1
|
Souris KJ, Pfiester E, Thieffry A, Chen Y, Braune K, Kapil Bhargava M, Samra R, Gómez P, O'Donnell S. Out-of-pocket expenses and rationing of insulin and diabetes supplies: findings from the 2022 T1International cross-sectional web-based survey. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1293882. [PMID: 38711747 PMCID: PMC11070566 DOI: 10.3389/fcdhc.2024.1293882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024]
Abstract
Introduction Continue investigating Out-of-Pocket Expenses (OoPEs) and rationing of insulin and diabetes supplies, including impacts of the COVID-19 pandemic, for people with type 1 diabetes (T1D). Methods A cross-sectional web-based survey was conducted in English and advertised by T1International's global network of patient advocates from May through September 2022. Participants provided monthly OoPEs and rationing frequency for insulin and supplies, impacts of the COVID-19 pandemic, and open-ended comments. Results In the seven most represented countries, mean monthly OoPEs were highest in the United States, followed by Panama, Canada, and India, and were much lower in the United Kingdom, Germany, and Sweden. OoPEs were highest for participants with partial healthcare coverage, followed by those with no healthcare coverage. The COVID-19 pandemic negatively impacted access and/or affordability of insulin and/or supplies for over half of participants. Globally, 19.5% reported insulin rationing and 36.6% reported rationing glucose testing supplies. Qualitative analysis of open-ended responses identified themes such as 'mental health impacts' and 'limits to life choices.' Discussion High OoPEs lead to rationing of insulin and supplies for many people with T1D globally. Healthcare systems improvements and price reductions of insulin and supplies are needed to ensure adequate, equitable access for all.
Collapse
Affiliation(s)
| | | | | | - Yanbing Chen
- Applied Aviation Sciences Department, Embry-Riddle Aeronautical University, Daytona, FL, United States
| | - Katarina Braune
- Institute of Medical Informatics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Shane O'Donnell
- School of Sociology, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Velayutham M, Poncelet M, Perini JA, Kupec JT, Dietz MJ, Driesschaert B, Khramtsov VV. EPR Viscometric Measurements Using a 13C-Labeled Triarylmethyl Radical in Protein-based Biotherapeutics and Human Synovial Fluids. APPLIED MAGNETIC RESONANCE 2023; 54:779-791. [PMID: 38707765 PMCID: PMC11068027 DOI: 10.1007/s00723-023-01556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 05/07/2024]
Abstract
The viscosity measurements are of clinical significance for evaluation of the potential pathological conditions of biological lubricants such as synovial fluids of joints, and for formulation and characterization of peptide- and protein-based biotherapeutics. Due to inherent potential therapeutic activity, protein drugs have proven to be one of the most efficient therapeutic agents in treatment of several life-threatening disorders, such as diabetes and autoimmune diseases. However, home-use applications for treating chronic inflammatory diseases, such as diabetes and rheumatoid arthritis, necessitate the development of high-concentration insulin and monoclonal antibodies formulations for patient self-administration. High protein concentrations can affect viscosity of the corresponding drug solutions complicating their manufacture and administration. The measurements of the viscosity of new insulin analogs and monoclonal antibodies solutions under development is of practical importance to avoid unwanted highly viscous, and therefore, painful for injection drug formulations. Recently, we have demonstrated capability of the electron paramagnetic resonance (EPR) viscometry using viscosity-sensitive 13C-labeled trityl spin probe (13C1-dFT) to report the viscosity of human blood, and interstitial fluids measured in various organs in mice ex-vivo and in anesthetized mice, in vivo. In the present work, we demonstrate utility of the EPR viscometry using 13C1-dFT to measure microviscosity of commercial insulin samples, antibodies solution, and human synovial fluids using small microliter volume samples (5-50 μL). This viscometry analysis approach provides useful tool to control formulations and administration of new biopharmaceuticals, and for evaluation of the state of synovial fluids of importance for clinical applications.
Collapse
Affiliation(s)
- Murugesan Velayutham
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center
- Department of Biochemistry and Molecular Medicine
| | - Martin Poncelet
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center
- Department of Pharmaceutical Sciences
| | | | | | | | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center
- Department of Pharmaceutical Sciences
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center
- Department of Biochemistry and Molecular Medicine
| |
Collapse
|
3
|
Bolli GB, Cheng AYY, Owens DR. Insulin: evolution of insulin formulations and their application in clinical practice over 100 years. Acta Diabetol 2022; 59:1129-1144. [PMID: 35854185 PMCID: PMC9296014 DOI: 10.1007/s00592-022-01938-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
The first preparation of insulin extracted from a pancreas and made suitable for use in humans after purification was achieved 100 years ago in Toronto, an epoch-making achievement, which has ultimately provided a life-giving treatment for millions of people worldwide. The earliest animal-derived formulations were short-acting and contained many impurities that caused adverse reactions, thereby limiting their therapeutic potential. However, since then, insulin production and purification improved with enhanced technologies, along with a full understanding of the insulin molecule structure. The availability of radio-immunoassays contributed to the unravelling of the physiology of glucose homeostasis, ultimately leading to the adoption of rational models of insulin replacement. The introduction of recombinant DNA technologies has since resulted in the era of both rapid- and long-acting human insulin analogues administered via the subcutaneous route which better mimic the physiology of insulin secretion, leading to the modern basal-bolus regimen. These advances, in combination with improved education and technologies for glucose monitoring, enable people with diabetes to better meet individual glycaemic goals with a lower risk of hypoglycaemia. While the prevalence of diabetes continues to rise globally, it is important to recognise the scientific endeavour that has led to insulin remaining the cornerstone of diabetes management, on the centenary of its first successful use in humans.
Collapse
|
4
|
Falcetta P, Aragona M, Bertolotto A, Bianchi C, Campi F, Garofolo M, Del Prato S. Insulin discovery: A pivotal point in medical history. Metabolism 2022; 127:154941. [PMID: 34838778 DOI: 10.1016/j.metabol.2021.154941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 01/12/2023]
Abstract
The discovery of insulin in 1921 - due to the efforts of the Canadian research team based in Toronto - has been a landmark achievement in the history of medicine. Lives of people with diabetes were changed forever, considering that in the pre-insulin era this was a deadly condition. Insulin, right after its discovery, became the first hormone to be purified for human use, the first to be unraveled in its amino acid sequence and to be synthetized by DNA-recombinant technique, the first to be modified in its amino acid sequence to modify its duration of action. As such the discovery of insulin represents a pivotal point in medical history. Since the early days of its production, insulin has been improved in its pharmacokinetic and pharmacodynamic properties in the attempt to faithfully reproduce diurnal physiologic plasma insulin fluctuations. The evolution of insulin molecule has been paralleled by evolution in the way the hormone is administered. Once-weekly insulins will be available soon, and glucose-responsive "smart" insulins start showing their potential in early clinical studies. The first century of insulin as therapy was marked by relentless search for better formulations, a search that has not stopped yet. New technologies may have, indeed, the potential to provide further improvement of safety and efficacy of insulin therapy and, therefore, contribute to improvement of the quality of life of people with diabetes.
Collapse
Affiliation(s)
- Pierpaolo Falcetta
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Trivella, 56124 Pisa, Italy.
| | - Michele Aragona
- Section of Metabolic Diseases and Diabetes, Azienda Ospedaliero-Universitaria Pisana, Via Trivella, 56124 Pisa, Italy.
| | - Alessandra Bertolotto
- Section of Metabolic Diseases and Diabetes, Azienda Ospedaliero-Universitaria Pisana, Via Trivella, 56124 Pisa, Italy.
| | - Cristina Bianchi
- Section of Metabolic Diseases and Diabetes, Azienda Ospedaliero-Universitaria Pisana, Via Trivella, 56124 Pisa, Italy.
| | - Fabrizio Campi
- Section of Metabolic Diseases and Diabetes, Azienda Ospedaliero-Universitaria Pisana, Via Trivella, 56124 Pisa, Italy.
| | - Monia Garofolo
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Trivella, 56124 Pisa, Italy.
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Trivella, 56124 Pisa, Italy.
| |
Collapse
|
5
|
Owens DR, Monnier L, Ceriello A, Bolli GB. Insulin Centennial: Milestones influencing the development of insulin preparations since 1922. Diabetes Obes Metab 2022; 24 Suppl 1:27-42. [PMID: 34708913 DOI: 10.1111/dom.14587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/27/2022]
Abstract
During 1921 to 1922, a team effort by Banting, Macleod, Collip and Best isolated and purified insulin and demonstrated its life-giving properties, giving rise to the birth of insulin therapy. In the early years (1922-1950), priorities revolved around the manufacture of insulin to meet demand, improving purity to avoid allergic reactions, establishing insulin standards and increasing its duration of action to avoid multiple daily injections. Shortly after the emergence of insulin, Joslin and Allen advocated the need to achieve and maintain good glycaemic control to realize its full potential. Although this view was opposed by some during a dark period in the history of insulin, it was subsequently endorsed some 60 years later endorsed by the Diabetes Control and Complications Trial and United Kingdom Prospective Diabetes Study. Major scientific advances by the Nobel Laureates Sanger, Hodgkin, Yalow and Gilbert and also by Steiner have revolutionized the understanding of diabetes and facilitated major advances in insulin therapy. The more recent advent of recombinant technology over the last 40 years has provided the potential for unlimited source of insulin, and the ability to generate various insulin 'analogues', in an attempt to better replicate normal insulin secretory patterns. The emerging biosimilars now provide the opportunity to improve availability at a lower cost.
Collapse
Affiliation(s)
- David R Owens
- Diabetes Research Unit, University of Swansea Medical School, Wales, UK
| | - Louis Monnier
- Institute of Clinical Research, University of Montpellier, Montpellier, France
| | | | - Geremia B Bolli
- Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Herman WH, Kuo S. 100 years of Insulin: Why is Insulin So Expensive and What Can be Done to Control Its Cost? Endocrinol Metab Clin North Am 2021; 50:e21-e34. [PMID: 34763823 PMCID: PMC8597930 DOI: 10.1016/j.ecl.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The discovery of insulin 100 years ago and subsequent improvements in insulin formulations and delivery devices have changed the lives of people with diabetes. Unfortunately, the average price of insulin in the United States has nearly tripled over the past decade, and the high cost of insulin has become a barrier to diabetes treatment. On the 100th anniversary of insulin's discovery, this life-saving treatment is financially out of reach for as many as one-third of people with diabetes. The challenge now is to ensure that insulin is available for all people with diabetes who need it. We explore reasons for the high cost of insulin and recommend some clinical and policy interventions to improve insulin access and affordability.
Collapse
Affiliation(s)
- William H Herman
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, 1000 Wall Street, Brehm Tower, Room 6108, Ann Arbor, MI 48105, USA; Department of Epidemiology, University of Michigan School of Public Health, 1000 Wall Street, Brehm Tower, Room 6115, Ann Arbor, MI 48105, USA.
| | - Shihchen Kuo
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, 1000 Wall Street, Brehm Tower, Room 6108, Ann Arbor, MI 48105, USA
| |
Collapse
|