1
|
Narang BJ, Manferdelli G, Bourdillon N, Millet GP, Debevec T. Ventilatory responses to independent and combined hypoxia, hypercapnia and hypobaria in healthy pre-term-born adults. J Physiol 2024; 602:5943-5958. [PMID: 37796451 DOI: 10.1113/jp285300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Pre-term birth is associated with physiological sequelae that persist into adulthood. In particular, modulated ventilatory responsiveness to hypoxia and hypercapnia has been observed in this population. Whether pre-term birth per se causes these effects remains unclear. Therefore, we aimed to assess pulmonary ventilation and blood gases under various environmental conditions, comparing 17 healthy prematurely born individuals (mean ± SD; gestational age, 28 ± 2 weeks; age, 21 ± 4 years; peak oxygen uptake, 48.1 ± 11.2 ml kg-1 min-1) with 16 well-matched adults born at term (gestational age, 40 ± 1 weeks; age, 22 ± 2 years; peak oxygen uptake, 51.2 ± 7.7 ml kg-1 min-1). Participants were exposed to seven combinations of hypoxia/hypobaria (equivalent to ∼3375 m) and/or hypercapnia (3% CO2), at rest for 6 min. Pulmonary ventilation, pulse oxygen saturation and the arterial partial pressures of O2 and CO2 were similar in pre-term and full-term individuals under all conditions. Higher ventilation in hypoxia compared to normoxia was only observed at terrestrial altitude, despite an equivalent (normobaric) hypoxic stimulus administered at sea level (0.138F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Assessment of oscillations in key variables revealed that combined hypoxic hypercapnia induced greater underlying fluctuations in ventilation in pre-term individuals only. In general, higher pulse oxygen saturation fluctuations were observed with hypoxia, and lower fluctuations in end-tidal CO2 with hypercapnia, despite similar ventilatory oscillations observed between conditions. These findings suggest that healthy prematurely born adults display similar overall ventilation to their term-born counterparts under various environmental stressors, but that combined ventilatory stimuli could induce an irregular underlying ventilatory pattern. Moreover, barometric pressure may be an important factor when assessing ventilatory responsiveness to moderate hypoxic stimuli. KEY POINTS: Evidence exists for unique pulmonary and respiratory function under hypoxic conditions in adult survivors of pre-term birth. Whether pre-term birth per se causes these differences requires a comparison of conventionally healthy prematurely born adults with an appropriately matched sample of term-born individuals. According to the present data, there is no difference between healthy pre-term and well-matched term-born individuals in the magnitude of pulmonary ventilation or arterial blood gases during independent and combined hypobaria, hypoxia and hypercapnia. Terrestrial altitude (hypobaria) was necessary to induce differences in ventilation between normoxia and a hypoxic stimulus equivalent to ∼3375 m of altitude. Furthermore, peak power in pulse oxygen saturation was similar between hypobaric normoxia and normobaric hypoxia. The observed similarities between groups suggest that ventilatory regulation under various environmental stimuli is not impaired by pre-term birth per se. Instead, an integrated combination of neonatal treatment strategies and cardiorespiratory fitness/disease status might underlie previously observed chemosensitivity impairments.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Manferdelli G, Narang BJ, Bourdillon N, Giardini G, Debevec T, Millet GP. Impaired cerebrovascular CO 2 reactivity at high altitude in prematurely born adults. J Physiol 2024; 602:5801-5815. [PMID: 38116893 DOI: 10.1113/jp285048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Premature birth impairs cardiac and ventilatory responses to both hypoxia and hypercapnia, but little is known about cerebrovascular responses. Both at sea level and after 2 days at high altitude (3375 m), 16 young preterm-born (gestational age, 29 ± 1 weeks) and 15 age-matched term-born (40 ± 0 weeks) adults were exposed to two consecutive 4 min bouts of hyperoxic hypercapnic conditions (3% CO2-97% O2; 6% CO2-94% O2), followed by two periods of voluntary hyperventilation-induced hypocapnia. We measured middle cerebral artery blood velocity, end-tidal CO2, pulmonary ventilation, beat-by-beat mean arterial pressure and arterialized capillary blood gases. Baseline middle cerebral artery blood velocity increased at high altitude compared with sea level in term-born (+24 ± 39%, P = 0.036), but not in preterm-born (-4 ± 27%, P = 0.278) adults. The end-tidal CO2, pulmonary ventilation and mean arterial pressure were similar between groups at sea level and high altitude. Hypocapnic cerebrovascular reactivity was higher at high altitude compared with sea level in term-born adults (+173 ± 326%, P = 0.026) but not in preterm-born adults (-21 ± 107%, P = 0.572). Hypercapnic reactivity was altered at altitude only in preterm-born adults (+125 ± 144%, P < 0.001). Collectively, at high altitude, term-born participants showed higher hypocapnic (P = 0.012) and lower hypercapnic (P = 0.020) CO2 reactivity compared with their preterm-born peers. In conclusion, exposure to high altitude revealed different cerebrovascular responses in preterm- compared with term-born adults, despite similar ventilatory responses. These findings suggest a blunted cerebrovascular response at high altitude in preterm-born adults, which might predispose these individuals to an increased risk of high-altitude illnesses. KEY POINTS: Cerebral haemodynamics and cerebrovascular reactivity in normoxia are known to be similar between term-born and prematurely born adults. In contrast, acute exposure to high altitude unveiled different cerebrovascular responses to hypoxia, hypercapnia and hypocapnia. In particular, cerebral vasodilatation was impaired in prematurely born adults, leading to an exaggerated cerebral vasoconstriction. Cardiovascular and ventilatory responses to both hypo- and hypercapnia at sea level and at high altitude were similar between control subjects and prematurely born adults. Other mechanisms might therefore underlie the observed blunted cerebral vasodilatory responses in preterm-born adults at high altitude.
Collapse
Affiliation(s)
| | - Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Guido Giardini
- Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta, Italy
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Manferdelli G. Mechanisms of hypoxia (in)tolerance in prematurely born adults: PhD thesis (PhD Academy Award). Br J Sports Med 2024:bjsports-2024-108881. [PMID: 39362792 DOI: 10.1136/bjsports-2024-108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Giorgio Manferdelli
- Institute of Sport Sciences, University of Lausanne, Lausanne, Vaud, Switzerland
| |
Collapse
|
4
|
Narang BJ, Manferdelli G, Millet GP, Debevec T. Effects of preterm birth on the pattern of altitude acclimatization at rest and during moderate-intensity exercise across three days at 3,375 m. J Appl Physiol (1985) 2024; 137:765-777. [PMID: 39052770 DOI: 10.1152/japplphysiol.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Preterm birth elicits long-lasting physiological effects in various organ systems, potentially modulating exercise and environmental stress responses. To establish whether prematurely-born adults respond uniquely during early high-altitude acclimatization at rest and during exercise, 17 healthy adults born preterm (gestational age < 32 wk) and 17 term-born, age- and aerobic-capacity-matched, control participants completed a three-day high-altitude sojourn (3,375 m). Oxygen uptake, pulmonary ventilation, and hemodynamic responses, as well as pulse oxygen saturation, brain tissue saturation index (TSI), and skeletal muscle TSI, were measured daily at rest and during moderate-intensity steady-state exercise bouts. In general, the prematurely-born group displayed comparable acclimatization responses at rest, with similar ventilation and cardiac output observed between groups throughout. Resting brain TSI was, however, higher in the preterm group upon arrival at high altitude (72 ± 7% vs. 68 ± 3%; d = 1.20). Absolute exercising oxygen uptake was lower in the preterm participants (P = 0.047), with this group displaying lower exercising cardiac output underpinned by reduced stroke volume (both P = 0.035). Nevertheless, exercising minute ventilation (V̇e) did not differ between groups (P = 0.237) while brain TSI (70 ± 6% vs. 66 ± 3%; d = 1.35) and pulse oxygen saturation (85 ± 3% vs. 82 ± 5%; d = 1.52) were higher with prematurity upon arrival to high altitude. These findings suggest that healthy prematurely-born adults exhibit comparable early acclimatization patterns to their term-born counterparts and better maintain cerebral oxygenation at rest. Together, these data suggest that prematurely-born adults should not be discouraged from high-altitude sojourns involving physical activity.NEW & NOTEWORTHY The acclimatization pattern across three days at 3,375 m, at rest and during moderate-intensity exercise, was similar between healthy adults born prematurely and their term-born counterparts. Preterm adults free from respiratory complications were found to better maintain brain tissue and capillary oxygen saturation at high altitudes, whereas the term-born group experienced larger altitude-induced reductions. Despite apparent cardiac limitations, preterm individuals tolerated exercise similarly to their term-born peers. These findings underscore the notion that preterm birth per se does not predispose healthy adults to decreased altitude tolerance during exercise.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department for Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department for Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Manferdelli G, Narang BJ, Bourdillon N, Debevec T, Millet GP. Baroreflex sensitivity is blunted in hypoxia independently of changes in inspired carbon dioxide pressure in prematurely born male adults. Physiol Rep 2024; 12:e15857. [PMID: 38172085 PMCID: PMC10764294 DOI: 10.14814/phy2.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024] Open
Abstract
Premature birth may result in specific cardiovascular responses to hypoxia and hypercapnia, that might hamper high-altitude acclimatization. This study investigated the consequences of premature birth on baroreflex sensitivity (BRS) under hypoxic, hypobaric and hypercapnic conditions. Seventeen preterm born males (gestational age, 29 ± 1 weeks), and 17 age-matched term born adults (40 ± 0 weeks) underwent consecutive 6-min stages breathing different oxygen and carbon dioxide concentrations at both sea-level and high-altitude (3375 m). Continuous blood pressure and ventilatory parameters were recorded in normobaric normoxia (NNx), normobaric normoxic hypercapnia (NNx + CO2 ), hypobaric hypoxia (HHx), hypobaric normoxia (HNx), hypobaric normoxia hypercapnia (HNx + CO2 ), and hypobaric hypoxia with end-tidal CO2 clamped at NNx value (HHx + clamp). BRS was assessed using the sequence method. Across all conditions, BRS was lower in term born compared to preterm (13.0 ± 7.5 vs. 21.2 ± 8.8 ms⋅mmHg-1 , main group effect: p < 0.01) participants. BRS was lower in HHx compared to NNx in term born (10.5 ± 4.9 vs. 16.0 ± 6.0 ms⋅mmHg-1 , p = 0.05), but not in preterm (27.3 ± 15.7 vs. 17.6 ± 8.3 ms⋅mmHg-1 , p = 0.43) participants, leading to a lower BRS in HHx in term born compared to preterm (p < 0.01). In conclusion, this study reports a blunted response of BRS during acute high-altitude exposure without any influence of changes in inspired CO2 in healthy prematurely born adults.
Collapse
Affiliation(s)
| | - Benjamin J. Narang
- Department of Automation, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | | | - Tadej Debevec
- Department of Automation, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
6
|
Hubbard CD, Bates ML, Lovering AT, Duke JW. Consequences of Preterm Birth: Knowns, Unknowns, and Barriers to Advancing Cardiopulmonary Health. Integr Comp Biol 2023; 63:693-704. [PMID: 37253617 PMCID: PMC10503472 DOI: 10.1093/icb/icad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Preterm birth occurs in 10% of all live births and creates challenges to neonatal life, which persist into adulthood. Significant previous work has been undertaken to characterize and understand the respiratory and cardiovascular sequelae of preterm birth, which are present in adulthood, i.e., "late" outcomes. However, many gaps in knowledge are still present and there are several challenges that will make filling these gaps difficult. In this perspective we discuss the obstacles of studying adults born preterm, including (1) the need for invasive (direct) measures of physiologic function; (2) the need for multistate, multinational, and diverse cohorts; (3) lack of socialized medicine in the United States; (4) need for detailed and better-organized birth records; and (5) transfer of neonatal and pediatric knowledge to adult care physicians. We conclude with a discussion on the "future" of studying preterm birth in regards to what may happen to these individuals as they approach middle and older age and how the improvements in perinatal and postnatal care may be changing the phenotypes observed in adults born preterm on or after the year 2000.
Collapse
Affiliation(s)
- Colin D Hubbard
- Department of Biological Sciences, Northern Arizona University, 86011, Flagstaff, AZ, USA
| | - Melissa L Bates
- Department of Health and Human Physiology, University of Iowa, 52242, Iowa City, IA, USA
- Department of Internal Medicine and Pediatrics, University of Iowa, 52242, Iowa City, IA, USA
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, 97403, Eugene, OR, USA
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, 86011, Flagstaff, AZ, USA
| |
Collapse
|
7
|
Manferdelli G, Narang BJ, Bourdillon N, Debevec T, Millet GP. Physiological Responses to Exercise in Hypoxia in Preterm Adults: Convective and Diffusive Limitations in the O 2 Transport. Med Sci Sports Exerc 2023; 55:482-496. [PMID: 36459101 DOI: 10.1249/mss.0000000000003077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
PURPOSE Premature birth induces long-term sequelae on the cardiopulmonary system, leading to reduced exercise capacity. However, the mechanisms of this functional impairment during incremental exercise remain unclear. Also, a blunted hypoxic ventilatory response was found in preterm adults, suggesting an increased risk for adverse effects of hypoxia in this population. This study aimed to investigate the oxygen cascade during incremental exercise to exhaustion in both normoxia and hypobaric hypoxia in prematurely born adults with normal lung function and their term born counterparts. METHODS Noninvasive measures of gas exchange, cardiac hemodynamics, and both muscle and cerebral oxygenation were continuously performed using metabolic cart, transthoracic impedance, and near-infrared spectroscopy, respectively, during an incremental exercise test to exhaustion performed at sea level and after 3 d of high-altitude exposure in healthy preterm ( n = 17; gestational age, 29 ± 1 wk; normal lung function) and term born ( n = 17) adults. RESULTS At peak, power output, oxygen uptake, stroke volume indexed for body surface area, and cardiac output were lower in preterm compared with term born in normoxia ( P = 0.042, P = 0.027, P = 0.030, and P = 0.018, respectively) but not in hypoxia, whereas pulmonary ventilation, peripheral oxygen saturation, and muscle and cerebral oxygenation were similar between groups. These later parameters were modified by hypoxia ( P < 0.001). Hypoxia increased muscle oxygen extraction at submaximal and maximal intensity in term born ( P < 0.05) but not in preterm participants. Hypoxia decreased cerebral oxygen saturation in term born but not in preterm adults at rest and during exercise ( P < 0.05). Convective oxygen delivery was decreased by hypoxia in term born ( P < 0.001) but not preterm adults, whereas diffusive oxygen transport decreased similarly in both groups ( P < 0.001 and P < 0.001, respectively). CONCLUSIONS These results suggest that exercise capacity in preterm is primarily reduced by impaired convective, rather than diffusive, oxygen transport. Moreover, healthy preterm adults may experience blunted hypoxia-induced impairments during maximal exercise compared with their term counterparts.
Collapse
Affiliation(s)
| | | | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| |
Collapse
|
8
|
Bavis RW, Dirstine T, Lachance AD, Jareno A, Reynoso Williams M. Recovery of the biphasic hypoxic ventilatory response in neonatal rats after chronic hyperoxia. Respir Physiol Neurobiol 2023; 307:103973. [DOI: 10.1016/j.resp.2022.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
9
|
Debevec T, Narang BJ, Manferdelli G, Millet GP. Premature birth: a neglected consideration for altitude adaptation. J Appl Physiol (1985) 2022; 133:975-978. [PMID: 35708701 DOI: 10.1152/japplphysiol.00201.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tadej Debevec
- Faculty of Sport, grid.8954.0University of Ljubljana, Ljubljana, Slovenia
| | - Benjamin J Narang
- Department of Automation, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Giorgio Manferdelli
- Institute of Sport Sciences, grid.9851.5University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
10
|
Deutsch L, Debevec T, Millet GP, Osredkar D, Opara S, Šket R, Murovec B, Mramor M, Plavec J, Stres B. Urine and Fecal 1H-NMR Metabolomes Differ Significantly between Pre-Term and Full-Term Born Physically Fit Healthy Adult Males. Metabolites 2022; 12:metabo12060536. [PMID: 35736470 PMCID: PMC9228004 DOI: 10.3390/metabo12060536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Preterm birth (before 37 weeks gestation) accounts for ~10% of births worldwide and remains one of the leading causes of death in children under 5 years of age. Preterm born adults have been consistently shown to be at an increased risk for chronic disorders including cardiovascular, endocrine/metabolic, respiratory, renal, neurologic, and psychiatric disorders that result in increased death risk. Oxidative stress was shown to be an important risk factor for hypertension, metabolic syndrome and lung disease (reduced pulmonary function, long-term obstructive pulmonary disease, respiratory infections, and sleep disturbances). The aim of this study was to explore the differences between preterm and full-term male participants' levels of urine and fecal proton nuclear magnetic resonance (1H-NMR) metabolomes, during rest and exercise in normoxia and hypoxia and to assess general differences in human gut-microbiomes through metagenomics at the level of taxonomy, diversity, functional genes, enzymatic reactions, metabolic pathways and predicted gut metabolites. Significant differences existed between the two groups based on the analysis of 1H-NMR urine and fecal metabolomes and their respective metabolic pathways, enabling the elucidation of a complex set of microbiome related metabolic biomarkers, supporting the idea of distinct host-microbiome interactions between the two groups and enabling the efficient classification of samples; however, this could not be directed to specific taxonomic characteristics.
Collapse
Affiliation(s)
- Leon Deutsch
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.D.); (S.O.)
| | - Tadej Debevec
- Faculty of Sports, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Gregoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children’s Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Simona Opara
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.D.); (S.O.)
| | - Robert Šket
- Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Boštjan Murovec
- Faculty of Electrical Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia;
| | - Minca Mramor
- Department of Infectious Diseases, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Janez Plavec
- National Institute of Chemistry, NMR Center, SI-1000 Ljubljana, Slovenia;
| | - Blaz Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.D.); (S.O.)
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-4156-7633
| |
Collapse
|
11
|
Narang BJ, Manferdelli G, Millet GP, Debevec T. Respiratory responses to hypoxia during rest and exercise in individuals born pre-term: a state-of-the-art review. Eur J Appl Physiol 2022; 122:1991-2003. [PMID: 35589858 DOI: 10.1007/s00421-022-04965-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The pre-term birth survival rate has increased considerably in recent decades, and research investigating the long-term effects of premature birth is growing. Moreover, altitude sojourns are increasing in popularity and are often accompanied by various levels of physical activity. Individuals born pre-term appear to exhibit altered acute ventilatory responses to hypoxia, potentially predisposing them to high-altitude illness. These impairments are likely due to the use of perinatal hyperoxia stunting the maturation of carotid body chemoreceptors, but may also be attributed to limited lung diffusion capacity and/or gas exchange inefficiency. Aerobic exercise capacity also appears to be reduced in this population. This may relate to the aforementioned respiratory impairments, or could be due to physiological limitations in pulmonary blood flow or at the exercising muscle (e.g. mitochondrial efficiency). However, surprisingly, the debilitative effects of exercise when performed at altitude do not seem to be exacerbated by premature birth. In fact, it is reasonable to speculate that pre-term birth could protect against the consequences of exercise combined with hypoxia. The mechanisms that underlie this assertion might relate to differences in oxidative stress responses or in cardiopulmonary morphology in pre-term individuals, compared to their full-term counterparts. Further research is required to elucidate the independent effects of neonatal treatment, sex differences and chronic lung disease, and to establish causality in some of the proposed mechanisms that could underlie the differences discussed throughout this review. A more in-depth understanding of the acclimatisation responses to chronic altitude exposures would also help to inform appropriate interventions in this clinical population.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia. .,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia.
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Bishop M, Weinhold M, Turk AZ, Adeck A, SheikhBahaei S. An open-source tool for automated analysis of breathing behaviors in common marmosets and rodents. eLife 2022; 11:e71647. [PMID: 35049499 PMCID: PMC8856653 DOI: 10.7554/elife.71647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The respiratory system maintains homeostatic levels of oxygen (O2) and carbon dioxide (CO2) in the body through rapid and efficient regulation of breathing frequency and depth (tidal volume). The commonly used methods of analyzing breathing data in behaving experimental animals are usually subjective, laborious, and time-consuming. To overcome these hurdles, we optimized an analysis toolkit for the unsupervised study of respiratory activities in animal subjects. Using this tool, we analyzed breathing behaviors of the common marmoset (Callithrix jacchus), a New World non-human primate model. Using whole-body plethysmography in room air as well as acute hypoxic (10% O2) and hypercapnic (6% CO2) conditions, we describe breathing behaviors in awake, freely behaving marmosets. Our data indicate that marmosets' exposure to acute hypoxia decreased metabolic rate and increased sigh rate. However, the hypoxic condition did not augment ventilation. Hypercapnia, on the other hand, increased both the frequency and depth (i.e., tidal volume) of breathing.
Collapse
Affiliation(s)
- Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Maximilian Weinhold
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| |
Collapse
|
13
|
Narang BJ, Manferdelli G, Kepic K, Sotiridis A, Osredkar D, Bourdillon N, Millet GP, Debevec T. Effects of Pre-Term Birth on the Cardio-Respiratory Responses to Hypoxic Exercise in Children. Life (Basel) 2022; 12:life12010079. [PMID: 35054472 PMCID: PMC8777779 DOI: 10.3390/life12010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 04/09/2023] Open
Abstract
Pre-term birth is associated with numerous cardio-respiratory sequelae in children. Whether these impairments impact the responses to exercise in normoxia or hypoxia remains to be established. Fourteen prematurely-born (PREM) (Mean ± SD; gestational age 29 ± 2 weeks; age 9.5 ± 0.3 years), and 15 full-term children (CONT) (gestational age 39 ± 1 weeks; age 9.7 ± 0.9 years), underwent incremental exercise tests to exhaustion in normoxia (FiO2 = 20.9%) and normobaric hypoxia (FiO2 = 13.2%) on a cycle ergometer. Cardio-respiratory variables were measured throughout. Peak power output was higher in normoxia than hypoxia (103 ± 17 vs. 77 ± 18 W; p < 0.001), with no difference between CONT and PREM (94 ± 23 vs. 86 ± 19 W; p = 0.154). VO2peak was higher in normoxia than hypoxia in CONT (50.8 ± 7.2 vs. 43.8 ± 9.9 mL·kg-1·min-1; p < 0.001) but not in PREM (48.1 ± 7.5 vs. 45.0 ± 6.8 mL·kg-1·min-1; p = 0.137; interaction p = 0.044). Higher peak heart rate (187 ± 11 vs. 180 ± 10 bpm; p = 0.005) and lower stroke volume (72 ± 13 vs. 77 ± 14 mL; p = 0.004) were observed in normoxia versus hypoxia in CONT, with no such differences in PREM (p = 0.218 and >0.999, respectively). In conclusion, premature birth does not appear to exacerbate the negative effect of hypoxia on exercise capacity in children. Further research is warranted to identify whether prematurity elicits a protective effect, and to clarify the potential underlying mechanisms.
Collapse
Affiliation(s)
- Benjamin J. Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
- Faculty of Sport, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Correspondence:
| | - Giorgio Manferdelli
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (G.M.); (N.B.); (G.P.M.)
| | - Katja Kepic
- Faculty of Sport, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Alexandros Sotiridis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece;
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children’s Hospital Ljubljana, 1000 Ljubljana, Slovenia;
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (G.M.); (N.B.); (G.P.M.)
- be.care SA, 1020 Renens, Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (G.M.); (N.B.); (G.P.M.)
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
- Faculty of Sport, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
14
|
Manferdelli G, Narang BJ, Poussel M, Osredkar D, Millet GP, Debevec T. Long-Term Effects of Prematurity on Resting Ventilatory Response to Hypercapnia. High Alt Med Biol 2021; 22:420-425. [PMID: 34905392 DOI: 10.1089/ham.2021.0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Manferdelli, Giorgio, Benjamin J. Narang, Mathias Poussel, Damjan Osredkar, Grégoire P. Millet, and Tadej Debevec. Long-term effects of prematurity on resting ventilatory response to hypercapnia. High Alt Med Biol. 22:420-425, 2021. Background: This study investigated the resting ventilatory response to hypercapnia in prematurely born adults. Materials and Methods: Seventeen preterm and fourteen full-term adults were exposed to normoxic hypercapnia (two 5-minute periods at 3% and 6% carbon dioxide [CO2] interspersed by 5-minute in normoxia). Pulmonary ventilation ([Formula: see text]) and end-tidal partial pressure of CO2 (Petco2) were measured continuously. Results: No difference in lung function was observed between preterm and full-term adults. Petco2 was lower in preterm than in full-term adults (p < 0.05) during normoxia. During exposure to 3% CO2, both [Formula: see text] and Petco2 increased in a similar way in preterm and full-term adults. However, at the end of the 6% CO2 period, there was a significantly higher [Formula: see text] in preterm compared with full-term adults (30.2 ± 7.5 vs. 23.7 ± 4.5 L/min, p < 0.0001), whereas no difference was observed for Petco2 (46.9 ± 2.1 vs. 50.6 ± 2.1 L/min, p = 0.99). Breath frequency was higher in preterm than in full-term adults (17.9 ± 4.0 vs. 12.8 ± 3.5 b/min, p < 0.01) during 6% CO2 exposure. Conclusions: Although data suggest that prematurity results in resting hypocapnia, the exact underlying mechanisms remain to be elucidated. Moreover, preterm adults seem to have increased chemosensitivity to hypercapnia.
Collapse
Affiliation(s)
| | - Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Mathias Poussel
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Department of Pulmonary Function Testing and Exercise Physiology, CHRU de Nancy, Nancy, France
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital Ljubljana, Ljubljana, Slovenia
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Debevec T, Poussel M, Osredkar D, Willis SJ, Sartori C, Millet GP. Post-exercise accumulation of interstitial lung water is greater in hypobaric than normobaric hypoxia in adults born prematurely. Respir Physiol Neurobiol 2021; 297:103828. [PMID: 34890833 DOI: 10.1016/j.resp.2021.103828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
We aimed to gauge the interstitial lung water accumulation following moderate-intensity exercise under normobaric and hypobaric hypoxic conditions in a group of preterm born but otherwise healthy young adults. Sixteen pre-term-born individuals (age = 21±2yrs.; gestational age = 29±3wk.; birth weight = 1160±273 g) underwent two 8 -h hypoxic/altitude exposures in a cross-over manner: 1) Normobaric hypoxic exposure (NH; FIO2 = 0.142±0.001; PIO2 = 90.6±0.9 mmHg) 2) Hypobaric hypoxic exposure (HH; terrestrial high-altitude 3840 m; PIO2 = 90.2±0.5 mmHg). Interstitial lung water was assessed via quantification of B-Lines (using lung ultrasound) before (normoxia) and after 4-h and 8-h of respective exposures. At each time point, B-Lines were quantified before (Pre) and immediately after (Post) a 6-min moderate-intensity exercise. The baseline B-lines count were comparable between both conditions (P = 0.191). A higher B-lines count was noted at Pre-H4 in HH versus NH (P = 0.0420). At Post-H8 B-lines score was significantly higher in HH (4.6 ± 1.6) than in NH (3.1 ± 1.4; P = 0.0073). Furthermore, at this time point, a significantly higher number of individuals with B-line scores ≥5 was observed in HH (n = 7) than in NH (n = 3; P = 0.0420). These findings suggest that short moderate-intensity exercise provokes a significant increase in the interstitial lung water accumulation after 8 h of exposure to terrestrial but not simulated altitude (≈3840 m) in prematurely born adults. Further work is needed to elucidate the exact mechanisms of (moderate-intensity) exercise-induced interstitial lung water accumulation in this population and directly compare the obtained data to full-term born adults.
Collapse
Affiliation(s)
- Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Mathias Poussel
- Department of Pulmonary Function Testing and Exercise Physiology, CHRU de Nancy, Nancy, France; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital Ljubljana, Ljubljana, Slovenia
| | - Sarah J Willis
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Claudio Sartori
- Department of Internal Medicine and the Botnar Center for Extreme Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Mammel D, Kemp J. Prematurity, the diagnosis of bronchopulmonary dysplasia, and maturation of ventilatory control. Pediatr Pulmonol 2021; 56:3533-3545. [PMID: 34042316 DOI: 10.1002/ppul.25519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022]
Abstract
Infants born before 32 weeks gestational age and receiving respiratory support at 36 weeks postmenstrual age (PMA) are diagnosed with bronchopulmonary dysplasia (BPD). This label suggests that their need for supplemental oxygen (O2 ) is primarily due to acquired dysplasia of airways and airspaces, and that the supplemental O2 is treating residual parenchymal lung disease. However, emerging evidence suggests that immature ventilatory control may also contribute to the need for supplemental O2 at 36 weeks PMA. In all newborns, maturation of ventilatory control continues ex utero and is a plastic process. Among premature infants, supplemental O2 mitigates the hypoxemic effects of delayed maturation of ventilatory control, as well as reduces the duration and frequency of periodic breathing events. Nevertheless, prematurity is associated with altered and occasionally aberrant maturation of ventilatory control. Infants born prematurely, with or without a diagnosis of BPD, are more prone to long-lasting effects of dysfunctional ventilatory control. This review addresses normal and abnormal maturation of ventilatory control and suggests how aberrant maturation complicates assigning the diagnosis of BPD. Greater awareness of the interaction between parenchymal lung disease and delayed maturation of ventilatory control is essential to understanding why a given premature infant requires and is benefitting from supplemental O2 at 36 weeks PMA.
Collapse
Affiliation(s)
- Daniel Mammel
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - James Kemp
- Department of Pediatrics, Allergy and Pulmonary Medicine, Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Barnard CR, Peters M, Sindler AL, Farrell ET, Baker KR, Palta M, Stauss HM, Dagle JM, Segar J, Pierce GL, Eldridge MW, Bates ML. Increased aortic stiffness and elevated blood pressure in response to exercise in adult survivors of prematurity. Physiol Rep 2021; 8:e14462. [PMID: 32562387 PMCID: PMC7305240 DOI: 10.14814/phy2.14462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/12/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives Adults born prematurely have an increased risk of early heart failure. The impact of prematurity on left and right ventricular function has been well documented, but little is known about the impact on the systemic vasculature. The goals of this study were to measure aortic stiffness and the blood pressure response to physiological stressors; in particular, normoxic and hypoxic exercise. Methods Preterm participants (n = 10) were recruited from the Newborn Lung Project Cohort and matched with term‐born, age‐matched subjects (n = 12). Aortic pulse wave velocity was derived from the brachial arterial waveform and the heart rate and blood pressure responses to incremental exercise in normoxia (21% O2) or hypoxia (12% O2) were evaluated. Results Aortic pulse wave velocity was higher in the preterm groups. Additionally, heart rate, systolic blood pressure, and pulse pressure were higher throughout the normoxic exercise bout, consistent with higher conduit artery stiffness. Hypoxic exercise caused a decline in diastolic pressure in this group, but not in term‐born controls. Conclusions In this first report of the blood pressure response to exercise in adults born prematurely, we found exercise‐induced hypertension relative to a term‐born control group that is associated with increased large artery stiffness. These experiments performed in hypoxia reveal abnormalities in vascular function in adult survivors of prematurity that may further deteriorate as this population ages.
Collapse
Affiliation(s)
| | - Matthew Peters
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Amy L Sindler
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Emily T Farrell
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Kim R Baker
- Department of Cardiology, University of Wisconsin, Madison, WI, USA
| | - Mari Palta
- Department of Population Health, University of Wisconsin, Madison, WI, USA
| | - Harald M Stauss
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA.,Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - John M Dagle
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Jeffrey Segar
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA.,The John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, WI, USA.,Department of Kinesiology, University of Wisconsin, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Melissa L Bates
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA.,Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
18
|
Di Fiore JM, Raffay TM. The relationship between intermittent hypoxemia events and neural outcomes in neonates. Exp Neurol 2021; 342:113753. [PMID: 33984336 DOI: 10.1016/j.expneurol.2021.113753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
This brief review examines 1) patterns of intermittent hypoxemia in extremely preterm infants during early postnatal life, 2) the relationship between neonatal intermittent hypoxemia exposure and outcomes in both human and animal models, 3) potential mechanistic pathways, and 4) future alterations in clinical care that may reduce morbidity. Intermittent hypoxemia events are pervasive in extremely preterm infants (<28 weeks gestation at birth) during early postnatal life. An increased frequency of intermittent hypoxemia events has been associated with a range of poor neural outcomes including language and cognitive delays, motor impairment, retinopathy of prematurity, impaired control of breathing, and intraventricular hemorrhage. Neonatal rodent models have shown that exposure to short repetitive cycles of hypoxia induce a pathophysiological cascade. However, not all patterns of intermittent hypoxia are deleterious and some may even improve neurodevelopmental outcomes. Therapeutic interventions include supplemental oxygen, pressure support and pharmacologic drugs but prolonged hyperoxia and pressure exposure have been associated with cardiopulmonary morbidity. Therefore, it becomes imperative to distinguish high risk from neutral and/or even beneficial patterns of intermittent hypoxemia during early postnatal life. Identification of such patterns could improve clinical care with targeted interventions for high-risk patterns and minimal or no exposure to treatment modalities for low-risk patterns.
Collapse
Affiliation(s)
- Juliann M Di Fiore
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
19
|
Exaggerated Cardiac Contractile Response to Hypoxia in Adults Born Preterm. J Clin Med 2021; 10:jcm10061166. [PMID: 33802149 PMCID: PMC7999333 DOI: 10.3390/jcm10061166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Individuals born prematurely have smaller hearts, cardiac limitations to exercise, and increased overall cardiometabolic risk. The cardiac effects of acute hypoxia exposure as another physiologic stressor remain under explored. The purpose of this study was to determine the effects of hypoxia on ventricular function in adults born preterm. Adults born moderately to extremely preterm (≤32 weeks gestation or <1500 g, N = 32) and born at term (N = 18) underwent cardiac magnetic resonance imaging under normoxic (21% O2) and hypoxic (12% O2) conditions to assess cardiovascular function. In normoxia, cardiac function parameters were similar between groups. During hypoxia, the right ventricular (RV) contractile response was significantly greater in participants born premature, demonstrated by greater increases in RV ejection fraction (EF) (p = 0.002), ventricular-vascular coupling (VVC) (p = 0.004), and strain (p < 0.0001) measures compared to term-born participants, respectively. Left ventricular contractile reserve was similar to term-born participants. Adults born preterm exhibit an exaggerated contractile response to acute hypoxia, particularly in the RV. This suggests that adults born preterm may have contractile reserve, despite the lack of volume reserve identified in previous exercise studies. However, this exaggerated and hyper-adapted response may also increase their risk for late RV failure.
Collapse
|
20
|
Bates ML, Levy PT, Nuyt AM, Goss KN, Lewandowski AJ, McNamara PJ. Adult Cardiovascular Health Risk and Cardiovascular Phenotypes of Prematurity. J Pediatr 2020; 227:17-30. [PMID: 32931771 DOI: 10.1016/j.jpeds.2020.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Melissa L Bates
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA; Division of Neonatology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Philip T Levy
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - Anne Monique Nuyt
- Division of Neonatology, Department of Pediatrics, CHU Sainte-Justine, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Kara N Goss
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrick J McNamara
- Division of Neonatology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| |
Collapse
|
21
|
Bates ML, Gundry RL, Lindsey ML. Using an Investigative Journalism Approach to Design Mechanistic Experiments in Physiology. Physiology (Bethesda) 2020; 35:218-219. [PMID: 32490747 DOI: 10.1152/physiol.00006.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Merry L Lindsey
- University of Nebraska Medical Center, Omaha, Nebraska.,Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
22
|
Debevec T, Burtscher J, Millet GP. Preterm birth: Potential risk factor for greater COVID-19 severity? Respir Physiol Neurobiol 2020; 280:103484. [PMID: 32599161 PMCID: PMC7319613 DOI: 10.1016/j.resp.2020.103484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 11/20/2022]
Affiliation(s)
- Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; School of Life Sciences, Faculty of Medicine and Health Sciences, Nottingham University, Nottingham, United Kingdom
| | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Cardio-respiratory, oxidative stress and acute mountain sickness responses to normobaric and hypobaric hypoxia in prematurely born adults. Eur J Appl Physiol 2020; 120:1341-1355. [PMID: 32270264 DOI: 10.1007/s00421-020-04366-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We compared the effects of hypobaric and normobaric hypoxia on select cardio-respiratory responses, oxidative stress and acute mountain sickness (AMS) severity in prematurely born individuals, known to exhibit blunted hypoxic ventilatory response. METHODS Sixteen prematurely born but otherwise healthy males underwent two 8-h hypoxic exposures under: (1) hypobaric hypoxic [HH; terrestrial altitude 3840 m; PiO2:90.2 (0.5) mmHg; BP: 478 (2) mmHg] and (2) normobaric hypoxic [NH; PiO2:90.6 (0.9) mmHg; FiO2:0.142 (0.001)] condition. Resting values of capillary oxyhemoglobin saturation (SpO2), heart rate (HR) and blood pressure were measured before and every 2 h during the exposures. Ventilatory responses and middle cerebral artery blood flow velocity (MCAv) were assessed at rest and during submaximal cycling before and at 4 and 8 h. Plasmatic levels of selected oxidative stress and antioxidant markers and AMS symptoms were also determined at these time points. RESULTS HH resulted in significantly lower resting (P = 0.010) and exercise (P = 0.004) SpO2 as compared to NH with no significant differences in the ventilatory parameters, HR or blood pressure. No significant differences between conditions were found in resting or exercising MCAv and measured oxidative stress markers. Significantly lower values of ferric-reducing antioxidant power (P = 0.037) were observed during HH as opposed to NH. AMS severity was higher at 8 h compared to baseline (P = 0.002) with no significant differences between conditions. CONCLUSION These data suggest that, in prematurely born adults, 8-h exposure to hypobaric, as opposed to normobaric hypoxia, provokes greater reductions in systemic oxygenation and antioxidant capacity. Further studies investigating prolonged hypobaric exposures in this population are warranted. REGISTRATION NCT02780908 (ClinicalTrials.gov).
Collapse
|
24
|
Abstract
Air-breathing animals do not experience hyperoxia (inspired O2 > 21%) in nature, but preterm and full-term infants often experience hyperoxia/hyperoxemia in clinical settings. This article focuses on the effects of normobaric hyperoxia during the perinatal period on breathing in humans and other mammals, with an emphasis on the neural control of breathing during hyperoxia, after return to normoxia, and in response to subsequent hypoxic and hypercapnic challenges. Acute hyperoxia typically evokes an immediate ventilatory depression that is often, but not always, followed by hyperpnea. The hypoxic ventilatory response (HVR) is enhanced by brief periods of hyperoxia in adult mammals, but the limited data available suggest that this may not be the case for newborns. Chronic exposure to mild-to-moderate levels of hyperoxia (e.g., 30-60% O2 for several days to a few weeks) elicits several changes in breathing in nonhuman animals, some of which are unique to perinatal exposures (i.e., developmental plasticity). Examples of this developmental plasticity include hypoventilation after return to normoxia and long-lasting attenuation of the HVR. Although both peripheral and CNS mechanisms are implicated in hyperoxia-induced plasticity, it is particularly clear that perinatal hyperoxia affects carotid body development. Some of these effects may be transient (e.g., decreased O2 sensitivity of carotid body glomus cells) while others may be permanent (e.g., carotid body hypoplasia, loss of chemoafferent neurons). Whether the hyperoxic exposures routinely experienced by human infants in clinical settings are sufficient to alter respiratory control development remains an open question and requires further research. © 2020 American Physiological Society. Compr Physiol 10:597-636, 2020.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, Maine, USA
| |
Collapse
|
25
|
Martin A, Millet G, Osredkar D, Mramor M, Faes C, Gouraud E, Debevec T, Pialoux V. Effect of pre-term birth on oxidative stress responses to normoxic and hypoxic exercise. Redox Biol 2020; 32:101497. [PMID: 32199333 PMCID: PMC7082609 DOI: 10.1016/j.redox.2020.101497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/23/2020] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Pre-term birth is a major health concern that occurs in approximately 10% of births worldwide. Despite high incidence rate, long-term consequences of pre-term birth remain unclear. Recent evidence suggests that elevated oxidative stress observed in pre-term born infants could persist into adulthood. Given that oxidative stress is known to play an important role in response to physical activity and hypoxia, we investigated whether oxidative stress responses to acute exercise in normoxia and hypoxia may be differently modulated in pre-term vs. full-term born adults. Twenty-two pre-term born and fifteen age-matched full-term born controls performed maximal incremental cycling tests in both normoxia (FiO2: 0.21) and normobaric hypoxia (FiO2: 0.13; simulated altitude of 3800 m) in blinded and randomized manner. Plasma levels of oxidative stress (advanced oxidation protein products [AOPP] and malondialdehyde), antioxidant (ferric reducing antioxidant power, glutathione peroxidase, catalase [CAT] and superoxide dismutase [SOD]) and nitrosative stress markers (nitrotyrosine, nitrite and total nitrite and nitrate [NOx]) were measured before and immediately after each test. AOPP (+24%, P<0.001), CAT (+38%, P<0.001) and SOD (+12%, P=0.018) and NOx (+17%, P=0.024) significantly increased in response to exercise independently of condition and birth status. No difference in response to acute exercise in normoxia was noted between pre-term and full-term born adults in any of measured markers. Hypoxic exposure during exercise resulted in significant increase in AOPP (+45%, P=0.008), CAT (+55%, P=0.019) and a trend for an increase in nitrite/nitrate content (+35%, P=0.107) only in full-term and not pre-term born individuals. These results suggest that prematurely born adult individuals exhibit higher resistance to oxidative stress response to exercise in hypoxia. Oxidative stress and antioxidant activity are increased in full-term and pre-term adults following normoxic exercise. Plasma AOPP, catalase and NOx levels are not increased in pre-term adults following an acute exercise in hypoxia. Oxidative stress is differently regulated in pre-term adults during acute physical exercise under hypoxic condition. Pre-term birth may have long term consequences concerning oxidative stress regulation especially during these conditions.
Collapse
Affiliation(s)
- Agnès Martin
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Faculté de Médecine Rockefeller, 69008 Lyon, France; Univ Lyon, Université Jean Monet Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Faculté de Médecine, Campus Santé Innovation, 10 rue de la Marandière10 rue de la Marandière, Saint-Priest-en-Jarez, France; Univ Lyon, Université Claude Bernard Lyon 1, Master BioSciences, Department of Biology, École Normale Supérieure of Lyon, 46 allée d'Italie, 69364 LYON CEDEX 07, Lyon, France.
| | - Grégoire Millet
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital Ljubljana, Ljubljana, Slovenia.
| | - Minca Mramor
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.
| | - Camille Faes
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Faculté de Médecine Rockefeller, 69008 Lyon, France; Laboratory of Excellence GR-Ex, Paris, France.
| | - Etienne Gouraud
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Faculté de Médecine Rockefeller, 69008 Lyon, France; Laboratory of Excellence GR-Ex, Paris, France.
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; Department of Pediatric Emergency, University Children's Hospital Ljubljana, Ljubljana, Slovenia; Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Vincent Pialoux
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Faculté de Médecine Rockefeller, 69008 Lyon, France; Laboratory of Excellence GR-Ex, Paris, France; Institut Universitaire de France, France.
| |
Collapse
|
26
|
Mitchell L, MacFarlane PM. Mechanistic actions of oxygen and methylxanthines on respiratory neural control and for the treatment of neonatal apnea. Respir Physiol Neurobiol 2020; 273:103318. [PMID: 31626973 PMCID: PMC6986994 DOI: 10.1016/j.resp.2019.103318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Apnea remains one of the most concerning and prevalent respiratory disorders spanning all ages from infants (particularly those born preterm) to adults. Although the pathophysiological consequences of apnea are fairly well described, the neural mechanisms underlying the etiology of the different types of apnea (central, obstructive, and mixed) still remain incompletely understood. From a developmental perspective, however, research into the respiratory neural control system of immature animals has shed light on both central and peripheral neural pathways underlying apnea of prematurity (AOP), a highly prevalent respiratory disorder of preterm infants. Animal studies have also been fundamental in furthering our understanding of how clinical interventions (e.g. pharmacological and mechanical) exert their beneficial effects in the clinical treatment of apnea. Although current clinical interventions such as supplemental O2 and positive pressure respiratory support are critically important for the infant in respiratory distress, they are not fully effective and can also come with unfortunate, unintended (and long-term) side-effects. In this review, we have chosen AOP as one of the most common clinical scenarios involving apnea to highlight the mechanistic basis behind how some of the interventions could be both beneficial and also deleterious to the respiratory neural control system. We have included a section on infants with critical congenital heart diseases (CCHD), in whom apnea can be a clinical concern due to treatment with prostaglandin, and who may benefit from some of the treatments used for AOP.
Collapse
Affiliation(s)
- Lisa Mitchell
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Peter M MacFarlane
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA.
| |
Collapse
|
27
|
Debevec T, Pialoux V, Millet GP, Martin A, Mramor M, Osredkar D. Exercise Overrides Blunted Hypoxic Ventilatory Response in Prematurely Born Men. Front Physiol 2019; 10:437. [PMID: 31040796 PMCID: PMC6476987 DOI: 10.3389/fphys.2019.00437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose Pre-term birth provokes life-long anatomical and functional respiratory system sequelae. Although blunted hypoxic ventilatory response (HVR) is consistently observed in pre-term infants, it remains unclear if it persists with aging and, moreover, if it influences hypoxic exercise capacity. In addition, it remains unresolved whether the previously observed prematurity-related alterations in redox balance could contribute to HVR modulation. Methods Twenty-one prematurely born adult males (gestational age = 29 ± 4 weeks], and 14 age matched controls born at full term (gestational age = 39 ± 2 weeks) underwent three tests in a randomized manner: (1) hypoxia chemo-sensitivity test to determine the resting and exercise poikilocapnic HVR and a graded exercise test to volitional exhaustion in (2) normoxia (FiO2 = 0.21), and (3) normobaric hypoxia (FiO2 = 0.13) to compare the hypoxia-related effects on maximal aerobic power (MAP). Selected prooxidant and antioxidant markers were analyzed from venous samples obtained before and after the HVR tests. Results Resting HVR was lower in the pre-term (0.21 ± 0.21 L ⋅ min-1 ⋅ kg-1) compared to full-term born individuals (0.47 ± 0.23 L ⋅ min-1 ⋅ kg-1; p < 0.05). No differences were noted in the exercise HVR or in any of the measured oxidative stress markers before or after the HVR test. Hypoxia-related reduction of MAP was comparable between the groups. Conclusion These findings indicate that blunted resting HVR in prematurely born men persists into adulthood. Also, active adults born prematurely seem to tolerate hypoxic exercise well and should, hence, not be discouraged to engage in physical activities in hypoxic environments. Nevertheless, the blunted resting HVR and greater desaturation observed in the pre-term born individuals warrant caution especially during prolonged hypoxic exposures.
Collapse
Affiliation(s)
- Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.,Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité, Claude Bernard University Lyon 1, Villeurbanne, France.,Institut Universitaire de France, Paris, France
| | - Grégoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences of the University of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Agnès Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité, Claude Bernard University Lyon 1, Villeurbanne, France.,Master BioSciences, Ecole Normale Supérieure de Lyon, Université Claude-Bernard Lyon 1, Lyon, France
| | - Minca Mramor
- Department of Pediatric Emergency, University Children's Hospital Ljubljana, Ljubljana, Slovenia
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Heart rate recovery after maximal exercise is impaired in healthy young adults born preterm. Eur J Appl Physiol 2019; 119:857-866. [PMID: 30635708 DOI: 10.1007/s00421-019-04075-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 01/06/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE The long-term implications of premature birth on autonomic nervous system (ANS) function are unclear. Heart rate recovery (HRR) following maximal exercise is a simple tool to evaluate ANS function and is a strong predictor of cardiovascular disease. Our objective was to determine whether HRR is impaired in young adults born preterm (PYA). METHODS Individuals born between 1989 and 1991 were recruited from the Newborn Lung Project, a prospectively followed cohort of subjects born preterm weighing < 1500 g with an average gestational age of 28 weeks. Age-matched term-born controls were recruited from the local population. HRR was measured for 2 min following maximal exercise testing on an upright cycle ergometer in normoxia and hypoxia, and maximal aerobic capacity (VO2max) was measured. RESULTS Preterms had lower VO2max than controls (34.88 ± 5.24 v 46.15 ± 10.21 ml/kg/min, respectively, p < 0.05), and exhibited slower HRR compared to controls after 1 and 2 min of recovery in normoxia (absolute drop of 20 ± 4 v 31 ± 10 and 41 ± 7 v 54 ± 11 beats per minute (bpm), respectively, p < 0.01) and hypoxia (19 ± 5 v 26 ± 8 and 39 ± 7 v 49 ± 13 bpm, respectively, p < 0.05). After adjusting for VO2max, HRR remained slower in preterms at 1 and 2 min of recovery in normoxia (21 ± 2 v 30 ± 2 and 42 ± 3 v 52 ± 3 bpm, respectively, p < 0.05), but not hypoxia (19 ± 3 v 25 ± 2 and 40 ± 4 v 47 ± 3 bpm, respectively, p > 0.05). CONCLUSIONS Autonomic dysfunction as seen in this study has been associated with increased rates of cardiovascular disease in non-preterm populations, suggesting further study of the mechanisms of autonomic dysfunction after preterm birth.
Collapse
|
29
|
Bavis RW, Millström AH, Kim SM, MacDonald CA, O'Toole CA, Asklof K, McDonough AB. Combined effects of intermittent hyperoxia and intermittent hypercapnic hypoxia on respiratory control in neonatal rats. Respir Physiol Neurobiol 2018; 260:70-81. [PMID: 30439529 DOI: 10.1016/j.resp.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/08/2018] [Indexed: 01/28/2023]
Abstract
Chronic exposure to intermittent hyperoxia causes abnormal carotid body development and attenuates the hypoxic ventilatory response (HVR) in neonatal rats. We hypothesized that concurrent exposure to intermittent hypercapnic hypoxia would influence this plasticity. Newborn rats were exposed to alternating bouts of hypercapnic hypoxia (10% O2/6% CO2) and hyperoxia (30-40% O2) (5 cycles h-1, 24 h d-1) through 13-14 days of age; the experiment was run twice, once in a background of 21% O2 and once in a background of 30% O2 (i.e., "relative hyperoxia"). Hyperoxia had only small effects on carotid body development when combined with intermittent hypercapnic hypoxia: the carotid chemoafferent response to hypoxia was reduced, but this did not affect the HVR. In contrast, sustained exposure to 30% O2 reduced carotid chemoafferent activity and carotid body size which resulted in a blunted HVR. When given alone, chronic intermittent hypercapnic hypoxia increased carotid body size and reduced the hypercapnic ventilatory response but did not affect the HVR. Overall, it appears that intermittent hypercapnic hypoxia counteracted the effects of hyperoxia on the carotid body and prevented developmental plasticity of the HVR.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240 USA.
| | | | - Song M Kim
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | | | | | - Kendra Asklof
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | - Amy B McDonough
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| |
Collapse
|
30
|
Goss K. Long-term pulmonary vascular consequences of perinatal insults. J Physiol 2018; 597:1175-1184. [PMID: 30067297 DOI: 10.1113/jp275859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023] Open
Abstract
Development of the pulmonary circulation is a critical component of fetal lung development, and continues throughout infancy and childhood, marking an extended window of susceptibility to vascular maldevelopment and maladaptation. Perinatal vascular insults may result in abnormal vascular structure or function, including decreased angiogenic signaling and vascular endowment, impaired vasoreactivity through increased pulmonary artery endothelial dysfunction and remodeling, or enhanced genetic susceptibility to pulmonary vascular disease through epigenetic modifications or germline mutations. Although some infants develop early onset pulmonary hypertension, due to the unique adaptive capabilities of the immature host many do not have clinically evident early pulmonary vascular dysfunction. These individuals remain at increased risk for development of late-onset pulmonary hypertension, and may be particularly susceptible to secondary insults. This review will address the role of perinatal vascular insults in the development of late pulmonary vascular dysfunction with an effort to highlight areas of critical research need.
Collapse
Affiliation(s)
- Kara Goss
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
31
|
Bates ML, Welch BT, Randall JT, Petersen-Jones HG, Limberg JK. Carotid body size measured by computed tomographic angiography in individuals born prematurely. Respir Physiol Neurobiol 2018; 258:47-52. [PMID: 29803761 DOI: 10.1016/j.resp.2018.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE We tested the hypothesis that the carotid bodies would be smaller in individuals born prematurely or exposed to perinatal oxygen therapy when compared individuals born full term that did not receive oxygen therapy. METHODS A retrospective chart review was conducted on patients who underwent head/neck computed tomography angiography (CTA) at the Mayo Clinic between 10 and 40 years of age (n = 2503). Patients were identified as premature ( < 38 weeks) or receiving perinatal oxygen therapy by physician completion or billing codes (n = 16 premature and n = 7 receiving oxygen). Widest axial measurements of the carotid body images captured during the CTA were performed. RESULTS Carotid body visualization was possible in 43% of patients and 52% of age, sex, and body mass index (BMI)-matched controls but only 17% of juvenile preterm subjects (p = .07). Of the carotid bodies that could be visualized, widest axial measurements of the carotid bodies in individuals born prematurely (n = 7, 34 ± 4 weeks gestation, birth weight: 2460 ± 454 g; average size: 2.5 ± 0.2 cm) or individuals exposed to perinatal oxygen therapy (n = 3, 38 ± 2 weeks gestation, Average size: 2.2 ± 0.1 cm) were not different when compared to controls (2.3 ± 0.2 cm and 2.3 ± 0.2 cm, respectively, p > 0.05). CONCLUSIONS Carotid body size, as measured using CTA, is not smaller in adults born prematurely or exposed to perinatal oxygen therapy when compared to sex, age, and BMI-matched controls. However, carotid body visualization was lower in juvenile premature patients. The decreased ability to visualize the carotid bodies in these individuals may be a result of their prematurity.
Collapse
Affiliation(s)
- Melissa L Bates
- Department of Health and Human Physiology, USA; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Brian T Welch
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jess T Randall
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Jacqueline K Limberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Martin A, Faes C, Debevec T, Rytz C, Millet G, Pialoux V. Preterm birth and oxidative stress: Effects of acute physical exercise and hypoxia physiological responses. Redox Biol 2018; 17:315-322. [PMID: 29775962 PMCID: PMC6006904 DOI: 10.1016/j.redox.2018.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Preterm birth is a global health issue that can induce lifelong medical sequela. Presently, at least one in ten newborns are born prematurely. At birth, preterm newborns exhibit higher levels of oxidative stress (OS) due to the inability to face the oxygen rich environment in which they are born into. Moreover, their immature respiratory, digestive, immune and antioxidant defense systems, as well as the potential numerous medical interventions following a preterm birth, such as oxygen resuscitation, nutrition, phototherapy and blood transfusion further contribute to high levels of OS. Although the acute effects seem well established, little is known regarding the long-term effects of preterm birth on OS. This matter is especially important given that chronically elevated OS levels may persist into adulthood and consequently contribute to the development of numerous non-communicable diseases observed in people born preterm such as diabetes, hypertension or lung disorders. The purpose of this review is to summarize the current knowledge regarding the consequences of preterm birth on OS levels from newborn to adulthood. In addition, the effects of physical activity and hypoxia, both known to disrupt redox balance, on OS modulation in preterm individuals are also explored.
Collapse
Affiliation(s)
- Agnès Martin
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Villeurbanne, France; Master BioSciences, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Univ Lyon, France
| | - Camille Faes
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Villeurbanne, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Chantal Rytz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Grégoire Millet
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent Pialoux
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Villeurbanne, France; Institut Universitaire de France, Paris, France; Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
33
|
Haraldsdottir K, Watson AM, Goss KN, Beshish AG, Pegelow DF, Palta M, Tetri LH, Barton GP, Brix MD, Centanni RM, Eldridge MW. Impaired autonomic function in adolescents born preterm. Physiol Rep 2018; 6:e13620. [PMID: 29595875 PMCID: PMC5875539 DOI: 10.14814/phy2.13620] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
Preterm birth temporarily disrupts autonomic nervous system (ANS) development, and the long-term impacts of disrupted fetal development are unclear in children. Abnormal cardiac ANS function is associated with worse health outcomes, and has been identified as a risk factor for cardiovascular disease. We used heart rate variability (HRV) in the time domain (standard deviation of RR intervals, SDRR; and root means squared of successive differences, RMSSD) and frequency domain (high frequency, HF; and low frequency, LF) at rest, as well as heart rate recovery (HRR) following maximal exercise, to assess autonomic function in adolescent children born preterm. Adolescents born preterm (less than 36 weeks gestation at birth) in 2003 and 2004 and healthy age-matched full-term controls participated. Wilcoxon Rank Sum tests were used to compare variables between control and preterm groups. Twenty-one adolescents born preterm and 20 term-born controls enrolled in the study. Preterm-born subjects had lower time-domain HRV, including SDRR (69.1 ± 33.8 vs. 110.1 ± 33.0 msec, respectively, P = 0.008) and RMSSD (58.8 ± 38.2 vs. 101.5 ± 36.2 msec, respectively, P = 0.012), with higher LF variability in preterm subjects. HRR after maximal exercise was slower in preterm-born subjects at 1 min (30 ± 12 vs. 39 ± 9 bpm, respectively, P = 0.013) and 2 min (52 ± 10 vs. 60 ± 10 bpm, respectively, P = 0.016). This study is the first report of autonomic dysfunction in adolescents born premature. Given prior association of impaired HRV with adult cardiovascular disease, additional investigations into the mechanisms of autonomic dysfunction in this population are warranted.
Collapse
Affiliation(s)
- Kristin Haraldsdottir
- Department of PediatricsUniversity of WisconsinMadisonWisconsin
- Department of KinesiologyUniversity of WisconsinMadisonWisconsin
| | - Andrew M. Watson
- Department of Orthopedics & RehabilitationUniversity of WisconsinMadisonWisconsin
| | - Kara N. Goss
- Department of PediatricsUniversity of WisconsinMadisonWisconsin
- Department of MedicineUniversity of WisconsinMadisonWisconsin
| | - Arij G. Beshish
- Department of PediatricsUniversity of WisconsinMadisonWisconsin
| | | | - Mari Palta
- Department of Biostatistics and Medical InformaticsUniversity of WisconsinMadisonWisconsin
| | - Laura H. Tetri
- Department of PediatricsUniversity of WisconsinMadisonWisconsin
| | | | - Melissa D. Brix
- Department of PediatricsUniversity of WisconsinMadisonWisconsin
| | | | - Marlowe W. Eldridge
- Department of PediatricsUniversity of WisconsinMadisonWisconsin
- Department of KinesiologyUniversity of WisconsinMadisonWisconsin
| |
Collapse
|
34
|
Sex-dependent differences in the in vivo respiratory phenotype of the TASK-1 potassium channel knockout mouse. Respir Physiol Neurobiol 2017; 245:13-28. [DOI: 10.1016/j.resp.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022]
|
35
|
Cheng Y, Tu X, Pan L, Lu S, Xing M, Li L, Chen X. Clinical characteristics of chronic bronchitic, emphysematous and ACOS phenotypes in COPD patients with frequent exacerbations. Int J Chron Obstruct Pulmon Dis 2017; 12:2069-2074. [PMID: 28790809 PMCID: PMC5530062 DOI: 10.2147/copd.s140231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Chronic bronchitis (CB), emphysematous (EM) and asthma–chronic obstructive pulmonary disease (COPD) overlap syndrome (ACOS) phenotypes in COPD are well recognized. This study aimed to investigate distinguishing characteristics of these phenotypes in COPD patients with frequent exacerbations (FE). Patients and methods A retrospective study was carried out. COPD patients with acute exacerbations were consecutively reviewed from November 2015 to October 2016. Patients were divided into FE and infrequent exacerbations (iFE) subgroups. Results A total of 142 eligible COPD subjects were reviewed. In the CB phenotype subgroup, age, body mass index, forced expiratory volume in 1 second (FEV1) % predicted, COPD assessment test (CAT), modified Medical Research Council breathlessness measurement (mMRC) dyspnea scale, emphysema scores and arterial carbon dioxide pressure (PaCO2) were significantly different in subjects with FE when compared to those in subjects with iFE of CB. In the EM phenotype subgroup, age, CAT, mMRC scores and history of COPD were different in subjects with FE when compared to those in CB subjects with iFE. Multivariate analysis indicated that FEV1% predicted (odds ratio [OR] =0.90, P=0.04) and PaCO2 (OR =1.22, P=0.02) were independent risk factors for FE in COPD with CB phenotype, and CAT (OR =2.601, P=0.001) was the independent risk factor for FE in COPD with EM phenotype. No significant differences in characteristics were observed in ACOS phenotype subgroups with FE or iFE. Conclusion In CB or EM phenotypes, COPD patients with FE present several differential clinical characteristics compared to patients with iFE, while the characteristics of ACOS phenotype in patients with FE need more investigation.
Collapse
Affiliation(s)
- Yusheng Cheng
- Department of Respiratory Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Xiongwen Tu
- Department of Respiratory Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Linlin Pan
- Department of Respiratory Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Shuai Lu
- Department of Respiratory Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Ming Xing
- Department of Respiratory Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Linlin Li
- Department of Respiratory Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Xingwu Chen
- Department of Respiratory Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| |
Collapse
|
36
|
Buehler PK, Bleiler D, Tegtmeier I, Heitzmann D, Both C, Georgieff M, Lesage F, Warth R, Thomas J. Abnormal respiration under hyperoxia in TASK-1/3 potassium channel double knockout mice. Respir Physiol Neurobiol 2017; 244:17-25. [PMID: 28673876 DOI: 10.1016/j.resp.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 01/29/2023]
Abstract
Despite intensive research, the exact function of TASK potassium channels in central and peripheral chemoreception is still under debate. In this study, we investigated the respiration of unrestrained TASK-3 (TASK-3-/-) and TASK-1/TASK-3 double knockout (TASK-1/3-/-) adult male mice in vivo using a plethysmographic device. Ventilation parameters of TASK-3-/- mice were normal under control condition (21% O2) and upon hypoxia and hypercapnia they displayed the physiological increase of ventilation. TASK-1/3-/- mice showed increased ventilation under control conditions. This increase of ventilation was caused by increased tidal volumes (VT), a phenomenon similarly observed in TASK-1-/- mice. Under acute hypoxia, TASK-1/3-/- mice displayed the physiological increase of the minute volume. Interestingly, this increase was not related to an increase of the respiratory frequency (fR), as observed in wild-type mice, but was caused by a strong increase of VT. This particular respiratory phenotype is reminiscent of the respiratory phenotype of carotid body-denervated rodents in the compensated state. Acute hypercapnia (5% CO2) stimulated ventilation in TASK-1/3-/- and wild-type mice to a similar extent; however, at higher CO2 concentrations (>5% CO2) the stimulation of ventilation was more pronounced in TASK-1/3-/- mice. At hyperoxia (100% O2), TASK-1-/-, TASK-3-/- and wild-type mice showed the physiological small decrease of ventilation. In sharp contrast, TASK-1/3-/- mice exhibited an abnormal increase of ventilation under hyperoxia. In summary, these measurements showed a grossly normal respiration of TASK-3-/- mice and a respiratory phenotype of TASK-1/3-/- mice that was characterized by a markedly enhanced tidal volume, similar to the one observed in TASK-1-/- mice. The abnormal hyperoxia response, exclusively found in TASK-1/3-/- double mutant mice, indicates that both TASK-1 and TASK-3 are essential for the hyperoxia-induced hypoventilation. The peculiar respiratory phenotype of TASK-1/3 knockout mice is reminiscent of the respiration of animals with long-term carotid body dysfunction. Taken together, TASK-1 and TASK-3 appear to serve specific and distinct roles in the complex processes underlying chemoreception and respiratory control.
Collapse
Affiliation(s)
- Philipp K Buehler
- University Children's Hospital, Steinwiesstr. 75, CH-8032 Zürich, Switzerland
| | - Doris Bleiler
- Institute of Physiology, University of Regensburg, D-93053 Regensburg, Germany; Department of Anaesthesia, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Ines Tegtmeier
- Institute of Physiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Dirk Heitzmann
- Institute of Physiology, University of Regensburg, D-93053 Regensburg, Germany; University Medical Centre Mannheim, V. Medical Clinic, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Christian Both
- University Children's Hospital, Steinwiesstr. 75, CH-8032 Zürich, Switzerland
| | - Michael Georgieff
- Institute of Anesthesiology, University of Ulm, D-89081 Ulm, Germany
| | - Florian Lesage
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, 660 Route des Lucioles, 06560, Valbonne, France
| | - Richard Warth
- Institute of Physiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Jörg Thomas
- University Children's Hospital, Steinwiesstr. 75, CH-8032 Zürich, Switzerland.
| |
Collapse
|
37
|
Goss KN, Kumari S, Tetri LH, Barton G, Braun RK, Hacker TA, Eldridge MW. Postnatal Hyperoxia Exposure Durably Impairs Right Ventricular Function and Mitochondrial Biogenesis. Am J Respir Cell Mol Biol 2017; 56:609-619. [PMID: 28129517 PMCID: PMC5449491 DOI: 10.1165/rcmb.2016-0256oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
Prematurity complicates 12% of births, and young adults with a history of prematurity are at risk to develop right ventricular (RV) hypertrophy and impairment. The long-term risk for pulmonary vascular disease, as well as mechanisms of RV dysfunction and ventricular-vascular uncoupling after prematurity, remain poorly defined. Using an established model of prematurity-related lung disease, pups from timed-pregnant Sprague Dawley rats were randomized to normoxia or hyperoxia (fraction of inspired oxygen, 0.85) exposure for the first 14 days of life. After aging to 1 year in standard conditions, rats underwent hemodynamic assessment followed by tissue harvest for biochemical and histological evaluation. Aged hyperoxia-exposed rats developed significantly greater RV hypertrophy, associated with a 40% increase in RV systolic pressures. Although cardiac index was similar, hyperoxia-exposed rats demonstrated a reduced RV ejection fraction and significant RV-pulmonary vascular uncoupling. Hyperoxia-exposed RV cardiomyocytes demonstrated evidence of mitochondrial dysregulation and mitochondrial DNA damage, suggesting potential mitochondrial dysfunction as a cause of RV dysfunction. Aged rats exposed to postnatal hyperoxia recapitulate many features of young adults born prematurely, including increased RV hypertrophy and decreased RV ejection fraction. Our data suggest that postnatal hyperoxia exposure results in mitochondrial dysregulation that persists into adulthood with eventual RV dysfunction. Further evaluation of long-term mitochondrial function is warranted in both animal models of premature lung disease and in human adults who were born preterm.
Collapse
MESH Headings
- Aging/pathology
- Animals
- Animals, Newborn
- Autophagy
- Body Weight
- DNA Damage
- DNA, Mitochondrial/metabolism
- Female
- Fibrosis
- Gene Expression Profiling
- Hemodynamics
- Hyperoxia/complications
- Hyperoxia/diagnostic imaging
- Hyperoxia/metabolism
- Hyperoxia/physiopathology
- Hypertrophy, Right Ventricular/diagnostic imaging
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organ Size
- Organelle Biogenesis
- Rats, Sprague-Dawley
- Ventricular Function, Right
Collapse
Affiliation(s)
- Kara N. Goss
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Rankin Laboratory of Pulmonary Medicine, and
| | - Santosh Kumari
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Rankin Laboratory of Pulmonary Medicine, and
| | - Laura H. Tetri
- Division of Pediatric Critical Care, Department of Pediatrics
- Rankin Laboratory of Pulmonary Medicine, and
| | - Greg Barton
- Division of Pediatric Critical Care, Department of Pediatrics
- Rankin Laboratory of Pulmonary Medicine, and
| | - Rudolf K. Braun
- Division of Pediatric Critical Care, Department of Pediatrics
- Rankin Laboratory of Pulmonary Medicine, and
| | - Timothy A. Hacker
- Cardiovascular Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Marlowe W. Eldridge
- Division of Pediatric Critical Care, Department of Pediatrics
- Rankin Laboratory of Pulmonary Medicine, and
| |
Collapse
|
38
|
Kiernan EA, Smith SMC, Mitchell GS, Watters JJ. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. J Physiol 2017; 594:1563-77. [PMID: 26890698 DOI: 10.1113/jp271502] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/16/2016] [Indexed: 12/12/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a hallmark of sleep apnoea, a condition associated with diverse clinical disorders. CIH and sleep apnoea are characterized by increased reactive oxygen species formation, peripheral and CNS inflammation, neuronal death and neurocognitive deficits. Few studies have examined the role of microglia, the resident CNS immune cells, in models of CIH. Thus, little is known concerning their direct contributions to neuropathology or the cellular mechanisms regulating their activities during or following pathological CIH. In this review, we identify gaps in knowledge regarding CIH-induced microglial activation, and propose mechanisms based on data from related models of hypoxia and/or hypoxia-reoxygenation. CIH may directly affect microglia, or may have indirect effects via the periphery or other CNS cells. Peripheral inflammation may indirectly activate microglia via entry of pro-inflammatory molecules into the CNS, and/or activation of vagal afferents that trigger CNS inflammation. CIH-induced release of damage-associated molecular patterns from injured CNS cells may also activate microglia via interactions with pattern recognition receptors expressed on microglia. For example, Toll-like receptors activate mitogen-activated protein kinase/transcription factor pathways required for microglial inflammatory gene expression. Although epigenetic effects from CIH have not yet been studied in microglia, potential epigenetic mechanisms in microglial regulation are discussed, including microRNAs, histone modifications and DNA methylation. Epigenetic effects can occur during CIH, or long after it has ended. A better understanding of CIH effects on microglial activities may be important to reverse CIH-induced neuropathology in patients with sleep disordered breathing.
Collapse
Affiliation(s)
- Elizabeth A Kiernan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stephanie M C Smith
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gordon S Mitchell
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
39
|
Davidson LM, Berkelhamer SK. Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes. J Clin Med 2017; 6:E4. [PMID: 28067830 PMCID: PMC5294957 DOI: 10.3390/jcm6010004] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease most commonly seen in premature infants who required mechanical ventilation and oxygen therapy for acute respiratory distress. While advances in neonatal care have resulted in improved survival rates of premature infants, limited progress has been made in reducing rates of BPD. Lack of progress may in part be attributed to the limited therapeutic options available for prevention and treatment of BPD. Several lung-protective strategies have been shown to reduce risks, including use of non-invasive support, as well as early extubation and volume ventilation when intubation is required. These approaches, along with optimal nutrition and medical therapy, decrease risk of BPD; however, impacts on long-term outcomes are poorly defined. Characterization of late outcomes remain a challenge as rapid advances in medical management result in current adult BPD survivors representing outdated neonatal care. While pulmonary disease improves with growth, long-term follow-up studies raise concerns for persistent pulmonary dysfunction; asthma-like symptoms and exercise intolerance in young adults after BPD. Abnormal ventilatory responses and pulmonary hypertension can further complicate disease. These pulmonary morbidities, combined with environmental and infectious exposures, may result in significant long-term pulmonary sequalae and represent a growing burden on health systems. Additional longitudinal studies are needed to determine outcomes beyond the second decade, and define risk factors and optimal treatment for late sequalae of disease.
Collapse
Affiliation(s)
- Lauren M Davidson
- Department of Pediatrics, University at Buffalo SUNY, Buffalo, NY 14228, USA.
| | - Sara K Berkelhamer
- Department of Pediatrics, University at Buffalo SUNY, Buffalo, NY 14228, USA.
| |
Collapse
|
40
|
Goss KN, Everett AD, Mourani PM, Baker CD, Abman SH. Addressing the challenges of phenotyping pediatric pulmonary vascular disease. Pulm Circ 2017; 7:7-19. [PMID: 28680562 PMCID: PMC5448545 DOI: 10.1086/689750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Pediatric pulmonary vascular disease (PVD) and pulmonary hypertension (PH) represent phenotypically and pathophysiologically diverse disease categories, contributing substantial morbidity and mortality to a complex array of pediatric conditions. Here, we review the multifactorial nature of pediatric PVD, with an emphasis on improved recognition, phenotyping, and endotyping strategies for pediatric PH. Novel tailored approaches to diagnosis and treatment in pediatric PVD, as well as the implications for long-term outcomes, are highlighted.
Collapse
Affiliation(s)
- Kara N Goss
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Allen D Everett
- Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter M Mourani
- Section of Pediatric Critical Care, Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Christopher D Baker
- Pediatric Pulmonary Medicine, Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Steven H Abman
- Pediatric Pulmonary Medicine, Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
41
|
Bush A, Bolton CE. Longer Term Sequelae of Prematurity: The Adolescent and Young Adult. RESPIRATORY OUTCOMES IN PRETERM INFANTS 2017. [DOI: 10.1007/978-3-319-48835-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Developmental plasticity in the neural control of breathing. Exp Neurol 2017; 287:176-191. [DOI: 10.1016/j.expneurol.2016.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
|
43
|
Respiratory neuroplasticity – Overview, significance and future directions. Exp Neurol 2017; 287:144-152. [DOI: 10.1016/j.expneurol.2016.05.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023]
|
44
|
Lee DD, Lal CV, Persad EA, Lowe CW, Schwarz AM, Awasthi N, Schwarz RE, Schwarz MA. Endothelial Monocyte-Activating Polypeptide II Mediates Macrophage Migration in the Development of Hyperoxia-Induced Lung Disease of Prematurity. Am J Respir Cell Mol Biol 2016; 55:602-612. [PMID: 27254784 DOI: 10.1165/rcmb.2016-0091oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Myeloid cells are key factors in the progression of bronchopulmonary dysplasia (BPD) pathogenesis. Endothelial monocyte-activating polypeptide II (EMAP II) mediates myeloid cell trafficking. The origin and physiological mechanism by which EMAP II affects pathogenesis in BPD is unknown. The objective was to determine the functional consequences of elevated EMAP II levels in the pathogenesis of murine BPD and to investigate EMAP II neutralization as a therapeutic strategy. Three neonatal mouse models were used: (1) BPD (hyperoxia), (2) EMAP II delivery, and (3) BPD with neutralizing EMAP II antibody treatments. Chemokinic function of EMAP II and its neutralization were assessed by migration in vitro and in vivo. We determined the location of EMAP II by immunohistochemistry, pulmonary proinflammatory and chemotactic gene expression by quantitative polymerase chain reaction and immunoblotting, lung outcome by pulmonary function testing and histological analysis, and right ventricular hypertrophy by Fulton's Index. In BPD, EMAP II initially is a bronchial club-cell-specific protein-derived factor that later is expressed in galectin-3+ macrophages as BPD progresses. Continuous elevated expression corroborates with baboon and human BPD. Prolonged elevation of EMAP II levels recruits galectin-3+ macrophages, which is followed by an inflammatory state that resembles a severe BPD phenotype characterized by decreased pulmonary compliance, arrested alveolar development, and signs of pulmonary hypertension. In vivo pharmacological EMAP II inhibition suppressed proinflammatory genes Tnfa, Il6, and Il1b and chemotactic genes Ccl2 and Ccl9 and reversed the severe BPD phenotype. EMAP II is sufficient to induce macrophage recruitment, worsens BPD progression, and represents a targetable mechanism of BPD development.
Collapse
Affiliation(s)
| | - Charitharth V Lal
- 2 Department of Pediatrics, University of Alabama-Birmingham, Birmingham, Alabama.,3 Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; and
| | - Elizabeth A Persad
- 3 Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; and
| | | | - Anna M Schwarz
- 3 Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; and
| | | | - Roderich E Schwarz
- 4 Surgery, Indiana University, South Bend, Indiana.,5 IU Health Goshen Center for Cancer Care, Goshen, Indiana
| | | |
Collapse
|
45
|
Jost K, Lenherr N, Singer F, Schulzke S, Frey U, Latzin P, Yammine S. Changes in breathing pattern upon 100% oxygen in children at early school age. Respir Physiol Neurobiol 2016; 228:9-15. [DOI: 10.1016/j.resp.2016.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
|
46
|
Wasserman K, Kisaka T, Luehrs RE, Bates ML, Kumar VHS, Lopez-Barneo J, Zuo L, Zhou T, Ni L, Brain J, Banzett R, Chamoun N. Commentaries on Viewpoint: Why do some patients stop breathing after taking narcotics? Ventilatory chemosensitivity as a predictor of opioid-induced respiratory depression. J Appl Physiol (1985) 2016; 119:423-5. [PMID: 26276975 DOI: 10.1152/japplphysiol.00434.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Karlman Wasserman
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Tomohiko Kisaka
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Rachel E Luehrs
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Melissa L Bates
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Vasanth H S Kumar
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Jose Lopez-Barneo
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Li Zuo
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Tingyang Zhou
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Lei Ni
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Joseph Brain
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Robert Banzett
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Nassib Chamoun
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| |
Collapse
|
47
|
Goss KN, Tepper RS, Lahm T, Ahlfeld SK. Increased Cardiac Output and Preserved Gas Exchange Despite Decreased Alveolar Surface Area in Rats Exposed to Neonatal Hyperoxia and Adult Hypoxia. Am J Respir Cell Mol Biol 2016; 53:902-6. [PMID: 26623969 DOI: 10.1165/rcmb.2015-0100le] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kara N Goss
- 1 University of Wisconsin School of Medicine and Public Health Madison, Wisconsin
| | - Robert S Tepper
- 2 Indiana University School of Medicine Indianapolis, Indiana
| | - Tim Lahm
- 2 Indiana University School of Medicine Indianapolis, Indiana.,3 Richard L Roudebush VA Medical Center Indianapolis, Indiana
| | | |
Collapse
|
48
|
VEGF-B-Neuropilin-1 signaling is spatiotemporally indispensable for vascular and neuronal development in zebrafish. Proc Natl Acad Sci U S A 2015; 112:E5944-53. [PMID: 26483474 DOI: 10.1073/pnas.1510245112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Physiological functions of vascular endothelial growth factor (VEGF)-B remain an enigma, and deletion of the Vegfb gene in mice lacks an overt phenotype. Here we show that knockdown of Vegfba, but not Vegfbb, in zebrafish embryos by specific morpholinos produced a lethal phenotype owing to vascular and neuronal defects in the brain. Vegfba morpholinos also markedly prevented development of hyaloid vasculatures in the retina, but had little effects on peripheral vascular development. Consistent with phenotypic defects, Vegfba, but not Vegfaa, mRNA was primarily expressed in the brain of developing zebrafish embryos. Interestingly, in situ detection of Neuropilin1 (Nrp1) mRNA showed an overlapping expression pattern with Vegfba, and knockdown of Nrp1 produced a nearly identically lethal phenotype as Vegfba knockdown. Furthermore, zebrafish VEGF-Ba protein directly bound to NRP1. Importantly, gain-of-function by exogenous delivery of mRNAs coding for NRP1-binding ligands VEGF-B or VEGF-A to the zebrafish embryos rescued the lethal phenotype by normalizing vascular development. Similarly, exposure of zebrafish embryos to hypoxia also rescued the Vegfba morpholino-induced vascular defects in the brain by increasing VEGF-A expression. Independent evidence of VEGF-A gain-of-function was provided by using a functionally defective Vhl-mutant zebrafish strain, which again rescued the Vegfba morpholino-induced vascular defects. These findings show that VEGF-B is spatiotemporally required for vascular development in zebrafish embryos and that NRP1, but not VEGFR1, mediates the essential signaling.
Collapse
|
49
|
Vianello A, Carraro E, Pipitone E, Marchese-Ragona R, Arcaro G, Ferraro M, Paladini L, Martinuzzi A. Clinical and Pulmonary Function Markers of Respiratory Exacerbation Risk in Subjects With Quadriplegic Cerebral Palsy. Respir Care 2015; 60:1431-7. [PMID: 25922546 PMCID: PMC9993764 DOI: 10.4187/respcare.04024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although respiratory exacerbations are common in patients with quadriplegic cerebral palsy (CP), little is known about the factors that are related to increased exacerbation risk. This study aimed to identify the clinical and pulmonary function variables signaling risk of exacerbation in this type of patient. METHODS Thirty-one children and young adults with quadriplegic CP underwent a comprehensive history, physical examination, and pulmonary function test, including arterial blood gas analysis, airway resistance using the interrupter technique, and home overnight SpO2 monitoring. Subjects were divided into 2 groups depending on the number of respiratory exacerbations reported during the year before study entry: frequent exacerbators (ie, ≥ 2 exacerbations) and infrequent exacerbators (ie, < 2 exacerbations). RESULTS The frequent exacerbators were more likely to require hospitalization due to respiratory disorders compared with the infrequent exacerbators (13/14 vs 9/17, P = .02). Respiratory exacerbation was found to be associated with diagnosis of gastroesophageal reflux (adjusted odds ratio of 23.95 for subjects with confirmed diagnosis, P = .02) and higher PaCO2 levels (adjusted odds ratio of 12.60 for every 5-mm Hg increase in PaCO2 , P = .05). Subjects with PaCO2 ≥ 35 mm Hg showed an exacerbation odds ratio of 15.2 (95% CI 1.5-152.5, P = .01). CONCLUSIONS Gastroesophageal reflux and increased PaCO2 can be considered simple, clinically useful markers of increased exacerbation risk in young subjects with quadriplegic CP.
Collapse
Affiliation(s)
- Andrea Vianello
- Respiratory Pathophysiology Division, City Hospital of Padova, Padova, Italy.
| | - Elena Carraro
- Neuropediatric Rehabilitation Unit, E Medea Scientific Institute, Conegliano, Italy
| | - Emanuela Pipitone
- Department of Formative Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giovanna Arcaro
- Respiratory Pathophysiology Division, City Hospital of Padova, Padova, Italy
| | - Marco Ferraro
- Respiratory Pathophysiology Division, City Hospital of Padova, Padova, Italy
| | - Luciana Paladini
- Respiratory Pathophysiology Division, City Hospital of Padova, Padova, Italy
| | - Andrea Martinuzzi
- Neuropediatric Rehabilitation Unit, E Medea Scientific Institute, Conegliano, Italy
| |
Collapse
|
50
|
Abstract
Brain-derived neurotrophic factor (BDNF) supports innervation of the carotid body by neurons projecting from the petrosal ganglion. Although carotid body glomus cells also express TrkB, BDNF's high affinity receptor, the role of BDNF in carotid body growth and O2 sensitivity has not been studied. Neonatal rats were treated with the TrkB antagonist K252a (100 μg kg(-1), i.p., b.i.d.) or vehicle on postnatal days P0-P6 and studied on P7. Carotid body volume was decreased by 35% after chronic K252a (P<0.001); a reduction in carotid body size was also elicited using the more selective TrkB antagonist ANA-12 (500 μg kg(-1), i.p., b.i.d.). In contrast, single-unit chemoafferent responses to 5% O2, measured in vitro, were unaffected by chronic K252a administration. Normoxic and hypoxic ventilation, measured by head-body plethysmography, were also normal after chronic K252a administration, but acute K252a administration produced a slower, deeper breathing pattern during the transition into hypoxia. These data suggest that BDNF regulates postnatal carotid body growth but does not influence the development of glomus cell O2 sensitivity.
Collapse
|