe JF, Oftedal BEV, Gilhus NE, Erichsen MM, Kämpe O, Meager A, Peterson P, Kisand K, Willcox N, Husebye ES. Clinical and serologic parallels to APS-I in patients with thymomas and autoantigen transcripts in their tumors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3880-90. [PMID: 25230752 PMCID: PMC4190667 DOI: 10.4049/jimmunol.1401068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with the autoimmune polyendocrine syndrome type I (APS-I), caused by mutations in the autoimmune regulator (AIRE) gene, and myasthenia gravis (MG) with thymoma, show intriguing but unexplained parallels. They include uncommon manifestations like autoimmune adrenal insufficiency (AI), hypoparathyroidism, and chronic mucocutaneous candidiasis plus autoantibodies neutralizing IL-17, IL-22, and type I IFNs. Thymopoiesis in the absence of AIRE is implicated in both syndromes. To test whether these parallels extend further, we screened 247 patients with MG, thymoma, or both for clinical features and organ-specific autoantibodies characteristic of APS-I patients, and we assayed 26 thymoma samples for transcripts for AIRE and 16 peripheral tissue-specific autoantigens (TSAgs) by quantitative PCR. We found APS-I-typical autoantibodies and clinical manifestations, including chronic mucocutaneous candidiasis, AI, and asplenia, respectively, in 49 of 121 (40%) and 10 of 121 (8%) thymoma patients, but clinical features seldom occurred together with the corresponding autoantibodies. Both were rare in other MG subgroups (n = 126). In 38 patients with APS-I, by contrast, we observed neither autoantibodies against muscle Ags nor any neuromuscular disorders. Whereas relative transcript levels for AIRE and 7 of 16 TSAgs showed the expected underexpression in thymomas, levels were increased for four of the five TSAgs most frequently targeted by these patients' autoantibodies. Therefore, the clinical and serologic parallels to APS-I in patients with thymomas are not explained purely by deficient TSAg transcription in these aberrant AIRE-deficient tumors. We therefore propose additional explanations for the unusual autoimmune biases they provoke. Thymoma patients should be monitored for potentially life-threatening APS-I manifestations such as AI and hypoparathyroidism.
Collapse
Affiliation(s)
- Anette S B Wolff
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Jaanika Kärner
- Molecular Pathology Group, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Jone F Owe
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Martina M Erichsen
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Olle Kämpe
- Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Anthony Meager
- Biotherapeutics Group, The National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; and
| | - Pärt Peterson
- Molecular Pathology Group, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology Group, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Nick Willcox
- Department of Clinical Neurology, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
27
|
Pozzesi N, Fierabracci A, Thuy TT, Martelli MP, Liberati AM, Ayroldi E, Riccardi C, Delfino DV. Pharmacological modulation of caspase-8 in thymus-related medical conditions. J Pharmacol Exp Ther 2014; 351:18-24. [PMID: 25060674 DOI: 10.1124/jpet.114.216572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
The thymus is a lymphoid organ that governs the development of a diverse T-cell repertoire capable of defending against nonself-antigens and avoiding autoimmunity. However, the thymus can also succumb to different diseases. Hypertrophic diseases, such as thymomas, are typically associated with impairment of negative selection, which leads to autoimmune disease, or disruption of positive selection, which results in immunodeficiency. Hypotrophic diseases of the thymus can manifest during acute infections, cancer, allogeneic bone marrow transplantation, or with aging. This condition leads to decreased immune function and can be treated by either replacing lost thymic tissue or by preventing thymic tissue death. Studies have demonstrated the critical role of caspase-8 in regulating apoptosis in the thymus. In this review, we discuss how pharmacological activation and inhibition of caspase-8 can be used to treat hypertrophic and hypotrophic diseases of the thymus, respectively, to improve its function.
Collapse
Affiliation(s)
- Nicola Pozzesi
- Foligno Nurse School, Department of Medicine (N.P.), Section of Hematology (M.P.M.), Section of Pharmacology (E.A., C.R., D.V.D.), Department of Medicine, Section of Onco-Hematology, Hospital S. Maria, Terni, Department of Surgery (A.M.L.), University of Perugia, Perugia, Italy; Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambin Gesù Children's Hospital IRCCS, Rome, Italy (A.F.); and Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam (T.T.T.)
| | - Alessandra Fierabracci
- Foligno Nurse School, Department of Medicine (N.P.), Section of Hematology (M.P.M.), Section of Pharmacology (E.A., C.R., D.V.D.), Department of Medicine, Section of Onco-Hematology, Hospital S. Maria, Terni, Department of Surgery (A.M.L.), University of Perugia, Perugia, Italy; Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambin Gesù Children's Hospital IRCCS, Rome, Italy (A.F.); and Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam (T.T.T.)
| | - Trinh Thy Thuy
- Foligno Nurse School, Department of Medicine (N.P.), Section of Hematology (M.P.M.), Section of Pharmacology (E.A., C.R., D.V.D.), Department of Medicine, Section of Onco-Hematology, Hospital S. Maria, Terni, Department of Surgery (A.M.L.), University of Perugia, Perugia, Italy; Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambin Gesù Children's Hospital IRCCS, Rome, Italy (A.F.); and Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam (T.T.T.)
| | - Maria Paola Martelli
- Foligno Nurse School, Department of Medicine (N.P.), Section of Hematology (M.P.M.), Section of Pharmacology (E.A., C.R., D.V.D.), Department of Medicine, Section of Onco-Hematology, Hospital S. Maria, Terni, Department of Surgery (A.M.L.), University of Perugia, Perugia, Italy; Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambin Gesù Children's Hospital IRCCS, Rome, Italy (A.F.); and Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam (T.T.T.)
| | - Anna Marina Liberati
- Foligno Nurse School, Department of Medicine (N.P.), Section of Hematology (M.P.M.), Section of Pharmacology (E.A., C.R., D.V.D.), Department of Medicine, Section of Onco-Hematology, Hospital S. Maria, Terni, Department of Surgery (A.M.L.), University of Perugia, Perugia, Italy; Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambin Gesù Children's Hospital IRCCS, Rome, Italy (A.F.); and Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam (T.T.T.)
| | - Emira Ayroldi
- Foligno Nurse School, Department of Medicine (N.P.), Section of Hematology (M.P.M.), Section of Pharmacology (E.A., C.R., D.V.D.), Department of Medicine, Section of Onco-Hematology, Hospital S. Maria, Terni, Department of Surgery (A.M.L.), University of Perugia, Perugia, Italy; Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambin Gesù Children's Hospital IRCCS, Rome, Italy (A.F.); and Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam (T.T.T.)
| | - Carlo Riccardi
- Foligno Nurse School, Department of Medicine (N.P.), Section of Hematology (M.P.M.), Section of Pharmacology (E.A., C.R., D.V.D.), Department of Medicine, Section of Onco-Hematology, Hospital S. Maria, Terni, Department of Surgery (A.M.L.), University of Perugia, Perugia, Italy; Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambin Gesù Children's Hospital IRCCS, Rome, Italy (A.F.); and Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam (T.T.T.)
| | - Domenico V Delfino
- Foligno Nurse School, Department of Medicine (N.P.), Section of Hematology (M.P.M.), Section of Pharmacology (E.A., C.R., D.V.D.), Department of Medicine, Section of Onco-Hematology, Hospital S. Maria, Terni, Department of Surgery (A.M.L.), University of Perugia, Perugia, Italy; Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambin Gesù Children's Hospital IRCCS, Rome, Italy (A.F.); and Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam (T.T.T.)
| |
Collapse
|
28
|
Abstract
Loss-of-function mutations in the Autoimmune Regulator (AIRE) gene cause a rare inherited form of autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, also known as autoimmune polyglandular syndrome type 1. The patients suffer from multiple endocrine deficiencies, the most common manifestations being hypoparathyroidism, Addison’s disease, hypogonadism, and secondary amenorrhea, usually accompanied by typical autoantibodies against the target tissues. Chronic mucocutaneous candidiasis is also a prominent part of the disease. The highest expression of AIRE is found in medullary thymic epithelial cells (mTECs). Murine studies suggest that it promotes ectopic transcription of self antigens in mTECs and is thus important for negative selection. However, failed negative selection alone is not enough to explain key findings in human patients, necessitating the search for alternative or additional pathogenetic mechanisms. A striking feature of the human AIRE-deficient phenotype is that all patients develop high titers of neutralizing autoantibodies against type I interferons, which have been shown to downregulate the expression of interferon-controlled genes. These autoantibodies often precede clinical symptoms and other autoantibodies, suggesting that they are a reflection of the pathogenetic process. Other cytokines are targeted as well, notably those produced by Th17 cells; these autoantibodies have been linked to the defect in anti-candida defenses. A defect in regulatory T cells has also been reported in several studies and seems to affect already the recent thymic emigrant population. Taken together, these findings in human patients point to a widespread disruption of T cell development and regulation, which is likely to have its origins in an abnormal thymic milieu. The absence of functional AIRE in peripheral lymphoid tissues may also contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- T Petteri Arstila
- Department of Bacteriology and Immunology, Immunobiology Research Program, Haartman Institute, University of Helsinki , Helsinki , Finland
| | | |
Collapse
|
29
|
Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Ströbel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 2013; 12:875-84. [DOI: 10.1016/j.autrev.2013.03.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/13/2023]
|
30
|
Perniola R. Expression of the autoimmune regulator gene and its relevance to the mechanisms of central and peripheral tolerance. Clin Dev Immunol 2012; 2012:207403. [PMID: 23125865 PMCID: PMC3485510 DOI: 10.1155/2012/207403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/26/2012] [Accepted: 09/11/2012] [Indexed: 01/12/2023]
Abstract
The autoimmune polyendocrine syndrome type 1 (APS-1) is a monogenic disease due to pathogenic variants occurring in the autoimmune regulator (AIRE) gene. Its related protein, AIRE, activates the transcription of genes encoding for tissue-specific antigens (TsAgs) in a subset of medullary thymic epithelial cells: the presentation of TsAgs to the maturating thymocytes induces the apoptosis of the autoreactive clones and constitutes the main form of central tolerance. Dysregulation of thymic AIRE expression in genetically transmitted and acquired diseases other than APS-1 may contribute to further forms of autoimmunity. As AIRE and its murine homolog are also expressed in the secondary lymphoid organs, the extent and relevance of AIRE participation in the mechanisms of peripheral tolerance need to be thoroughly defined.
Collapse
Affiliation(s)
- Roberto Perniola
- Neonatal Intensive Care, Department of Pediatrics, V. Fazzi Regional Hospital, Piazza F. Muratore, 73100 Lecce, Italy.
| |
Collapse
|
31
|
Abstract
Monogenic autoimmune syndromes provide a rare yet powerful glimpse into the fundamental mechanisms of immunologic tolerance. Such syndromes reveal not only the contribution of an individual breakpoint in tolerance but also patterns in the pathogenesis of autoimmunity. Disturbances in innate immunity, a system built for ubiquitous sensing of danger signals, tend to generate systemic autoimmunity. For example, defects in the clearance of self-antigens and chronic stimulation of type 1 interferons lead to the systemic autoimmunity seen in C1q deficiency, SPENCDI, and AGS. In contrast, disturbances of adaptive immunity, which is built for antigen specificity, tend to produce organ-specific autoimmunity. Thus, the loss of lymphocyte homeostasis, whether through defects in apoptosis, suppression, or negative selection, leads to organ-specific autoimmunity in ALPS, IPEX, and APS1. We discuss the unique mechanisms of disease in these prominent syndromes as well as how they contribute to the spectrum of organ-specific or systemic autoimmunity. The continued study of rare variants in autoimmune disease will inform future investigations and treatments directed at rare and common autoimmune diseases alike.
Collapse
Affiliation(s)
- Mickie H. Cheng
- Diabetes Center; Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Francisco, San Francisco, California 94143;
| | - Mark S. Anderson
- Diabetes Center; Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Francisco, San Francisco, California 94143;
| |
Collapse
|
32
|
Kisand K, Lilic D, Casanova JL, Peterson P, Meager A, Willcox N. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol 2011; 41:1517-27. [PMID: 21574164 DOI: 10.1002/eji.201041253] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/09/2011] [Accepted: 04/14/2011] [Indexed: 12/16/2023]
Abstract
Much has been learnt about the mechanisms of thymic self-tolerance induction from work on both the rare autosomal recessive disease autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) and the autoimmune regulator (AIRE) protein mutated in this disease. Normally, AIRE drives low-level expression of huge numbers of peripheral tissue-specific antigens (TSAgs) in medullary thymic epithelial cells (mTECs), leading to the deletion of TSAg-reactive thymocytes maturing nearby. The very recently discovered neutralizing autoantibodies (autoAbs) against Th17-related cells and cytokines in two autoimmunity-related syndromes associated with AIRE-mutant thymi or AIRE-deficient thymomas help to explain the chronic mucocutaneous candidiasis (CMC) seen in both syndromes. The surprising parallels between these syndromes also demand new hypotheses and research into the consequences of AIRE deficiency and the ensuing autoimmunizing pathways, and suggest more appropriate treatment regimens as discussed in this review.
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology Group, Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
In the thymus, developing T cells that react against self-antigens with high affinity are deleted in the process of negative selection. An essential component of this process is the display of self-antigens, including those whose expression are usually restricted to specific tissues, to developing T cells within the thymus. The Autoimmune Regulator (Aire) gene plays a crucial role in the expression of tissue specific self-antigens within the thymus, and disruption of Aire function results in spontaneous autoimmunity in both humans and mice. Recent advances have been made in our understanding of how Aire influences the expression of thousands of tissue-specific antigens in the thymus. Additional roles of Aire, including roles in chemokine and cytokine expression, have also been revealed. Factors important in the differentiation of Aire-expressing medullary thymic epithelial cells have been defined. Finally, the identity of antigen presenting cells in negative selection, including the role of medullary thymic epithelial cells in displaying tissue specific antigens to T cells, has also been clarified.
Collapse
Affiliation(s)
- Mark S. Anderson
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Maureen A. Su
- Inflammatory Diseases Institute and Department of Pediatrics, University of North Carolina, Chapel Hill, Chapel Hill, NC
| |
Collapse
|
34
|
Abstract
Autoimmune disease affects a significant proportion of the population. The etiology of most autoimmune diseases is largely unknown, but it is thought to be multifactorial with both environmental and genetic influences. Rare monogenic autoimmune diseases, however, offer an invaluable window into potential disease mechanisms. In this review, we will discuss the autoimmune polyglandular syndrome (APS1), the immunedysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), and autoimmune lymphoproliferative syndrome (ALPS). Significantly, the information gained from the study of these diseases has provided new insights into more common autoimmune disease and have yielded new diagnostics and therapeutic opportunities.
Collapse
Affiliation(s)
- Michael Waterfield
- Diabetes Center – University of California San Francisco
- Department of Pediatrics- University of California San Francisco
| | | |
Collapse
|
35
|
Marx A, Hohenberger P, Hoffmann H, Pfannschmidt J, Schnabel P, Hofmann HS, Wiebe K, Schalke B, Nix W, Gold R, Willcox N, Peterson P, Ströbel P. The autoimmune regulator AIRE in thymoma biology: autoimmunity and beyond. J Thorac Oncol 2010; 5:S266-72. [PMID: 20859117 DOI: 10.1097/jto.0b013e3181f1f63f] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Thymomas are tumors of thymic epithelial cells. They associate more often than any other human tumors with various autoimmune diseases; myasthenia gravis is the commonest, occurring in 10-50% of thymoma patients, depending on the World Health Organization-defined histologic subtype. Most thymomas generate many polyclonal maturing T lymphocytes but in disorganized microenvironments Failure to induce self-tolerance may be a key factor leading to the export of potentially autoreactive CD4 progeny, thus predisposing to autoimmune diseases. Normally, the master Autoimmune Regulator promotes expression of peripheral tissue-restricted antigens such as insulin by medullary thymic epithelial cells and induction of tolerance to them. The failure of approximately 95% of thymomas to express autoimmune regulator is another feature potentially contributing to autoimmunity.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|