Shen X, Shen X. Promise of sodium-glucose co-transporter-2 inhibitors in heart failure with mildly reduced ejection fraction.
ESC Heart Fail 2022;
9:2239-2248. [PMID:
35642772 PMCID:
PMC9288809 DOI:
10.1002/ehf2.14005]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Heart failure with mildly reduced ejection fraction (HFmrEF) is associated with comparable poor outcomes as other subtypes of heart failure and remains a medical unmet need due to the paucity of effective therapies. According to large cardiovascular (CV) outcome trials in patients with heart failure, sodium-glucose co-transporter-2 inhibitors (SGLT2is) reduce CV mortality and hospitalizations for heart failure in patients with heart failure across the spectrum of left ventricular ejection fraction (LVEF). There has been a lack of dedicated trials in HFmrEF. However, several large outcome trials in heart failure that enrolled patients with HFmrEF could provide a hint on the role of SGLT2is in this subgroup. This review focuses on CV effects of three major SGLT2is-dapagliflozin, empagliflozin, and sotagliflozin-in patients with HFmrEF. A narrative review of trials investigating the efficacy of each medication in treating heart failure with LVEF > 40% is provided with a focus on their LVEF subgroup analyses. The purpose of this review is to discuss the current state of evidence regarding the potential of SGLT2is in HFmrEF management. Current limited evidence suggests that SGLT2is might be a favourable treatment modality for patients with HFmrEF to reduce hospitalization for heart failure and CV mortality. This conclusion needs to be further supported by clear HFmrEF subgroup analysis of the existing trials. Further outcome trials involving sufficient patients with different subtypes of HFmrEF are needed to confirm and assess CV benefits of SGLT2is in HFmrEF. Possible mechanisms by which SGLT2is exert their cardioprotective effect are also described briefly.
Collapse