1
|
Bai S, Wen X, Li B, Hu R, Yang J, Yu Q, Zeng X, Feng H, Zhu F, Cai Z, Zhang G. Extracellular vesicles from alveolar macrophages harboring phagocytosed methicillin-resistant Staphylococcus aureus induce necroptosis. Cell Rep 2024; 43:114453. [PMID: 38985677 DOI: 10.1016/j.celrep.2024.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.
Collapse
Affiliation(s)
- Songjie Bai
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xuehuan Wen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Bingyu Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ruomeng Hu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jie Yang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qing Yu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xianchang Zeng
- Institute of Immunology, and Department of Orthopedics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Huajun Feng
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Zhijian Cai
- Institute of Immunology, and Department of Orthopedics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Gensheng Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
2
|
Lettieri S, Bonella F, Marando VA, Franciosi AN, Corsico AG, Campo I. Pathogenesis-driven treatment of primary pulmonary alveolar proteinosis. Eur Respir Rev 2024; 33:240064. [PMID: 39142709 PMCID: PMC11322829 DOI: 10.1183/16000617.0064-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome that results from the accumulation of lipoproteinaceous material in the alveolar space. According to the underlying pathogenetic mechanisms, three different forms have been identified, namely primary, secondary and congenital. Primary PAP is caused by disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling due to the presence of neutralising autoantibodies (autoimmune PAP) or GM-CSF receptor genetic defects (hereditary PAP), which results in dysfunctional alveolar macrophages with reduced phagocytic clearance of particles, cholesterol and surfactant. The serum level of GM-CSF autoantibody is the only disease-specific biomarker of autoimmune PAP, although it does not correlate with disease severity. In PAP patients with normal serum GM-CSF autoantibody levels, elevated serum GM-CSF levels is highly suspicious for hereditary PAP. Several biomarkers have been correlated with disease severity, although they are not specific for PAP. These include lactate dehydrogenase, cytokeratin 19 fragment 21.1, carcinoembryonic antigen, neuron-specific enolase, surfactant proteins, Krebs von Lungen 6, chitinase-3-like protein 1 and monocyte chemotactic proteins. Finally, increased awareness of the disease mechanisms has led to the development of pathogenesis-based treatments, such as GM-CSF augmentation and cholesterol-targeting therapies.
Collapse
Affiliation(s)
- Sara Lettieri
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Francesco Bonella
- Center for interstitial and rare lung diseases, Ruhrlandklinik, University of Essen, Essen, Germany
| | | | | | - Angelo Guido Corsico
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|
3
|
Sakagami T. Advancements in pulmonary alveolar proteinosis treatment: A journey from discovery to GM-CSF inhalation therapy. Respir Investig 2024; 62:375-376. [PMID: 38437758 DOI: 10.1016/j.resinv.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Affiliation(s)
- Takuro Sakagami
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.
| |
Collapse
|
4
|
Thomson RM, Loebinger MR, Burke AJ, Morgan LC, Waterer GW, Ganslandt C. OPTIMA: An Open-Label, Noncomparative Pilot Trial of Inhaled Molgramostim in Pulmonary Nontuberculous Mycobacterial Infection. Ann Am Thorac Soc 2024; 21:568-576. [PMID: 37948736 DOI: 10.1513/annalsats.202306-532oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Rationale: Inhaled granulocyte-macrophage colony-stimulating factor (GM-CSF) has been proposed as a potential immunomodulatory treatment for nontuberculous mycobacterial (NTM) infection.Objectives: This open-label, noncomparative pilot trial investigated the efficacy and safety of inhaled GM-CSF (molgramostim nebulizer solution) in patients with predominantly treatment-refractory pulmonary NTM infection (Mycobacterium avium complex [MAC] and M. abscessus [MABS]), either in combination with ongoing guideline-based therapy (GBT) or as monotherapy in patients who had stopped GBT because of lack of efficacy or intolerability.Methods: Thirty-two adult patients with refractory NTM infection (MAC, n = 24; MABS, n = 8) were recruited into two cohorts: those with (n = 16) and without (n = 16) ongoing GBT. Nebulized molgramostim 300 μg/d was administered over 48 weeks. Sputum cultures and smears and clinical assessments (6-min-walk distance, symptom scores, Quality of Life-Bronchiectasis Questionnaire score, and body weight) were collected every 4 weeks during treatment and 12 weeks after the end of treatment. The primary endpoint was sputum culture conversion, defined as three consecutive monthly negative cultures during the treatment period.Results: Eight patients (25%) achieved culture conversion on treatment (seven [29.2%] patients with MAC infection, one [12.5%] patient with MABS infection); in four patients, this was durable after the end of treatment. Of the 24 patients with MAC infection, an additional 4 patients had a partial response, converting from smear positive at baseline to smear negative at the end of treatment, and time to positivity in liquid culture media increased. Two of these patients sustained negative cultures from the end of treatment. Other clinical endpoints were unchanged. Serious adverse events were mainly pulmonary exacerbations or worsening NTM infection. Three deaths, not treatment related, were reported.Conclusions: In this population of patients with severe NTM disease, molgramostim was safe and well tolerated. Sputum culture conversion rates for patients with MAC infection (29.2%) were greater than reported for similar refractory MAC cohorts managed with GBT alone. Less benefit was seen for MABS infection. No serious safety concerns were identified. Further evaluation in a larger cohort is warranted.Clinical trial registered with www.clinicaltrials.gov (NCT03421743).
Collapse
Affiliation(s)
- Rachel M Thomson
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
- The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Michael R Loebinger
- National Heart and Lung Institute, Imperial College and Royal Brompton Hospital, London, United Kingdom
| | - Andrew J Burke
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
- The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Lucy C Morgan
- Concord Repatriation Hospital, Sydney, New South Wales, Australia
| | - Grant W Waterer
- East Metropolitan Health Service, Royal Perth Bentley Group, University of Western Australia, Perth, Western Australia, Australia; and
| | | |
Collapse
|
5
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Rodriguez Gonzalez C, Schevel H, Hansen G, Schwerk N, Lachmann N. Pulmonary Alveolar Proteinosis and new therapeutic concepts. KLINISCHE PADIATRIE 2024; 236:73-79. [PMID: 38286410 PMCID: PMC10883756 DOI: 10.1055/a-2233-1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
Pulmonary alveolar proteinosis (PAP) is an umbrella term used to refer to a pulmonary syndrome which is characterized by excessive accumulation of surfactant in the lungs of affected individuals. In general, PAP is a rare lung disease affecting children and adults, although its prevalence and incidence is variable among different countries. Even though PAP is a rare disease, it is a prime example on how modern medicine can lead to new therapeutic concepts, changing ways and techniques of (genetic) diagnosis which ultimately led into personalized treatments, all dedicated to improve the function of the impaired lung and thus life expectancy and quality of life in PAP patients. In fact, new technologies, such as new sequencing technologies, gene therapy approaches, new kind and sources of stem cells and completely new insights into the ontogeny of immune cells such as macrophages have increased our understanding in the onset and progression of PAP, which have paved the way for novel therapeutic concepts for PAP and beyond. As of today, classical monocyte-derived macrophages are known as important immune mediator and immune sentinels within the innate immunity. Furthermore, macrophages (known as tissue resident macrophages (TRMs)) can also be found in various tissues, introducing e. g. alveolar macrophages in the broncho-alveolar space as crucial cellular determinants in the onset of PAP and other lung disorders. Given recent insights into the onset of alveolar macrophages and knowledge about factors which impede their function, has led to the development of new therapies, which are applied in the context of PAP, with promising implications also for other diseases in which macrophages play an important role. Thus, we here summarize the latest insights into the various forms of PAP and introduce new pre-clinical work which is currently conducted in the framework of PAP, introducing new therapies for children and adults who still suffer from this severe, potentially life-threatening disease.
Collapse
Affiliation(s)
- Claudio Rodriguez Gonzalez
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Hannah Schevel
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
| | - Nicolaus Schwerk
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine,
Hannover, Germany
| |
Collapse
|
7
|
Luo B, Sun HT, Wang YT, Zhang JC, Xu B, Ji XZ, Xie RZ, Liu Q, Chen RJ. Clinical efficacy of rhGM-CSF gel and medical collagen sponge on deep second-degree burns of infants: A randomized clinical trial. Medicine (Baltimore) 2024; 103:e36304. [PMID: 38181297 PMCID: PMC10766287 DOI: 10.1097/md.0000000000036304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND This study aimed to observe clinical efficacy of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) gel, medical collagen sponge and rhGM-CSF gel in combination with medical collagen sponge on deep second-degree burns of head, face or neck in infants. METHODS A total of 108 infants with deep second-degree burns on head, face or neck were randomly divided into rhGM-CSF group, medical collagen sponge group, and rhGM-CSF + medical collagen sponge group. The scab dissolving time, healing time, bacterial positive rate and Vancouver scar scale were evaluated and analyzed. RESULTS The data analysis showed that scab dissolving time and healing time were shorter in rhGM-CSF + medical collagen sponge group than that in rhGM-CSF group and medical collagen sponge group, and the difference was statistically significant (P < .05). Bacterial positive rate was lower in rhGM-CSF + medical collagen sponge group than that in rhGM-CSF group and medical collagen sponge group (P < .05). After 3 months, score of Vancouver scar scale (scar thickness, pliability, pigmentation and vascularity) was less in rhGM-CSF + medical collagen sponge group than that in rhGM-CSF group and medical collagen sponge group (P < .05). CONCLUSION rhGM-CSF gel in combination with medical collagen sponge is significantly effective in treating deep second-degree burns of head, face or neck in infants. This combination is beneficial for infection control, acceleration of scab dissolving and wound healing, and reduction of scar hyperplasia and pigmentation, which is worthy of clinical application and promotion.
Collapse
Affiliation(s)
- Bin Luo
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Hai-Tao Sun
- Department of Orthopedics, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Yu-Ting Wang
- Department of General Surgery, the Second Medical Center of Chinese PLA Hospital, Beijing, China
| | - Jin-Cheng Zhang
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Bai Xu
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Xian-Zhen Ji
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Rui-Zhang Xie
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Qiong Liu
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Ru-Jun Chen
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| |
Collapse
|
8
|
Campo I, Carey BC, Paracchini E, Kadija Z, De Silvestri A, Rodi G, De Amici M, Torre C, Zorzetto M, Griese M, Meloni F, Corsico AG, Trapnell BC, Mariani F. Inhaled recombinant GM-CSF reduces the need for whole lung lavage and improves gas exchange in autoimmune pulmonary alveolar proteinosis patients. Eur Respir J 2024; 63:2301233. [PMID: 37973175 PMCID: PMC10764982 DOI: 10.1183/13993003.01233-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
RATIONALE Whole lung lavage (WLL) is a widely accepted palliative treatment for autoimmune pulmonary alveolar proteinosis (aPAP) but does not correct myeloid cell dysfunction or reverse the pathological accumulation of surfactant. In contrast, inhaled recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) is a promising pharmacological approach that restores alveolar macrophage functions including surfactant clearance. Here, we evaluate WLL followed by inhaled rGM-CSF (sargramostim) as therapy of aPAP. METHODS 18 patients with moderate-to-severe aPAP were enrolled, received baseline WLL, were randomised into either the rGM-CSF group (receiving inhaled sargramostim) or control group (no scheduled therapy) and followed for 30 months after the baseline WLL. Outcome measures included additional unscheduled "rescue" WLL for disease progression, assessment of arterial blood gases, pulmonary function, computed tomography, health status, biomarkers and adverse events. Patients requiring rescue WLL were considered to have failed their assigned intervention group. RESULTS The primary end-point of time to first rescue WLL was longer in rGM-CSF-treated patients than controls (30 versus 18 months, n=9 per group, p=0.0078). Seven control patients (78%) and only one rGM-CSF-treated patient (11%) required rescue WLL, demonstrating a 7-fold increase in relative risk (p=0.015). Compared to controls, rGM-CSF-treated patients also had greater improvement in peripheral arterial oxygen tension, alveolar-arterial oxygen tension difference, diffusing capacity of the lungs for carbon monoxide and aPAP biomarkers. One patient from each group withdrew for personal reasons. No serious adverse events were reported. CONCLUSIONS This long-term, prospective, randomised trial demonstrated inhaled sargramostim following WLL reduced the requirement for WLL, improved lung function and was safe in aPAP patients. WLL plus inhaled sargramostim may be useful as combined therapy for aPAP.
Collapse
Affiliation(s)
- Ilaria Campo
- Pneumology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Brenna C Carey
- Translational Pulmonary Science Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Elena Paracchini
- Pneumology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Zamir Kadija
- Pneumology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometric Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Rodi
- Anesthesiology and Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mara De Amici
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cristina Torre
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Zorzetto
- Pneumology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, University of Munich, German Center for Lung Research, Munich, Germany
| | - Federica Meloni
- Pneumology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Angelo Guido Corsico
- Pneumology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Francesca Mariani
- Pneumology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
9
|
Bernardinello N, Griese M, Borie R, Spagnolo P. Emerging Treatments for Childhood Interstitial Lung Disease. Paediatr Drugs 2024; 26:19-30. [PMID: 37948041 PMCID: PMC10770003 DOI: 10.1007/s40272-023-00603-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Childhood interstitial lung disease (chILD) is a large and heterogeneous group of disorders characterized by diffuse lung parenchymal markings on chest imaging and clinical signs such as dyspnea and hypoxemia from functional impairment. While some children already present in the neonatal period with interstitial lung disease (ILD), others develop ILD during their childhood and adolescence. A timely and accurate diagnosis is essential to gauge treatment and improve prognosis. Supportive care can reduce symptoms and positively influence patients' quality of life; however, there is no cure for many of the chILDs. Current therapeutic options include anti-inflammatory or immunosuppressive drugs. Due to the rarity of the conditions and paucity of research in this field, most treatments are empirical and based on case series, and less than a handful of small, randomized trials have been conducted thus far. A trial on hydroxychloroquine yielded good safety but a much smaller effect size than anticipated. A trial in fibrotic disease with the multitargeted tyrosine kinase inhibitor nintedanib showed similar pharmacokinetics and safety as in adults. The unmet need for the treatment of chILDs remains high. This article summarizes current treatments and explores potential therapeutic options for patients suffering from chILD.
Collapse
Affiliation(s)
- Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via N. Giustiniani n°2, 35128, Padua, Italy
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, German Center for Lung Research (DZL), Ludwig-Maximilians University, Munich, Germany
| | - Raphaël Borie
- Université de Paris, INSERM UMR 1152, Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, Hôpital Bichat-Claude Bernard, AP-HP, 75018, Paris, France
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via N. Giustiniani n°2, 35128, Padua, Italy.
| |
Collapse
|
10
|
Munsif M, Sweeney D, Leong TL, Stirling RG. Nebulised granulocyte-macrophage colony-stimulating factor (GM-CSF) in autoimmune pulmonary alveolar proteinosis: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:230080. [PMID: 37993127 PMCID: PMC10663936 DOI: 10.1183/16000617.0080-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/29/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Autoimmune pulmonary alveolar proteinosis (aPAP) results from impaired macrophage-mediated clearance of alveolar surfactant lipoproteins. Whole lung lavage has been the first-line treatment but recent reports suggest the efficacy of granulocyte-macrophage colony-stimulating factor (GM-CSF). We aimed to review the efficacy and safety of nebulised GM-CSF in aPAP. METHODS We conducted a systematic review and meta-analysis searching Embase, CINAHL, MEDLINE and Cochrane Collaborative databases (1946-1 April 2022). Studies included patients aged >18 years with aPAP receiving nebulised GM-CSF treatment and a comparator cohort. Exclusion criteria included secondary or congenital pulmonary alveolar proteinosis, GM-CSF allergy, active infection or other serious medical conditions. The protocol was prospectively registered with PROSPERO (CRD42021231328). Outcomes assessed were St George's Respiratory Questionnaire (SGRQ), 6-min walk test (6MWT), gas exchange (diffusing capacity of the lung for carbon monoxide (D LCO) % predicted) and arterial-alveolar oxygen gradient. RESULTS Six studies were identified for review and three for meta-analysis, revealing that SGRQ score (mean difference -8.09, 95% CI -11.88- -4.3, p<0.0001), functional capacity (6MWT) (mean difference 21.72 m, 95% CI -2.76-46.19 m, p=0.08), gas diffusion (D LCO % predicted) (mean difference 5.09%, 95% CI 2.05-8.13%, p=0.001) and arterial-alveolar oxygen gradient (mean difference -4.36 mmHg, 95% CI -7.19- -1.52 mmHg, p=0.003) all significantly improved in GM-CSF-treated patients with minor statistical heterogeneity (I2=0%). No serious trial-related adverse events were reported. CONCLUSIONS Patients with aPAP treated with inhaled GM-CSF demonstrated significant improvements in symptoms, dyspnoea scores, lung function, gas exchange and radiology indices after treatment with nebulised GM-CSF of varying duration. There is an important need to review comparative effectiveness and patient choice in key clinical outcomes between the current standard of care, whole lung lavage, with the noninvasive treatment of nebulised GM-CSF in aPAP.
Collapse
Affiliation(s)
- Maitri Munsif
- Department of Respiratory Medicine, Alfred Health, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Duncan Sweeney
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Tracy L Leong
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Rob G Stirling
- Department of Respiratory Medicine, Alfred Health, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
11
|
O'Callaghan M, Penugonda M, McCarthy C. Opportunistic infections in autoimmune pulmonary alveolar proteinosis: opportunity to better understand the role of GM-CSF in the innate immune response. Thorax 2023; 79:7-8. [PMID: 37758455 DOI: 10.1136/thorax-2023-220850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Affiliation(s)
| | | | - Cormac McCarthy
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Towe C, Grom AA, Schulert GS. Diagnosis and Management of the Systemic Juvenile Idiopathic Arthritis Patient with Emerging Lung Disease. Paediatr Drugs 2023; 25:649-658. [PMID: 37787872 DOI: 10.1007/s40272-023-00593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Chronic lung disease in children with systemic juvenile idiopathic arthritis (SJIA-LD) is an emerging and potentially life-threatening disease complication. Despite recent descriptions of its clinical spectrum, preliminary immunologic characterization, and proposed hypotheses regaarding etiology, optimal approaches to diagnosis and management remain unclear. Here, we review the current clinical understanding of SJIA-LD, including the potential role of biologic therapy in disease pathogenesis, as well as the possibility of drug reactions with eosinophilia and systemic symptoms (DRESS). We discuss approaches to evaluation of children with suspected SJIA-LD, including a proposed algorithm to risk-stratify all SJIA patients for screening to detect LD early. We review potential pharmacologic and non-pharmacologic treatment approaches that have been reported for SJIA-LD or utilized in interstitial lung diseases associated with other rheumatic diseases. This includes lymphocyte-targeting therapies, JAK inhibitors, and emerging therapies against IL-18 and IFNγ. Finally, we consider urgent unmet needs in this area including in basic discovery of disease mechanisms and clinical research to improve disease detection and patient outcomes.
Collapse
Affiliation(s)
- Christopher Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexei A Grom
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 4010, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 4010, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Yanagisawa A, Takimoto T, Shintani R, Kobayashi T, Hirose M, Arai T, Inoue Y. Autoimmune Pulmonary Alveolar Proteinosis That Improved after a COVID-19 Episode. Intern Med 2023; 62:2237-2241. [PMID: 37164675 PMCID: PMC10465295 DOI: 10.2169/internalmedicine.1592-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/19/2023] [Indexed: 05/12/2023] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (APAP) is caused by macrophage dysfunction owing to the presence of anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies. A 77-year-old man with APAP was referred to our hospital for whole-lung lavage (WLL) due to oxygenation exacerbation and pulmonary shadows. The patient had had coronavirus disease 2019 (COVID-19) during the APAP evaluation before WLL. About three months after COVID-19 resolved, his oxygenation and shadow reflecting APAP had obviously improved, thus avoiding the need for WLL. We suspected that the improvement in APAP was due to various immunological reactions induced by COVID-19.
Collapse
Affiliation(s)
- Atsushi Yanagisawa
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Takayuki Takimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Ryota Shintani
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Takehiko Kobayashi
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| |
Collapse
|
14
|
Khor YH, Cottin V, Holland AE, Inoue Y, McDonald VM, Oldham J, Renzoni EA, Russell AM, Strek ME, Ryerson CJ. Treatable traits: a comprehensive precision medicine approach in interstitial lung disease. Eur Respir J 2023; 62:2300404. [PMID: 37263752 PMCID: PMC10626565 DOI: 10.1183/13993003.00404-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Interstitial lung disease (ILD) is a diverse group of inflammatory and fibrotic lung conditions causing significant morbidity and mortality. A multitude of factors beyond the lungs influence symptoms, health-related quality of life, disease progression and survival in patients with ILD. Despite an increasing emphasis on multidisciplinary management in ILD, the absence of a framework for assessment and delivery of comprehensive patient care poses challenges in clinical practice. The treatable traits approach is a precision medicine care model that operates on the premise of individualised multidimensional assessment for distinct traits that can be targeted by specific interventions. The potential utility of this approach has been described in airway diseases, but has not been adequately considered in ILD. Given the similar disease heterogeneity and complexity between ILD and airway diseases, we explore the concept and potential application of the treatable traits approach in ILD. A framework of aetiological, pulmonary, extrapulmonary and behavioural and lifestyle treatable traits relevant to clinical care and outcomes for patients with ILD is proposed. We further describe key research directions to evaluate the application of the treatable traits approach towards advancing patient care and health outcomes in ILD.
Collapse
Affiliation(s)
- Yet H Khor
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Australia
- Institute for Breathing and Sleep, Heidelberg, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Vincent Cottin
- National Coordinating Reference Centre for Rare Pulmonary Diseases, OrphaLung, Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG, Lyon, France
- UMR 754, Claude Bernard University Lyon 1, INRAE, Lyon, France
| | - Anne E Holland
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Heidelberg, Australia
- Department of Respiratory and Sleep Medicine, Alfred Health, Melbourne, Australia
- Department of Physiotherapy, Alfred Health, Melbourne, Australia
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Vanessa M McDonald
- National Health and Medical Research Council Centre for Research Excellence in Treatable Traits, New Lambton Heights, Australia
- Asthma and Breathing Research Centre, Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Nursing and Midwifery, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Justin Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Elisabetta A Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Anne Marie Russell
- Exeter Respiratory Innovation Centre, University of Exeter, Exeter, UK
- Royal Devon University Hospitals, NHS Foundation Trust, Devon, UK
- Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Mary E Strek
- Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
15
|
Aronson K, Jacobs SS, Repola D, Swigris JJ. Is it time to include oxygen needs as an endpoint in clinical trials in patients with fibrosing interstitial lung disease? If so, how? BMJ Open Respir Res 2023; 10:e001546. [PMID: 37419519 PMCID: PMC10347448 DOI: 10.1136/bmjresp-2022-001546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Many patients with fibrosing interstitial lung disease (fILD) will need to use supplemental oxygen (O2) to maintain normoxia at some point in their illness. If it is not needed at the time of diagnosis, then if fILD progresses-or if a comorbid condition like pulmonary hypertension develops-O2 will become necessary, often, initially, during exertion and all-too-often, eventually, at rest as well. But presumably, if all else remains stable, if fILD progression is halted or slowed, O2 needs follow in parallel. Despite perceived or unnoticed benefits of O2, and prescribers' good intentions to improve patients' sense of well-being, patients with fILD generally view O2 with frustration and fear, as it threatens their already-impaired quality of life. Because of how meaningful and impactful O2 is to the lives of patients with fILD, 'O2 need' is a critically important-and perhaps the most-patient-centred metric that should be considered for incorporation as an endpoint in therapeutic trials. It is unclear how this should be done, but in this paper, we offer some possible approaches that merit consideration.
Collapse
Affiliation(s)
| | - Susan S Jacobs
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Dawn Repola
- National Jewish Health, Denver, Colorado, USA
| | - Jeffrey J Swigris
- Center for Interstitial Lung Disease, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
16
|
Huang X, Cao M, Xiao Y. Alveolar macrophages in pulmonary alveolar proteinosis: origin, function, and therapeutic strategies. Front Immunol 2023; 14:1195988. [PMID: 37388737 PMCID: PMC10303123 DOI: 10.3389/fimmu.2023.1195988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary disorder that is characterized by the abnormal accumulation of surfactant within the alveoli. Alveolar macrophages (AMs) have been identified as playing a pivotal role in the pathogenesis of PAP. In most of PAP cases, the disease is triggered by impaired cholesterol clearance in AMs that depend on granulocyte-macrophage colony-stimulating factor (GM-CSF), resulting in defective alveolar surfactant clearance and disruption of pulmonary homeostasis. Currently, novel pathogenesis-based therapies are being developed that target the GM-CSF signaling, cholesterol homeostasis, and immune modulation of AMs. In this review, we summarize the origin and functional role of AMs in PAP, as well as the latest therapeutic strategies aimed at addressing this disease. Our goal is to provide new perspectives and insights into the pathogenesis of PAP, and thereby identify promising new treatments for this disease.
Collapse
Affiliation(s)
- Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yonglong Xiao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| |
Collapse
|
17
|
Miyashita K, Hozumi H, Inoue Y, Suzuki T, Suda T. Nationwide survey of adult patients with pulmonary alveolar proteinosis using the National Database of designated intractable diseases of Japan. Respir Investig 2023; 61:364-370. [PMID: 37043919 DOI: 10.1016/j.resinv.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Autoimmune pulmonary alveolar proteinosis (APAP) and congenital/hereditary PAP were labeled intractable diseases in Japan in 2015. Since then, patients registered in the National Database of Designated Incurable Diseases (NDDID) who met certain requirements became eligible for medical subsidies. Epidemiological studies using recent data are needed for the development of management protocols for patients with PAP. METHODS We conducted the first nationwide study describing the epidemiology and characteristics of PAP using data for patients registered in the Japanese NDDID between 2015 and 2020. We focused on patient demographics, diagnosis, disease severity score (DSS), symptoms, test results, and treatment. RESULTS We identified 110 patients with PAP, among whom 96.4% had APAP/idiopathic PAP (IPAP). The median age was 58 years, with a slight male predominance. Most patients had a DSS ≥3 (64.5%) and reported symptoms (e.g., dyspnea on exertion). High-resolution computed tomography typically revealed ground glass opacity and crazy paving appearances. Pulmonary function was relatively preserved, except for carbon monoxide diffusing capacity. Only 27.4% of patients underwent therapeutic whole-lung lavage and/or bronchoalveolar lavage, while 25% required long-term oxygen therapy. Serum Krebs von den Lungen-6, surfactant protein D, and lactate dehydrogenase levels significantly and positively correlated with the DSS. CONCLUSIONS Most patients registered in the NDDID have APAP/IPAP with a DSS ≥3, and about one-quarter require long-term oxygen therapy and infrequent lavages. Our results provide important details of the current prevalence and clinical practice related to APAP/IPAP with a DSS ≥3 in Japan.
Collapse
Affiliation(s)
- Koichi Miyashita
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan.
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai 591-8555, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| |
Collapse
|
18
|
Buschulte K, Cottin V, Wijsenbeek M, Kreuter M, Diesler R. The world of rare interstitial lung diseases. Eur Respir Rev 2023; 32:32/167/220161. [PMID: 36754433 PMCID: PMC9910344 DOI: 10.1183/16000617.0161-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023] Open
Abstract
The world of rare interstitial lung diseases (ILDs) is diverse and complex. Diagnosis and therapy usually pose challenges. This review describes a selection of rare and ultrarare ILDs including pulmonary alveolar proteinosis, pulmonary alveolar microlithiasis and pleuroparenchymal fibroelastosis. In addition, monogenic ILDs or ILDs in congenital syndromes and various multiple cystic lung diseases will be discussed. All these conditions are part of the scope of the European Reference Network on rare respiratory diseases (ERN-LUNG). Epidemiology, pathogenesis, diagnostics and treatment of each disease are presented.
Collapse
Affiliation(s)
- Katharina Buschulte
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| | - Marlies Wijsenbeek
- Center for Interstitial Lung Diseases and Sarcoidosis, Department of Respiratory Medicine, Erasmus MC-University Medical Center, ERN-LUNG, Rotterdam, The Netherlands
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Rémi Diesler
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| |
Collapse
|
19
|
Bai JW, Huang JN, Shi SY, Ge A, Lu HW, Sun XL, Gu SY, Liang S, Cheng KB, Tian XL, Xiao YL, Xu KF, Xu JF. Updated severity and prognosis score of pulmonary alveolar proteinosis: A multi-center cohort study in China. Front Med (Lausanne) 2023; 10:1058001. [PMID: 36824611 PMCID: PMC9941621 DOI: 10.3389/fmed.2023.1058001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Background The high-resolution computed tomography (HRCT) score is an important component of the severity and prognosis score of pulmonary alveolar proteinosis (SPSP). However, the HRCT score in SPSP only considers the extent of opacity, which is insufficient. Methods We retrospectively evaluated HRCT scores for 231 patients with autoimmune pulmonary alveolar proteinosis (APAP) from three centers of the China Alliance for Rare Diseases. The SPSPII was created based on the overall density and extent, incorporating the SPSP. The severity of APAP patients was assessed using disease severity scores (DSS), SPSP, and SPSPII to determine the strengths and weaknesses of the different assessment methods. We then prospectively applied the SPSPII to patients before treatment, and the curative effect was assessed after 3 months. Results The HRCT overall density and extent scores in our retrospective analysis were higher than the extent scores in all patients and every original extent score severity group, as well as higher related to arterial partial oxygen pressure (PaO2) than extent scores. The mild patients accounted for 61.9% based on DSS 1-2, 20.3% based on SPSP 1-3, and 20.8% based on SPSPII 1-3. Based on SPSP or SPSPII, the number of severe patients deteriorating was higher in the mild and moderate groups. When applied prospectively, arterial PaO2 differed between any two SPSPII severity groups. The alveolar-arterial gradient in PaO2 (P[A-a]O2), % predicted carbon monoxide diffusing capacity of the lung (DLCO), and HRCT score were higher in the severe group than in the mild and moderate groups. After diagnosis, mild patients received symptomatic treatment, moderate patients received pure whole lung lavage (WLL) or granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy, and severe patients received WLL and GM-CSF therapy. Importantly, the SPSPII in mild and severe groups were lower than baseline after 3 months. Conclusion The HRCT density and extent scores of patients with APAP were better than the extent score. The SPSPII score system based on smoking status, symptoms, PaO2, predicted DLCO, and overall HRCT score was better than DSS and SPSP for assessing the severity and efficacy and predicting the prognosis. Trial registration ClinicalTrial.gov, identifier: NCT04516577.
Collapse
Affiliation(s)
- Jiu-Wu Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian-nan Huang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shen-yun Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, China
| | - Ai Ge
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hai-wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-li Sun
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shu-yi Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ke-bin Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin-lun Tian
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-long Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, China,*Correspondence: Yong-long Xiao,
| | - Kai-feng Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Kai-feng Xu,
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China,Jin-Fu Xu,
| |
Collapse
|
20
|
Lazarus HM, Pitts K, Wang T, Lee E, Buchbinder E, Dougan M, Armstrong DG, Paine R, Ragsdale CE, Boyd T, Rock EP, Gale RP. Recombinant GM-CSF for diseases of GM-CSF insufficiency: Correcting dysfunctional mononuclear phagocyte disorders. Front Immunol 2023; 13:1069444. [PMID: 36685591 PMCID: PMC9850113 DOI: 10.3389/fimmu.2022.1069444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Endogenous granulocyte-macrophage colony-stimulating factor (GM-CSF), identified by its ability to support differentiation of hematopoietic cells into several types of myeloid cells, is now known to support maturation and maintain the metabolic capacity of mononuclear phagocytes including monocytes, macrophages, and dendritic cells. These cells sense and attack potential pathogens, present antigens to adaptive immune cells, and recruit other immune cells. Recombinant human (rhu) GM-CSF (e.g., sargramostim [glycosylated, yeast-derived rhu GM-CSF]) has immune modulating properties and can restore the normal function of mononuclear phagocytes rendered dysfunctional by deficient or insufficient endogenous GM-CSF. Methods We reviewed the emerging biologic and cellular effects of GM-CSF. Experts in clinical disease areas caused by deficient or insufficient endogenous GM-CSF examined the role of GM-CSF in mononuclear phagocyte disorders including autoimmune pulmonary alveolar proteinosis (aPAP), diverse infections (including COVID-19), wound healing, and anti-cancer immune checkpoint inhibitor therapy. Results We discuss emerging data for GM-CSF biology including the positive effects on mitochondrial function and cell metabolism, augmentation of phagocytosis and efferocytosis, and immune cell modulation. We further address how giving exogenous rhu GM-CSF may control or treat mononuclear phagocyte dysfunction disorders caused or exacerbated by GM-CSF deficiency or insufficiency. We discuss how rhu GM-CSF may augment the anti-cancer effects of immune checkpoint inhibitor immunotherapy as well as ameliorate immune-related adverse events. Discussion We identify research gaps, opportunities, and the concept that rhu GM-CSF, by supporting and restoring the metabolic capacity and function of mononuclear phagocytes, can have significant therapeutic effects. rhu GM-CSF (e.g., sargramostim) might ameliorate multiple diseases of GM-CSF deficiency or insufficiency and address a high unmet medical need.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Pitts
- Medical Affairs, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elizabeth Buchbinder
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Michael Dougan
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - David G. Armstrong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, United States
| | | | - Timothy Boyd
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Edwin P. Rock
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Robert Peter Gale
- Hematology Centre, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| |
Collapse
|
21
|
Papiris SA, Campo I, Mariani F, Kallieri M, Kolilekas L, Papaioannou AI, Gonca Chousein E, Cetinkaya E, Bonella F, Borie R, Kokosi M, Pickworth T, Molina-Molina M, Gasa M, Radzikowska E, Fijolek J, Jouneau S, Gomez E, McCarthy C, Bendstrup E, Piotrowski WJ, Pabary R, Hadchouel A, Coolen-Allou N, Alfaro T, Robalo Cordeiro C, Antonogiannaki EM, Tomos IP, Papakosta D, Kontakiotis T, Panagiotou P, Douros K, Schams A, Lettieri S, Papaevangelou V, Kanaka-Gantenbein C, Karakatsani A, Loukides S, Costabel U, Crestani B, Morgan C, Tazawa R, Bush A, Griese M, Manali ED. COVID-19 in patients with pulmonary alveolar proteinosis: a European multicentre study. ERJ Open Res 2023; 9:00199-2022. [PMID: 36601310 PMCID: PMC9271262 DOI: 10.1183/23120541.00199-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Adult PAP patients experience similar #COVID19 rates to the general population, and high rates of hospitalisation and deaths, underscoring their vulnerability and the need for measures to prevent infection. The impact of iGM-CSF must be considered. https://bit.ly/3M0wKnZ.
Collapse
Affiliation(s)
- Spyros A. Papiris
- General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilaria Campo
- Laboratorio di Biochimica e Genetica, UOC Pneumologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Mariani
- Laboratorio di Biochimica e Genetica, UOC Pneumologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Kallieri
- General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Andriana I. Papaioannou
- General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efsun Gonca Chousein
- University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Research and Training Hospital, Istanbul, Turkey
| | - Erdogan Cetinkaya
- University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Research and Training Hospital, Istanbul, Turkey
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Dept, Ruhrlandklinik, University Hospital, University of Essen, Essen, Germany; European Reference Network (ERN)-LUNG, ILD Core Net
| | - Raphael Borie
- Université de Paris, INSERM UMR 1152, APHP, Hôpital Bichat, Service de Pneumologie A, FHU APOLLO, Centre de référence des maladies pulmonaires rares, Paris, France
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Royal Brompton Hospital & Harefield NHS Foundation Trust and Interstitial Lung Disease Unit, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, UK
| | | | - Maria Molina-Molina
- ILD Multidisciplinary Unit, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercè Gasa
- ILD Multidisciplinary Unit, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Elżbieta Radzikowska
- 3rd Dept of Lung Diseases and Oncology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Justyna Fijolek
- 3rd Dept of Lung Diseases and Oncology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Stéphane Jouneau
- IRSET UMR 1085, Université de Rennes Service de Pneumologie, CHU de Rennes, Rennes, France
| | | | - Cormac McCarthy
- University College Dublin School of Medicine Education and Research Centre, St Vincent's University Hospital, Dublin, Ireland
| | - Elisabeth Bendstrup
- Center for Rare Lung diseases, Dept of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Wojciech J. Piotrowski
- Dept of Pneumonology, 2nd Chair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | - Rishi Pabary
- Paediatrics and Paediatric Respirology, Imperial College and Imperial Centre for Paediatrics and Child Health, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Alice Hadchouel
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant and INSERM U1151, Institut Necker Enfants Malades, Université de Paris, Faculté de Médecine, Paris, France
| | | | - Tiago Alfaro
- Dept of Pulmonology, Coimbra University Hospital, University of Coimbra, Coimbra, Portugal
| | - Carlos Robalo Cordeiro
- Dept of Pulmonology, Coimbra University Hospital, University of Coimbra, Coimbra, Portugal
| | - Elvira-Markela Antonogiannaki
- General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Tomos
- General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Papakosta
- Dept of Pulmonary Medicine, Aristotle University of Thessaloniki, “G. Papanikolaou” Hospital, Exochi, Thessaloniki, Greece
| | - Theodoros Kontakiotis
- Dept of Pulmonary Medicine, Aristotle University of Thessaloniki, “G. Papanikolaou” Hospital, Exochi, Thessaloniki, Greece
| | - Panagiota Panagiotou
- First Dept of Paediatrics, Agia Sophia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Douros
- Third Dept of Pediatrics “Attikon” University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Andrea Schams
- Dept of Pediatric Pneumology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Sara Lettieri
- Laboratorio di Biochimica e Genetica, UOC Pneumologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vassiliki Papaevangelou
- Third Dept of Pediatrics “Attikon” University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Dept of Paediatrics, Agia Sophia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Karakatsani
- General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Loukides
- General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Pneumology Dept, Ruhrlandklinik, University Hospital, University of Essen, Essen, Germany; European Reference Network (ERN)-LUNG, ILD Core Net
| | - Bruno Crestani
- Université de Paris, INSERM UMR 1152, APHP, Hôpital Bichat, Service de Pneumologie A, FHU APOLLO, Centre de référence des maladies pulmonaires rares, Paris, France
| | - Cliff Morgan
- Interstitial Lung Disease Unit, Royal Brompton Hospital & Harefield NHS Foundation Trust and Interstitial Lung Disease Unit, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, UK
| | - Ryushi Tazawa
- Health Administration Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College and Imperial Centre for Paediatrics and Child Health, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Matthias Griese
- Dept of Pediatric Pneumology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Effrosyni D. Manali
- General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece,Effrosyni Manali ()
| |
Collapse
|
22
|
Chevereau-Choquet M, Marchand-Adam S, Mankikian J, Bergemer-Fouquet AM, Eymieux S, Flament T. Protéinose pulmonaire secondaire chez un patient greffé. Rev Mal Respir 2022; 39:795-800. [DOI: 10.1016/j.rmr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
|
23
|
Assessment of Statin Treatment for Pulmonary Alveolar Proteinosis without Hypercholesterolemia: A 12-Month Prospective, Longitudinal, and Observational Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1589660. [PMID: 36330458 PMCID: PMC9626205 DOI: 10.1155/2022/1589660] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022]
Abstract
Background Pulmonary alveolar proteinosis (PAP) is a rare disorder which is characterized by the accumulation of excessive surfactant lipids and proteins in alveolar macrophages and alveoli. Oral statin therapy has been reported to be a novel therapy for PAP with hypercholesterolemia. We aimed to evaluate the safety and efficacy of oral statin therapy for PAP without hypercholesterolemia. Methods In a prospective real-world observational study, 47 PAP patients without hypercholesterolemia were screened. Oral statin was initiated as therapy for these PAP patients with 12 months of follow-up. Results Forty PAP patients completed the study. 26 (65%) of 40 PAP patients responded to statin therapy according to the study criteria. Partial pressure of arterial oxygen (PaO2) and percentage of diffusion capacity predicted (DLCO%) significantly increased while disease severity score (DSS) and radiographic abnormalities decreased after 12 months of statin therapy (all p < 0.05). The factors associated with response were higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody and baseline total cholesterol/high-density lipoprotein cholesterol (TC/HDL) (p = 0.015 and p = 0.035, respectively). The area under the receiver operating characteristic curve (AUROC) of dose of atorvastatin for predicting the response to statin therapy for PAP was 0.859 (95% CI: 0.738-0.979, p < 0.001). The cutoff dose of atorvastatin was 67.5 mg daily with their corresponding specificity (64.3%) and sensitivity (96.2%). No severe side effects were observed during the study. Conclusions In PAP patients without hypercholesterolemia, statin therapy resulted in improvements in arterial blood gas (ABG) measurement, pulmonary function, and radiographic assessment.
Collapse
|
24
|
Wijsenbeek M, Suzuki A, Maher TM. Interstitial lung diseases. Lancet 2022; 400:769-786. [PMID: 35964592 DOI: 10.1016/s0140-6736(22)01052-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/14/2022] [Accepted: 06/03/2022] [Indexed: 02/07/2023]
Abstract
Over 200 interstitial lung diseases, from ultra rare to relatively common, are recognised. Most interstitial lung diseases are characterised by inflammation or fibrosis within the interstitial space, the primary consequence of which is impaired gas exchange, resulting in breathlessness, diminished exercise tolerance, and decreased quality of life. Outcomes vary considerably for each of the different interstitial lung diseases. In some conditions, spontaneous reversibility or stabilisation can occur, but unfortunately in many people with interstitial lung disease, especially in those manifesting progressive pulmonary fibrosis, respiratory failure and death are a sad reality. Over the past 3 years, the field of interstitial lung disease has had important advances, with the approval of drugs to treat systemic sclerosis-associated interstitial lung disease, interstitial lung disease-associated pulmonary hypertension, and different forms of progressive pulmonary fibrosis. This Seminar provides an update on epidemiology, pathogenesis, presentation, diagnosis, disease course, and management of the interstitial lung diseases that are most frequently encountered in clinical practice. Furthermore, we describe how developments have led to a shift in the classification and treatment of interstitial lung diseases that exhibit progressive pulmonary fibrosis and summarise the latest practice-changing guidelines. We conclude with an outline of controversies, uncertainties, and future directions.
Collapse
Affiliation(s)
- Marlies Wijsenbeek
- Center for Interstitial Lung Diseases and Sarcoidosis, Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Atsushi Suzuki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Toby M Maher
- Hastings Centre for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
25
|
McLachlan G, Alton EWFW, Boyd AC, Clarke NK, Davies JC, Gill DR, Griesenbach U, Hickmott JW, Hyde SC, Miah KM, Molina CJ. Progress in Respiratory Gene Therapy. Hum Gene Ther 2022; 33:893-912. [PMID: 36074947 PMCID: PMC7615302 DOI: 10.1089/hum.2022.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prospect of gene therapy for inherited and acquired respiratory disease has energized the research community since the 1980s, with cystic fibrosis, as a monogenic disorder, driving early efforts to develop effective strategies. The fact that there are still no approved gene therapy products for the lung, despite many early phase clinical trials, illustrates the scale of the challenge: In the 1990s, first-generation non-viral and viral vector systems demonstrated proof-of-concept but low efficacy. Since then, there has been steady progress toward improved vectors with the capacity to overcome at least some of the formidable barriers presented by the lung. In addition, the inclusion of features such as codon optimization and promoters providing long-term expression have improved the expression characteristics of therapeutic transgenes. Early approaches were based on gene addition, where a new DNA copy of a gene is introduced to complement a genetic mutation: however, the advent of RNA-based products that can directly express a therapeutic protein or manipulate gene expression, together with the expanding range of tools for gene editing, has stimulated the development of alternative approaches. This review discusses the range of vector systems being evaluated for lung delivery; the variety of cargoes they deliver, including DNA, antisense oligonucleotides, messenger RNA (mRNA), small interfering RNA (siRNA), and peptide nucleic acids; and exemplifies progress in selected respiratory disease indications.
Collapse
Affiliation(s)
- Gerry McLachlan
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
| | - Eric W F W Alton
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A Christopher Boyd
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Nora K Clarke
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane C Davies
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Deborah R Gill
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Medicine Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Uta Griesenbach
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jack W Hickmott
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen C Hyde
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Medicine Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Kamran M Miah
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Medicine Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Claudia Juarez Molina
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Cro S, Kahan BC, Rehal S, Chis Ster A, Carpenter JR, White IR, Cornelius VR. Evaluating how clear the questions being investigated in randomised trials are: systematic review of estimands. BMJ 2022; 378:e070146. [PMID: 35998928 PMCID: PMC9396446 DOI: 10.1136/bmj-2022-070146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To evaluate how often the precise research question being addressed about an intervention (the estimand) is stated or can be determined from reported methods, and to identify what types of questions are being investigated in phase 2-4 randomised trials. DESIGN Systematic review of the clarity of research questions being investigated in randomised trials in 2020 in six leading general medical journals. DATA SOURCE PubMed search in February 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Phase 2-4 randomised trials, with no restrictions on medical conditions or interventions. Cluster randomised, crossover, non-inferiority, and equivalence trials were excluded. MAIN OUTCOME MEASURES Number of trials that stated the precise primary question being addressed about an intervention (ie, the primary estimand), or for which the primary estimand could be determined unambiguously from the reported methods using statistical knowledge. Strategies used to handle post-randomisation events that affect the interpretation or existence of patient outcomes, such as intervention discontinuations or uses of additional drug treatments (known as intercurrent events), and the corresponding types of questions being investigated. RESULTS 255 eligible randomised trials were identified. No trials clearly stated all the attributes of the estimand. In 117 (46%) of 255 trials, the primary estimand could be determined from the reported methods. Intercurrent events were reported in 242 (95%) of 255 trials; but the handling of these could only be determined in 125 (49%) of 255 trials. Most trials that provided this information considered the occurrence of intercurrent events as irrelevant in the calculation of the treatment effect and assessed the effect of the intervention regardless (96/125, 77%)-that is, they used a treatment policy strategy. Four (4%) of 99 trials with treatment non-adherence owing to adverse events estimated the treatment effect in a hypothetical setting (ie, the effect as if participants continued treatment despite adverse events), and 19 (79%) of 24 trials where some patients died estimated the treatment effect in a hypothetical setting (ie, the effect as if participants did not die). CONCLUSIONS The precise research question being investigated in most trials is unclear, mainly because of a lack of clarity on the approach to handling intercurrent events. Clear reporting of estimands is necessary in trial reports so that all stakeholders, including clinicians, patients and policy makers, can make fully informed decisions about medical interventions. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021238053.
Collapse
Affiliation(s)
- Suzie Cro
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - Brennan C Kahan
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | | | | | - James R Carpenter
- Medical Research Council Clinical Trials Unit at University College London, London, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Ian R White
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | - Victoria R Cornelius
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
27
|
Restrepo-Pineda, Rosiles-BecerrilVargas-Castillo D, Ávila-Barrientos LP, Luviano A, Sánchez-Puig N, García-Hernández E, Pérez NO, Trujillo-Roldán MA, Valdez-Cruz NA. Induction temperature impacts the structure of recombinant HuGM-CSF inclusion bodies in thermoinducible E. coli. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Lund-Palau H, Juarez-Molina CI, Meng C, Bhargava A, Pilou A, Aziz K, Clarke N, Atsumi N, Ashek A, Wilson MR, Takata M, Padley S, Gill DR, Hyde SC, Morgan C, Alton EWFW, Griesenbach U. Correction of a chronic pulmonary disease through lentiviral vector-mediated protein expression. Mol Ther Methods Clin Dev 2022; 25:382-391. [PMID: 35573048 PMCID: PMC9065048 DOI: 10.1016/j.omtm.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022]
Abstract
We developed a novel lentiviral vector, pseudotyped with the F and HN proteins from Sendai virus (rSIV.F/HN), that produces long-lasting, high-efficiency transduction of the respiratory epithelium. Here we addressed whether this platform technology can secrete sufficient levels of a therapeutic protein into the lungs to ameliorate a fatal pulmonary disease as an example of its translational capability. Pulmonary alveolar proteinosis (PAP) results from alveolar granulocyte-macrophage colony-stimulating factor (GM-CSF) insufficiency, resulting in abnormal surfactant homeostasis and consequent ventilatory problems. Lungs of GM-CSF knockout mice were transduced with a single dose of rSIV.F/HN-expressing murine GM-CSF (mGM-CSF; 1e5-92e7 transduction units [TU]/mouse); mGM-CSF expression was dose related and persisted for at least 11 months. PAP disease biomarkers were rapidly and persistently corrected, but we noted a narrow toxicity/efficacy window. rSIV.F/HN may be a useful platform technology to deliver therapeutic proteins for lung diseases requiring long-lasting and stable expression of secreted proteins.
Collapse
Affiliation(s)
- Helena Lund-Palau
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Claudia Ivette Juarez-Molina
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Cuixiang Meng
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK
| | - Anushka Bhargava
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Aikaterini Pilou
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Kiran Aziz
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Nora Clarke
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Naoko Atsumi
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Ali Ashek
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK
| | - Michael R Wilson
- Division of Anesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Masao Takata
- Division of Anesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Simon Padley
- Royal Brompton Hospital & Harefield Hospitals, London, UK
| | - Deborah R Gill
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Stephen C Hyde
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Cliff Morgan
- Royal Brompton Hospital & Harefield Hospitals, London, UK
| | - Eric W F W Alton
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| | - Uta Griesenbach
- National Heart and Lung Institute, Gene Therapy Group, Imperial College London, Faculty of Medicine, Manresa Road, London SW3 6LR, UK.,UK Respiratory Gene Therapy Consortium, London SW3 6LR, UK
| |
Collapse
|
29
|
McCarthy C, Carey BC, Trapnell BC. Autoimmune Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2022; 205:1016-1035. [PMID: 35227171 PMCID: PMC9851473 DOI: 10.1164/rccm.202112-2742so] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/24/2022] [Indexed: 01/23/2023] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease characterized by myeloid cell dysfunction, abnormal pulmonary surfactant accumulation, and innate immune deficiency. It has a prevalence of 7-10 per million; occurs in individuals of all races, geographic regions, sex, and socioeconomic status; and accounts for 90% of all patients with PAP syndrome. The most common presentation is dyspnea of insidious onset with or without cough, production of scant white and frothy sputum, and diffuse radiographic infiltrates in a previously healthy adult, but it can also occur in children as young as 3 years. Digital clubbing, fever, and hemoptysis are not typical, and the latter two indicate that intercurrent infection may be present. Low prevalence and nonspecific clinical, radiological, and laboratory findings commonly lead to misdiagnosis as pneumonia and substantially delay an accurate diagnosis. The clinical course, although variable, usually includes progressive hypoxemic respiratory insufficiency and, in some patients, secondary infections, pulmonary fibrosis, respiratory failure, and death. Two decades of research have raised autoimmune PAP from obscurity to a paradigm of molecular pathogenesis-based diagnostic and therapeutic development. Pathogenesis is driven by GM-CSF (granulocyte/macrophage colony-stimulating factor) autoantibodies, which are present at high concentrations in blood and tissues and form the basis of an accurate, commercially available diagnostic blood test with sensitivity and specificity of 100%. Although whole-lung lavage remains the first-line therapy, inhaled GM-CSF is a promising pharmacotherapeutic approach demonstrated in well-controlled trials to be safe, well tolerated, and efficacious. Research has established GM-CSF as a pulmonary regulatory molecule critical to surfactant homeostasis, alveolar stability, lung function, and host defense.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Dublin, Ireland
- University College Dublin, Dublin, Ireland
| | - Brenna C. Carey
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
30
|
Following the Brick Road: A Woman with Dyspnea, Hypoxemia, and Ground-Glass Opacities with Septal Thickening on Thoracic Imaging. Ann Am Thorac Soc 2022; 19:845-849. [PMID: 35486081 DOI: 10.1513/annalsats.202107-840cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Bonella F, Borie R. Targeted therapy for pulmonary alveolar proteinosis: the time is now. Eur Respir J 2022; 59:59/4/2102971. [PMID: 35450922 DOI: 10.1183/13993003.02971-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Dept, Ruhrlandklinik, University Hospital, University of Essen, European Reference Network (ERN)-LUNG, ILD Core Network, Essen, Germany
| | - Raphael Borie
- Université de Paris, Inserm, U1152, laboratoire d'excellence INFLAMEX, Paris, France.,Hôpital Bichat, APHP, Service de Pneumologie A, Centre constitutif du centre de référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| |
Collapse
|
32
|
Lee E, Miller C, Ataya A, Wang T. Opportunistic Infection Associated with Elevated GM-CSF Autoantibodies: A Case Series and Review of the Literature. Open Forum Infect Dis 2022; 9:ofac146. [PMID: 35531378 PMCID: PMC9070348 DOI: 10.1093/ofid/ofac146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to play a key role in enhancing multiple immune functions that affect response to infectious pathogens including antigen presentation, complement- and antibody-mediated phagocytosis, microbicidal activity, and neutrophil chemotaxis. Reduced GM-CSF activity and immune response provides a mechanism for increased infection risk associated with autoimmune pulmonary alveolar proteinosis (aPAP) and other disorders involving the presence of GM-CSF autoantibodies. We present a case series of five patients with persistent or unusual pulmonary and central nervous system opportunistic infections (Cryptococcus gattii, Flavobacterium, Nocardia) and elevated GM-CSF autoantibody levels, as well as 27 cases identified on systematic review of the literature.
Collapse
Affiliation(s)
- Elinor Lee
- UCLA Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christopher Miller
- UCLA Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ali Ataya
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Tisha Wang
- UCLA Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
33
|
Restrepo-Pineda S, Sánchez-Puig N, Pérez NO, García-Hernández E, Valdez-Cruz NA, Trujillo-Roldán MA. The pre-induction temperature affects recombinant HuGM-CSF aggregation in thermoinducible Escherichia coli. Appl Microbiol Biotechnol 2022; 106:2883-2902. [PMID: 35412129 PMCID: PMC9002048 DOI: 10.1007/s00253-022-11908-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
The overproduction of recombinant proteins in Escherichia coli leads to insoluble aggregates of proteins called inclusion bodies (IBs). IBs are considered dynamic entities that harbor high percentages of the recombinant protein, which can be found in different conformational states. The production conditions influence the properties of IBs and recombinant protein recovery and solubilization. The E. coli growth in thermoinduced systems is generally carried out at 30 °C and then recombinant protein production at 42 °C. Since the heat shock response in E. coli is triggered above 34 °C, the synthesis of heat shock proteins can modify the yields of the recombinant protein and the structural quality of IBs. The objective of this work was to evaluate the effect of different pre-induction temperatures (30 and 34 °C) on the growth of E. coli W3110 producing the human granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) and on the IBs structure in a λpL/pR-cI857 thermoinducible system. The recombinant E. coli cultures growing at 34 °C showed a ~ 69% increase in the specific growth rate compared to cultures grown at 30 °C. The amount of rHuGM-CSF in IBs was significantly higher in cultures grown at 34 °C. Main folding chaperones (DnaK and GroEL) were associated with IBs and their co-chaperones (DnaJ and GroES) with the soluble protein fraction. Finally, IBs from cultures that grew at 34 °C had a lower content of amyloid-like structure and were more sensitive to proteolytic degradation than IBs obtained from cultures at 30 °C. Our study presents evidence that increasing the pre-induction temperature in a thermoinduced system allows obtaining higher recombinant protein and reducing amyloid contents of the IBs. KEY POINTS: • Pre-induction temperature determines inclusion bodies architecture • In pre-induction (above 34 °C), the heat shock response increases recombinant protein production • Inclusion bodies at higher pre-induction temperature show a lower amyloid content.
Collapse
Affiliation(s)
- Sara Restrepo-Pineda
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP, 04510, México
| | - Nuria Sánchez-Puig
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Néstor O Pérez
- Probiomed S.A. de C.V. Planta Tenancingo, Cruce de Carreteras Acatzingo-Zumpahuacan SN, Tenancingo, CP 52400, Estado de México, México
| | - Enrique García-Hernández
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP, 04510, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP, 04510, México.
- Departamento de Biología Molecular y Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP, 04510, México.
| |
Collapse
|
34
|
Leick M, Chen YB. Paraneoplastic Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2022; 205:e55. [PMID: 35353650 DOI: 10.1164/rccm.202202-0260im] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mark Leick
- Massachusetts General Hospital Cancer Center, 136312, Boston, Massachusetts, United States;
| | - Yi-Bin Chen
- Massachusetts General Hospital Cancer Center, 136312, Boston, Massachusetts, United States
| |
Collapse
|
35
|
Bird D, Evans J, Pahoff C. Rituximab rescue therapy for autoimmune pulmonary alveolar proteinosis. Respir Med Case Rep 2022; 37:101637. [PMID: 35342706 PMCID: PMC8943437 DOI: 10.1016/j.rmcr.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (aPAP) is a rare lung disease characterised by abnormal alveolar surfactant accumulation due to macrophage dysfunction. Whole lung lavage (WLL) is the cornerstone of first-line aPAP therapy, but effective rescue treatments have not yet been well established. We report a case of a 41-year-old man with aPAP in whom further WLL is contraindicated. His diagnosis was established using a combination of classical radiological findings, positive serum GM-CSF IgG antibodies and bronchoalveolar lavage (BAL) findings. Following a literature review of emerging therapies, a decision was made to treat with a course of rituximab to suppress GM-CSF autoantibody production and restore alveolar surfactant-macrophage homeostasis. A significant clinical response was demonstrated within 6 months with improvements in arterial oxygenation, respiratory membrane gas diffusion, six-minute walk test and radiological findings.
Collapse
Affiliation(s)
- Daniel Bird
- Department of Respiratory Medicine, Gold Coast University Hospital, Hospital Blvd, Southport, Queensland, Australia, 4215
| | - Jack Evans
- Department of Respiratory Medicine, Gold Coast University Hospital, Hospital Blvd, Southport, Queensland, Australia, 4215
| | - Carl Pahoff
- Department of Respiratory Medicine, Gold Coast University Hospital, Hospital Blvd, Southport, Queensland, Australia, 4215
| |
Collapse
|
36
|
Liu S, Cui X, Xia K, Wang D, Han J, Yao X, Liu X, Bian L, Zhang J, Li G. A Bibliometric Analysis of Pulmonary Alveolar Proteinosis From 2001 to 2021. Front Med (Lausanne) 2022; 9:846480. [PMID: 35391885 PMCID: PMC8980592 DOI: 10.3389/fmed.2022.846480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Pulmonary alveolar proteinosis (PAP) is a rare syndrome first described by Rosen et al. in 1958. Despite our considerably evolved understanding of PAP over the past decades, no bibliometric studies have been reported on this field. We aimed to analyze and visualize the research hotspots and current trends of the PAP research field using a bibliometric analysis to help understand the future development of basic and clinical research. Methods The literature regarding PAP was culled from the Web of Science Core Collection (WoSCC) database. Data were extracted from the relevant articles and visually analyzed using CiteSpace and VOSviewer software. Results Nine hundred and nine qualifying articles were included in the analysis. Publications regarding PAP increased over time. These articles mainly come from 407 institutions of 57 countries. The leading countries were the USA and Japan. University of Cincinnati (USA) and Niigata University (Japan) featured the highest number of publications among all institutions. Bruce C Trapnell exerts a significant publication impact and has made the most outstanding contributions in the field of PAP. American Journal of Physiology-Lung Cellular and Molecular Physiology was the journal with the most publications, and American Journal of Respiratory and Critical Care Medicine was the most commonly cited journal. All the top 5 co-cited journals belong to Q1. Keyword citation bursts revealed that inflammation, deficiency, tissue resident macrophage, classification, autoimmune pulmonary alveolar proteinosis, sarcoidosis, gm csf, high resolution ct, and fetal monocyte were the emerging research hotspots. Conclusion Research on PAP is prosperous. International cooperation is also expected to deepen and strengthen in the future. Our results indicated that the etiology and pathogenesis of PAP, current and emerging therapies, especially the novel pathogenesis-based options will remain research hotspots in the future.
Collapse
Affiliation(s)
- Shixu Liu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Xia
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Wang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Han
- Affilated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoyan Yao
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohong Liu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingjie Bian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinzhi Zhang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangxi Li
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Guangxi Li
| |
Collapse
|
37
|
Livingstone C, Corallo C, Siemienowicz M, Pilcher D, Stirling RG. NEBULISED SARGRAMOSTIM IN PULMONARY ALVEOLAR PROTEINOSIS. Br J Clin Pharmacol 2022; 88:3523-3528. [DOI: 10.1111/bcp.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/01/2022] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
| | | | | | - David Pilcher
- Intensive Care Unit, Alfred Hospital Melbourne Australia
- Department of Medicine Monash University Melbourne Australia
| | - Robert G. Stirling
- Department of Medicine Monash University Melbourne Australia
- Respiratory Medicine, Alfred Hospital Melbourne Australia
| |
Collapse
|
38
|
López Monzoni S, Fernández Francés J, Ampuero López A. Proteinosis alveolar. Remisión completa tras tratamiento con GM-CSF inhalado. OPEN RESPIRATORY ARCHIVES 2022. [PMID: 37497320 PMCID: PMC10369623 DOI: 10.1016/j.opresp.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Blanter M, Cockx M, Wittebols L, Abouelasrar Salama S, De Bondt M, Berghmans N, Pörtner N, Vanbrabant L, Lorent N, Gouwy M, Boon M, Struyf S. Sputum from patients with primary ciliary dyskinesia contains high numbers of dysfunctional neutrophils and inhibits efferocytosis. Respir Res 2022; 23:359. [PMID: 36528664 PMCID: PMC9758951 DOI: 10.1186/s12931-022-02280-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by recurrent airway infection and inflammation. There is no cure for PCD and to date there are no specific treatments available. Neutrophils are a crucial part of the immune system and are known to be dysfunctional in many inflammatory diseases. So far, the role of the neutrophils in PCD airways is largely unknown. The purpose of this study was to investigate the phenotype and function of airway neutrophils in PCD, and compare them to blood neutrophils. METHODS Paired peripheral blood and spontaneously expectorated sputum samples from patients with PCD (n = 32) and a control group of patients with non-PCD, non-cystic fibrosis bronchiectasis (n = 5) were collected. The expression of neutrophil-specific surface receptors was determined by flow cytometry. Neutrophil function was assessed by measuring the extent of actin polymerization, production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs) in response to activating stimuli. RESULTS Sputum neutrophils displayed a highly activated phenotype and were unresponsive to stimuli that would normally induce ROS production, actin polymerization and the expulsion of NETs. In addition, PCD sputum displayed high activity of neutrophil elastase, and impaired the efferocytosis by healthy donor macrophages. CONCLUSIONS Sputum neutrophils in PCD are dysfunctional and likely contribute to ongoing inflammation in PCD airways. Further research should focus on anti-inflammatory therapies and stimulation of efferocytosis as a strategy to treat PCD.
Collapse
Affiliation(s)
- Marfa Blanter
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Maaike Cockx
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Liesel Wittebols
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Sara Abouelasrar Salama
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Mirre De Bondt
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Nele Berghmans
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Noëmie Pörtner
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Lotte Vanbrabant
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Natalie Lorent
- grid.410569.f0000 0004 0626 3338Pneumology and Cystic Fibrosis Unit, Department of Pneumology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Mieke Gouwy
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Mieke Boon
- grid.410569.f0000 0004 0626 3338Pediatric Pneumology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sofie Struyf
- grid.5596.f0000 0001 0668 7884Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
40
|
Cheng A, Holland SM. Anticytokine autoantibodies: Autoimmunity trespassing on antimicrobial immunity. J Allergy Clin Immunol 2022; 149:24-28. [PMID: 34998474 PMCID: PMC9034745 DOI: 10.1016/j.jaci.2021.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Anticytokine autoantibodies can cause immunodeficiency or dysregulate immune responses. They may phenocopy genetically defined primary immunodeficiencies. We review current anti-type 1 and anti-type 2 interferon; anti-IL-12/23, anti-IL-17, and anti-GM-CSF autoantibodies; HLA associations; disease associations; and mechanistically based treatment options. Suspecting the presence of these autoantibodies in patients and identifying them at the onset of symptoms should ameliorate disease and improve outcomes.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA,Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Erkens R, Esteban Y, Towe C, Schulert G, Vastert S. Pathogenesis and Treatment of Refractory Disease Courses in Systemic Juvenile Idiopathic Arthritis: Refractory Arthritis, Recurrent Macrophage Activation Syndrome and Chronic Lung Disease. Rheum Dis Clin North Am 2021; 47:585-606. [PMID: 34635293 DOI: 10.1016/j.rdc.2021.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic juvenile idiopathic arthritis is a distinct and heterogeneous disease presently classified under the umbrella of juvenile idiopathic arthritis, with some patients following a monophasic remitting course, whereas others have persistent disease with chronic organ- and life-threatening complications. Although biologic therapies have revolutionized treatment, recent follow-up studies report significant numbers of children with persistently active disease on long term follow-up. This review focuses on refractory disease courses, specifically refractory arthritis, systemic juvenile idiopathic arthritis with recurrent, or longstanding signs of macrophage activation syndrome, and systemic juvenile idiopathic arthritis associated with suspected, probable, or definite lung disease.
Collapse
Affiliation(s)
- Remco Erkens
- Division of Pediatric Rheumatology & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, the Netherlands
| | - Ysabella Esteban
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christopher Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Grant Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sebastiaan Vastert
- Division of Pediatric Rheumatology & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, the Netherlands.
| |
Collapse
|
42
|
Iftikhar H, Nair GB, Kumar A. Update on Diagnosis and Treatment of Adult Pulmonary Alveolar Proteinosis. Ther Clin Risk Manag 2021; 17:701-710. [PMID: 34408422 PMCID: PMC8364424 DOI: 10.2147/tcrm.s193884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/19/2021] [Indexed: 01/15/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary surfactant homeostasis disorder resulting in buildup of lipo-proteinaceous material within the alveoli. PAP is classified as primary (autoimmune and hereditary), secondary, congenital and unclassifiable type based on the underlying pathogenesis. PAP has an insidious onset and can, in some cases, progress to severe respiratory failure. Diagnosis is often secured with bronchoalveolar lavage in the setting of classic imaging findings. Recent insights into genetic alterations and autoimmune mechanisms have provided newer diagnostics and treatment options. In this review, we discuss the etiopathogenesis, diagnosis and treatment options available and emerging for PAP.
Collapse
Affiliation(s)
- Hira Iftikhar
- Division of Pulmonary and Critical Care, Beaumont Health, OUWB School of Medicine, Royal Oak, MI, USA
| | - Girish B Nair
- Division of Pulmonary and Critical Care, Beaumont Health, OUWB School of Medicine, Royal Oak, MI, USA
| | - Anupam Kumar
- Division of Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Podolanczuk AJ, Wong AW, Saito S, Lasky JA, Ryerson CJ, Eickelberg O. Update in Interstitial Lung Disease 2020. Am J Respir Crit Care Med 2021; 203:1343-1352. [PMID: 33835899 DOI: 10.1164/rccm.202103-0559up] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Shigeki Saito
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Joseph A Lasky
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Vahdatpour C, Khasawneh M, Zayed Y, Ataya A. Emerging Medical Therapies for Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2021; 203:1566-1568. [PMID: 33891826 DOI: 10.1164/rccm.202011-4260rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Cyrus Vahdatpour
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | - Majd Khasawneh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | - Yazan Zayed
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | - Ali Ataya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
45
|
Alasiri AM, Alasbali RA, Alaqil MA, Alahmari AM, Alshamrani ND, Badri RN. Autoimmune pulmonary alveolar proteinosis successfully treated with lung lavage in an adolescent patient: a case report. J Med Case Rep 2021; 15:340. [PMID: 34238362 PMCID: PMC8268574 DOI: 10.1186/s13256-021-02906-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022] Open
Abstract
Background Pulmonary alveolar proteinosis is a rare interstitial lung disease characterized by accumulating surfactant materials in the alveoli. The autoimmune form is by far the most common in adults, while in the pediatric age group, the vast majority of cases are congenital. We report a case of an adolescent patient diagnosed with autoimmune pulmonary alveolar proteinosis, which is unusual in this age group. Case presentation A-15 year-old Saudi male presented to the emergency department with a history of shortness of breath and low oxygen saturation. High-resolution computed tomography of his chest showed a global crazy-paving pattern. Autoantibodies against granulocyte-macrophage colony-stimulating factor were detected in his serum. A diagnosis of the autoimmune form of pulmonary alveolar proteinosis was confirmed after excluding other possible causes. The patient improved after he underwent whole lung lavage under general anesthesia, and he was independent of oxygen therapy after 6 months of follow-up. Conclusion The autoimmune form of pulmonary alveolar proteinosis is rare in the pediatric age group and should be considered when no apparent cause of this disease was found. Whole lung lavage should be the first treatment modality offered in this setting with close follow-up and monitoring.
Collapse
Affiliation(s)
| | | | - Meaad Ali Alaqil
- Department of internal medicine, Aseer Central Hospital, Abha, Saudi Arabia
| | | | | | - Rabab Nasir Badri
- Department of histopathology, Aseer Central Hospital, Abha, Saudi Arabia
| |
Collapse
|
46
|
Shi S, Wang R, Chen L, Li Y, Zhang Y, Xin X, Yang S, Wang Y, Xiao Y, Xu K. Long-term follow-up and successful treatment of pulmonary alveolar proteinosis without hypercholesterolemia with statin therapy: a case report. J Int Med Res 2021; 49:3000605211010046. [PMID: 33926277 PMCID: PMC8113942 DOI: 10.1177/03000605211010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare disorder characterized by the
accumulation of excessive surfactant lipids and proteins in alveolar macrophages
and alveoli. Oral statin therapy is a novel treatment for PAP with
hypercholesterolemia. However, this treatment has never been described in a
patient without hypercholesterolemia. Here, we present a case of successful
treatment with atorvastatin for a patient with possibly unclassified PAP without
hypercholesterolemia who responded poorly to whole lung lavage therapy and
inhaled granulocyte-macrophage colony-stimulating factor. After 18 months of
atorvastatin treatment, the patient experienced improvements in dyspnea,
radiographic abnormalities and pulmonary function. The present case study
supports the feasibility of statin therapy for PAP regardless of the level of
cholesterol.
Collapse
Affiliation(s)
- Shenyun Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rujia Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Chen
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yingwei Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shangwen Yang
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yihua Wang
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yonglong Xiao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.,Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Respiratory and Critical Care Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China
| | - Kaifeng Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
47
|
Walsh L, McCarthy C, Henry M. Autoimmune pulmonary alveolar proteinosis and idiopathic pulmonary haemosiderosis: a dual pathology. BMJ Case Rep 2021; 14:e241048. [PMID: 33811096 PMCID: PMC8023637 DOI: 10.1136/bcr-2020-241048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary condition which leads to excessive accumulation of proteinaceous material within the alveoli. Idiopathic pulmonary haemosiderosis (IPH) is another orphan lung disease and results in recurrent alveolar haemorrhage. This case study describes a case of these two rare pathologies occurring together. A man in his 50s presented with a 6-week history of haemoptysis and worsening dyspnoea. A CT scan of the thorax showed multifocal, bilateral ground glass opacification with a wide differential diagnosis. Full autoantibody screen including myositis panel and coeliac screen were negative. Bronchoscopy with bronchoalveolar lavage and tissue from a transbronchial lung cryobiopsy were non-diagnostic. Tissue from a video-assisted thoracoscopic surgery biopsy confirmed a diagnosis of PAP with IPH as a second separate pathology. The association of IPH and PAP has not previously been described. We discuss these conditions and postulate how and if they may be related.
Collapse
Affiliation(s)
- Laura Walsh
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - Cormac McCarthy
- Department of Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland
| | - Michael Henry
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| |
Collapse
|
48
|
Hirose M, Arai T, Sugimoto C, Takimoto T, Sugawara R, Minomo S, Shintani S, Takeuchi N, Katayama K, Inoue Y, Kagawa T, Kasai T, Akira M, Inoue Y. B cell-activating factors in autoimmune pulmonary alveolar proteinosis. Orphanet J Rare Dis 2021; 16:115. [PMID: 33653382 PMCID: PMC7923513 DOI: 10.1186/s13023-021-01755-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background Autoimmune pulmonary alveolar proteinosis (APAP) results from the suppression of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling by a neutralizing autoantibody against GM-CSF. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are involved in immunoglobulin G production and are overproduced in various autoimmune disorders. We hypothesized that BAFF and/or APRIL levels would be elevated in serum and bronchoalveolar lavage fluid (BALF) and serum and BALF levels of BAFF and APRIL respond to the treatments (whole lung lavage (WLL) or inhalation of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF)) in patients with APAP. Subjects and methods
BAFF and APRIL levels in serum and BALF from 110 patients with APAP were measured at baseline and during and after treatment, using an enzyme-linked immunosorbent assay kit. We enrolled 34 healthy volunteers as serum cytokine controls, and 13 disease controls for BALF. Associations of BAFF and APRIL levels with clinical measures were assessed to clarify their clinical roles. Results In patients with APAP, serum BAFF and APRIL levels were significantly increased relative to healthy volunteers (p < 0.0001 and p < 0.05, respectively), and BALF BAFF and APRIL levels were significantly increased versus disease controls (p < 0.0001 and p < 0.01, respectively). Serum BAFF levels (but not APRIL levels) were significantly correlated with Krebs von den Lungen-6 (KL-6), surfactant protein (SP)-D, SP-A, and lactate dehydrogenase (p < 0.0001). There was no significant correlation between serum BAFF or APRIL levels and anti-GM-CSF autoantibody. BAFF and APRIL were negatively correlated with single-breath diffusion capacity for carbon monoxide (DLco) (p = 0.004) and forced vital capacity (p = 0.04), respectively. BAFF (but not APRIL) in BALF was negatively correlated with vital capacity (p = 0.04) and DLco (p = 0.006). There were significant correlations between disease severity and BAFF levels in serum (p = 0.04) and BALF (p = 0.007). Serum levels of anti-GM-CSF autoantibody, BAFF, and APRIL were not significantly affected by WLL or inhalation of recombinant human GM-CSF. Conclusions BAFF and APRIL levels of sera and BALF in APAP were significantly increased compared with healthy volunteer and disease control, and the BAFF and APRIL pathway might have important specific roles in pathogenesis of APAP. Our data suggest a new perspective of future treatment for APAP.
Collapse
Affiliation(s)
- Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Chikatoshi Sugimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Takayuki Takimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Reiko Sugawara
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Shojiro Minomo
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Sayoko Shintani
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Naoko Takeuchi
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Kanako Katayama
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Yasushi Inoue
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Tomoko Kagawa
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Takahiko Kasai
- Department of Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Masanori Akira
- Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan.
| |
Collapse
|
49
|
Hypersensitivity pneumonitis in a patient with pulmonary alveolar proteinosis. Pulmonology 2021; 27:464-466. [PMID: 33551268 DOI: 10.1016/j.pulmoe.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
|
50
|
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169:100-117. [PMID: 33309815 PMCID: PMC7833882 DOI: 10.1016/j.addr.2020.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/08/2023]
Abstract
To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.
Collapse
Affiliation(s)
- Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alice Ma
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Inhalon Biopharma, Durham, NC 27709, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|