Gowen JA, Markham JC, Morrison SE, Cross TA, Busath DD, Mapes EJ, Schumaker MF. The role of Trp side chains in tuning single proton conduction through gramicidin channels.
Biophys J 2002;
83:880-98. [PMID:
12124271 PMCID:
PMC1302193 DOI:
10.1016/s0006-3495(02)75215-6]
[Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We present an extensive set of measurements of proton conduction through gramicidin A (gA), B (gB), and M (gM) homodimer channels which have 4, 3, or 0 Trp residues at each end of the channel, respectively. In gA we find a shoulder separating two domains of conductance increasing with concentration, confirming the results of Eisenman, G., B. Enos, J. Hagglund, and J. Sandblom. 1980. Ann. NY. Acad. Sci. 339:8-20. In gB, the shoulder is shifted by approximately 1/2 pH unit to higher H(+) concentrations and is very sharply defined. No shoulder appears in the gM data, but an associated transition from sublinear to superlinear I-V values occurs at a 100-fold higher [H(+)] in gM than in gA. The data in the low concentration domain are analyzed using a configuration space model of single-proton conduction, assuming that the difference in the proton potential of mean force (PMF) between gA and its analogs is constant, similar to the results of Anderson, D., R. B. Shirts, T. A. Cross, and D. D. Busath. 2001. Biophys. J. 81:1255-1264. Our results suggest that the average amplitudes of the calculated proton PMFs are nearly correct, but that the water reorientation barrier calculated for gA by molecular dynamics using the PM6 water model (Pomès, R., and B. Roux. 1997. Biophys. J. 72:246a) must be reduced in amplitude by 1.5 kcal/mol or more, and is not rate-limiting for gA.
Collapse