1
|
Buell AK. Stability matters, too - the thermodynamics of amyloid fibril formation. Chem Sci 2022; 13:10177-10192. [PMID: 36277637 PMCID: PMC9473512 DOI: 10.1039/d1sc06782f] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
Amyloid fibrils are supramolecular homopolymers of proteins that play important roles in biological functions and disease. These objects have received an exponential increase in attention during the last few decades, due to their role in the aetiology of a range of severe disorders, most notably some of a neurodegenerative nature. While an overwhelming number of experimental studies exist that investigate how, and how fast, amyloid fibrils form and how their formation can be inhibited, a much more limited body of experimental work attempts to answer the question as to why these types of structures form (i.e. the thermodynamic driving force) and how stable they actually are. In this review, I attempt to give an overview of the types of experiments that have been performed to-date to answer these questions, and to summarise our current understanding of amyloid thermodynamics.
Collapse
Affiliation(s)
- Alexander K Buell
- Technical University of Denmark, Department of Biotechnology and Biomedicine Søltofts Plads, Building 227 2800 Kgs. Lyngby Denmark
| |
Collapse
|
2
|
Zhang W, Ma Y, Posey ND, Lueckheide MJ, Prabhu VM, Douglas JF. Combined Simulation and Experimental Study of Polyampholyte Solution Properties: Effects of Charge Ratio, Hydrophobic Groups, and Polymer Concentration. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wengang Zhang
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Nicholas D. Posey
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michael J. Lueckheide
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
3
|
Pathak JA, Nugent S, Bender MF, Roberts CJ, Curtis RJ, Douglas JF. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers (Basel) 2021; 13:601. [PMID: 33671342 PMCID: PMC7922252 DOI: 10.3390/polym13040601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
The Huggins coefficient kH is a well-known metric for quantifying the increase in solution viscosity arising from intermolecular interactions in relatively dilute macromolecular solutions, and there has been much interest in this solution property in connection with developing improved antibody therapeutics. While numerous kH measurements have been reported for select monoclonal antibodies (mAbs) solutions, there has been limited study of kH in terms of the fundamental molecular interactions that determine this property. In this paper, we compare measurements of the osmotic second virial coefficient B22, a common metric of intermolecular and interparticle interaction strength, to measurements of kH for model antibody solutions. This comparison is motivated by the seminal work of Russel for hard sphere particles having a short-range "sticky" interparticle interaction, and we also compare our data with known results for uncharged flexible polymers having variable excluded volume interactions because proteins are polypeptide chains. Our observations indicate that neither the adhesive hard sphere model, a common colloidal model of globular proteins, nor the familiar uncharged flexible polymer model, an excellent model of intrinsically disordered proteins, describes the dependence of kH of these antibodies on B22. Clearly, an improved understanding of protein and ion solvation by water as well as dipole-dipole and charge-dipole effects is required to understand the significance of kH from the standpoint of fundamental protein-protein interactions. Despite shortcomings in our theoretical understanding of kH for antibody solutions, this quantity provides a useful practical measure of the strength of interprotein interactions at elevated protein concentrations that is of direct significance for the development of antibody formulations that minimize the solution viscosity.
Collapse
Affiliation(s)
- Jai A. Pathak
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Sean Nugent
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Michael F. Bender
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Christopher J. Roberts
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Robin J. Curtis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Jack F. Douglas
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8544, USA
| |
Collapse
|
4
|
Gobbo D, Ballone P, Garabato BD. Coarse-Grained Model of Entropy-Driven Demixing. J Phys Chem B 2020; 124:9267-9274. [DOI: 10.1021/acs.jpcb.0c07575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. Gobbo
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - P. Ballone
- School of Physics, University College, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College, Dublin 4, Ireland
| | - B. D. Garabato
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| |
Collapse
|
5
|
Inoue M, Hayashi T, Hikiri S, Ikeguchi M, Kinoshita M. Hydration properties of a protein at low and high pressures: Physics of pressure denaturation. J Chem Phys 2020; 152:065103. [PMID: 32061219 DOI: 10.1063/1.5140499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Using experimentally determined structures of ubiquitin at 1 and 3000 bar, we generate sufficiently large ensembles of model structures in the native and pressure-induced (denatured) states by means of molecular dynamics simulations with explicit water. We calculate the values of a free-energy function (FEF), which comprises the hydration free energy (HFE) and the intramolecular (conformational) energy and entropy, for the two states at 1 and 3000 bar. The HFE and the conformational entropy, respectively, are calculated using our statistical-mechanical method, which has recently been shown to be accurate, and the Boltzmann-quasi-harmonic method. The HFE is decomposed into a variety of physically insightful components. We show that the FEF of the native state is lower than that of the denatured state at 1 bar, whereas the opposite is true at 3000 bar, thus being successful in reproducing the pressure denaturation. We argue that the following two quantities of hydration play essential roles in the denaturation: the WASA-dependent term in the water-entropy loss upon cavity creation for accommodating the protein (WASA is the water-accessible surface area of the cavity) and the protein-water Lennard-Jones interaction energy. At a high pressure, the mitigation of the serious water crowding in the system is the most important, and the WASA needs to be sufficiently enlarged with the increase in the excluded-volume being kept as small as possible. The denatured structure thus induced is characterized by the water penetration into the protein interior. The pressure denaturation is accompanied by a significantly large gain of water entropy.
Collapse
Affiliation(s)
- Masao Inoue
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Simon Hikiri
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Murakami S, Hayashi T, Kinoshita M. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein. J Chem Phys 2017; 146:055102. [DOI: 10.1063/1.4975165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Gao Y, Nieuwendaal R, Dimitriadis EK, Hammouda B, Douglas JF, Xu B, Horkay F. Supramolecular Self-assembly of a Model Hydrogelator: Characterization of Fiber Formation and Morphology. Gels 2016; 2:27. [PMID: 28649573 PMCID: PMC5482529 DOI: 10.3390/gels2040027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are of intense recent interest in connection with biomedical applications ranging from 3-D cell cultures and stem cell differentiation to regenerative medicine, controlled drug delivery and tissue engineering. This prototypical form of soft matter has many emerging material science applications outside the medical field. The physical processes underlying this type of solidification are incompletely understood and this limits design efforts aimed at optimizing these materials for applications. We address this general problem by applying multiple techniques (e.g., NMR, dynamic light scattering, small angle neutron scattering, rheological measurements) to the case of a peptide derivative hydrogelator (molecule 1, NapFFKYp) over a broad range of concentration and temperature to characterize both the formation of individual nanofibers and the fiber network. We believe that a better understanding of the hierarchical self-assembly process and control over the final morphology of this kind of material should have broad significance for biological and medicinal applications utilizing hydrogels.
Collapse
Affiliation(s)
- Yuan Gao
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Ryan Nieuwendaal
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Emilios K. Dimitriadis
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Boualem Hammouda
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA;
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Oshima H, Kinoshita M. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water. J Chem Phys 2015; 142:145103. [DOI: 10.1063/1.4917075] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hiraku Oshima
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Zaccone A, Terentjev I, Di Michele L, Terentjev EM. Fragmentation and depolymerization of non-covalently bonded filaments. J Chem Phys 2015; 142:114905. [DOI: 10.1063/1.4914925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- A. Zaccone
- Physics Department and Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - I. Terentjev
- Granta Design, 62 Clifton Rd., Cambridge CB1 7EG, United Kingdom
| | - L. Di Michele
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - E. M. Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
10
|
Black BJ, Gu L, Mohanty SK. Highly effective photonic cue for repulsive axonal guidance. PLoS One 2014; 9:e86292. [PMID: 24717339 PMCID: PMC3981697 DOI: 10.1371/journal.pone.0086292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 12/11/2013] [Indexed: 01/03/2023] Open
Abstract
In vivo nerve repair requires not only the ability to regenerate damaged axons, but most importantly, the ability to guide developing or regenerating axons along paths that will result in functional connections. Furthermore, basic studies in neuroscience and neuro-electronic interface design require the ability to construct in vitro neural circuitry. Both these applications require the development of a noninvasive, highly effective tool for axonal growth-cone guidance. To date, a myriad of technologies have been introduced based on chemical, electrical, mechanical, and hybrid approaches (such as electro-chemical, optofluidic flow and photo-chemical methods). These methods are either lacking in desired spatial and temporal selectivity or require the introduction of invasive external factors. Within the last fifteen years however, several attractive guidance cues have been developed using purely light based cues to achieve axonal guidance. Here, we report a novel, purely optical repulsive guidance technique that uses low power, near infrared light, and demonstrates the guidance of primary goldfish retinal ganglion cell axons through turns of up to 120 degrees and over distances of ∼90 µm.
Collapse
Affiliation(s)
- Bryan J Black
- Biophysics and Physiology Group, Department of Physics, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Ling Gu
- Biophysics and Physiology Group, Department of Physics, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Samarendra K Mohanty
- Biophysics and Physiology Group, Department of Physics, The University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
11
|
Freed KF. Phase field method for nonequilibrium dynamics of reversible self-assembly systems. J Chem Phys 2013; 139:134904. [PMID: 24116582 DOI: 10.1063/1.4822304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phase field methods are extended to describe the nonequilibrium dynamics of reversible self-assembly systems, an extension that is complicated by the mutual coupling of many non-conserved order parameters into a set of highly nonlinear partial differential equations. Further complications arise because the sum of all non-conserved order parameters equals a conserved order parameter. The theory is developed for the simplest model of reversible self-assembly in which no additional constraints are imposed on the self-assembly process since the extension to treat more complex self-assembly models is straightforward. Specific calculations focus on the time evolution of the cluster size distribution for a free association system that is rapidly dropped from one ordered state to a more ordered state within the one-phase region. The dynamics proceed as expected, thereby providing validation of the theory which is also capable of treating systems with spatial inhomogeneities.
Collapse
Affiliation(s)
- Karl F Freed
- James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
12
|
Ragoonanan V, Less R, Aksan A. Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses. Part 2: The link between the state of the membrane-cytoskeleton complex and the cellular damage. Cryobiology 2012; 66:96-104. [PMID: 23261886 DOI: 10.1016/j.cryobiol.2012.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/04/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022]
Abstract
In an earlier paper [35], we examined the mutual interaction between the actin cytoskeleton and the cell membrane and explored the role this interaction plays during freeze/thaw. In this follow-up paper, we investigate the physical and chemical stresses induced by freeze/thaw and explore the different mechanisms of damage caused by these stresses. Our results showed that changes in cell volume during freeze/thaw and the unfrozen water content in the solution alter the cytoskeleton stiffness, and the available membrane material. Combined with unfavorable ice-membrane interactions and increasing membrane stiffness, increased de-structuring of the membrane (such as bleb and microvilli formation) synergistically act on the membrane-cytoskeleton system generating irreversible damage.
Collapse
Affiliation(s)
- Vishard Ragoonanan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
13
|
Freed KF. Influence of small rings on the thermodynamics of equilibrium self-assembly. J Chem Phys 2012; 136:244904. [DOI: 10.1063/1.4730161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Dudowicz J, Freed KF, Douglas JF. Lattice cluster theory of associating polymers. II. Enthalpy and entropy of self-assembly and Flory-Huggins interaction parameter χ for solutions of telechelic molecules. J Chem Phys 2012; 136:064903. [DOI: 10.1063/1.3681256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Dudowicz J, Freed KF. Lattice cluster theory of associating polymers. I. Solutions of linear telechelic polymer chains. J Chem Phys 2012; 136:064902. [DOI: 10.1063/1.3681257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Shit A, Chattopadhyay S, Ray Chaudhuri J. Towards an understanding of escape rate and state dependent diffusion for a quantum dissipative system. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2011.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Dudowicz J, Douglas JF, Freed KF. Equilibrium polymerization models of re-entrant self-assembly. J Chem Phys 2009; 130:164905. [PMID: 19405628 DOI: 10.1063/1.3118671] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.
Collapse
Affiliation(s)
- Jacek Dudowicz
- The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
18
|
Dudowicz J, Douglas JF, Freed KF. An exactly solvable model of hierarchical self-assembly. J Chem Phys 2009; 130:224906. [DOI: 10.1063/1.3148893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Kaiser TE, Stepanenko V, Würthner F. Fluorescent J-Aggregates of Core-Substituted Perylene Bisimides: Studies on Structure−Property Relationship, Nucleation−Elongation Mechanism, and Sergeants-and-Soldiers Principle. J Am Chem Soc 2009; 131:6719-32. [DOI: 10.1021/ja900684h] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Theo E. Kaiser
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg, Germany
| | - Vladimir Stepanenko
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg, Germany
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
20
|
Forciniti L, Wang G, Zaman MH. Actin–Fascin Bundle Formation Under Pressure. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Dudowicz J, Douglas JF, Freed KF. Competition between self-assembly and surface adsorption. J Chem Phys 2009; 130:084903. [DOI: 10.1063/1.3077866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Yoshidome T, Harano Y, Kinoshita M. Pressure effects on structures formed by entropically driven self-assembly: illustration for denaturation of proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:011912. [PMID: 19257074 DOI: 10.1103/physreve.79.011912] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Indexed: 05/27/2023]
Abstract
We propose a general framework of pressure effects on the structures formed by the self-assembly of solute molecules immersed in solvent. The integral equation theory combined with the morphometric approach is employed for a hard-body model system. Our picture is that protein folding and ordered association of proteins are driven by the solvent entropy: At low pressures, the structures almost minimizing the excluded volume (EV) generated for solvent particles are stabilized. Such structures appear to be even more stabilized at high pressures. However, it is experimentally known that the native structure of a protein is unfolded, and ordered aggregates such as amyloid fibrils and actin filaments are dissociated by applying high pressures. This initially puzzling result can also be elucidated in terms of the solvent entropy. A clue to the basic mechanism is in the phenomenon that, when a large hard-sphere solute is immersed in small hard spheres forming the solvent, the small hard spheres are enriched near the solute and this enrichment becomes greater as the pressure increases. We argue that "attraction" is entropically provided between the solute surface and solvent particles, and the attraction becomes higher with rising pressure. Due to this effect, at high pressures, the structures possessing the largest possible solvent-accessible surface area together with sufficiently small EV become more stable in terms of the solvent entropy. To illustrate this concept, we perform an analysis of pressure denaturation of three different proteins. It is shown that only the structures that have the characteristics described above exhibit interesting behavior. They first become more destabilized relative to the native structure as the pressure increases, but beyond a threshold pressure the relative instability begins to decrease and they eventually become more stable than the native structure.
Collapse
Affiliation(s)
- Takashi Yoshidome
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
23
|
Tartaglia LJ, Shain DH. Cold-adapted tubulins in the glacier ice worm, Mesenchytraeus solifugus. Gene 2008; 423:135-41. [DOI: 10.1016/j.gene.2008.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 07/04/2008] [Accepted: 07/18/2008] [Indexed: 01/02/2023]
|
24
|
Abstract
The clathrin triskelion, which is a three-legged pinwheel-shaped heteropolymer, is a major component in the protein coats of certain post-Golgi and endocytic vesicles. At low pH, or at physiological pH in the presence of assembly proteins, triskelia will self-assemble to form a closed clathrin cage, or "basket". Recent static light scattering and dynamic light scattering studies of triskelia in solution showed that an individual triskelion has an intrinsic pucker similar to, but differing from, that inferred from a high resolution cryoEM structure of a triskelion in a clathrin basket. We extend the earlier solution studies by performing small-angle neutron scattering (SANS) experiments on isolated triskelia, allowing us to examine a higher q range than that probed by static light scattering. Results of the SANS measurements are consistent with the light scattering measurements, but show a shoulder in the scattering function at intermediate q values (0.016 A(-1)), just beyond the Guinier regime. This feature can be accounted for by Brownian dynamics simulations based on flexible bead-spring models of a triskelion, which generate time-averaged scattering functions. Calculated scattering profiles are in good agreement with the experimental SANS profiles when the persistence length of the assumed semiflexible triskelion is close to that previously estimated from the analysis of electron micrographs.
Collapse
|
25
|
Norman AI, Ivkov R, Forbes JG, Greer SC. The polymerization of actin: structural changes from small-angle neutron scattering. J Chem Phys 2007; 123:154904. [PMID: 16252969 DOI: 10.1063/1.2039088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new analysis of small-angle neutron-scattering data from rabbit muscle actin in the course of the polymerization from G-actin to F-actin as a function of temperature. The data, from Ivkov et al. [J. Chem. Phys. 108, 5599 (1998)], were taken in D2O buffer with Ca2+ as the divalent cation on the G-actin in the presence of ATP and with KCl as the initiating salt. The new analysis of the data using modeling and the method of generalized indirect fourier transform (O. Glatter, GIFT, University of Graz, Austria, http://physchem.kfunigraz.ac.at/sm/) provide shapes and dimensions of the G-actin monomer and of the growing actin oligomer in solution as a function of temperature and salt concentration. This analysis indicates that the G-actin monomer, under the conditions given above, is a sphere 50-54 A in diameter as opposed to the oblate ellipsoid seen by x-ray crystallography. The F-actin dimensions are consistent with x-ray crystal structure determinations.
Collapse
Affiliation(s)
- Alexander I Norman
- Department of Chemistry and Biochemistry, The University of Maryland College Park, College Park, Maryland 20742, USA.
| | | | | | | |
Collapse
|
26
|
Matthews JNA, Yim PB, Jacobs DT, Forbes JG, Peters ND, Greer SC. The polymerization of actin: extent of polymerization under pressure, volume change of polymerization, and relaxation after temperature jumps. J Chem Phys 2007; 123:074904. [PMID: 16229617 DOI: 10.1063/1.2001635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protein actin can polymerize from monomeric globular G-actin to polymeric filamentary F-actin, under the regulation of thermodynamic variables such as temperature, pressure, and compositions of G-actin and salts. We present here new measurements of the extent of polymerization (phi) of actin under pressure (P), for rabbit skeletal muscle actin in H2O buffer in the presence of adenosine triposphate and calcium ions and at low (5-15 mM) KCl concentrations. We measured phi using pyrene-labeled actin, as a function of time (t) and temperature (T), for samples of fixed concentrations of initial G-actin and KCl and at fixed pressure. The phi(T,P) measurements at equilibrium have the same form as reported previously at 1 atm: low levels of polymerization at low temperatures, representing dimerization of the actin; an increase in phi at the polymerization temperature (Tp); a maximum in phi(T) above Tp) with a decrease in phi(T) beyond the maximum, indicating a depolymerization at higher T. From phi(T,P) at temperatures below Tp, we estimate the change in volume for the dimerization of actin, DeltaVdim, to be -307+/-10 ml/mol at 279 K. The change of Tp with pressure dTp/dP=(0.3015+/-0.0009) K/MPa=(30.15+/-0.09) mK/atm. The phi(T,P) data at higher T indicate the change in volume on propagation, DeltaVprop, to be +401+/-48 ml/mol at 301 K. The phi(t) measurements yield initial relaxation times rp(T) that reflect the behavior of phi(T) and support the presence of a depolymerization temperature. We also measured the density of polymerizing actin with a vibrating tube density meter, the results of which confirm that the data from this instrument are affected by viscosity changes and can be erroneous.
Collapse
Affiliation(s)
- Jermey N A Matthews
- Department of Chemical and Biomolecular Engineering, The University of Maryland College Park, College Park, Maryland 20742, USA
| | | | | | | | | | | |
Collapse
|
27
|
van Jaarsveld J, van der Schoot P. Scaling Theory of Interacting Thermally Activated Supramolecular Polymers. Macromolecules 2007. [DOI: 10.1021/ma061712y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jort van Jaarsveld
- Eindhoven Polymer Laboratories, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Paul van der Schoot
- Eindhoven Polymer Laboratories, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
28
|
Abstract
An extended Flory-Huggins-type equilibrium polymerization theory for compressible systems is used to describe experimental data for the unusual pressure and temperature dependence of the equilibrium polymerization of G-actin to F-actin. The calculations provide rich insights into the reaction mechanism and the thermodynamics of actin polymerization at the molecular level. Volume changes associated with individual steps of the mechanism are calculated to be DeltaVactiv=(s1*-s1)upsilon0=+1553 mlmol for the activation reaction, DeltaVdim=(s2-s1*)upsilon0=-3810 mlmol for dimerization, and DeltaVprop=(sP-s1)upsilon0=+361 mlmol for the propagation reaction, where s1upsilon0, s1*upsilon0, s2upsilon0, and sPupsilon0 are the monomer volumes in the G-actin monomer, the activated G-action, the dimer, and higher polymers, respectively. Comparison with experimental measurements is made, and discrepancies are discussed.
Collapse
Affiliation(s)
- Maxim N Artyomov
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
29
|
Stukalin EB, Freed KF. Minimal model of relaxation in an associating fluid: Viscoelastic and dielectric relaxations in equilibrium polymer solutions. J Chem Phys 2006; 125:184905. [PMID: 17115793 DOI: 10.1063/1.2378648] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cluster formation and disintegration greatly complicate the description of relaxation processes in complex fluids. We systematically contrast the viscoelastic and dielectric properties for models of equilibrium polymers whose thermodynamic properties have previously been established. In particular, the monomer-mediated model allows chain growth to proceed only by monomer addition, while the scission-recombination model enables all particles to associate democratically, so that chain scission and fusion occur at the interior segments as well as at chain ends. The minimal models neglect hydrodynamic and entanglement interactions and are designed to explore systematically the competition between chemical reaction and internal chain relaxation and how this coupling modifies the dynamics from that of a polydisperse solution of Rouse chains with fixed lengths (i.e., "frozen" chains). As expected, the stress relaxation is nearly single exponential when the assembly-disassembly reaction is fast on the time scale of structural chain rearrangements, while multiexponential or nearly stretched exponential relaxation is obtained when this reaction rate is slow compared to the broad relaxation spectrum of almost unperturbed, nearly "dead" chains of intrinsically polydisperse equilibrium polymer solutions. More generally, a complicated intermediate behavior emerges from the interplay between the chemical kinetic events and internal chain motions.
Collapse
Affiliation(s)
- Evgeny B Stukalin
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
30
|
Van Workum K, Douglas JF. Symmetry, equivalence, and molecular self-assembly. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:031502. [PMID: 16605527 DOI: 10.1103/physreve.73.031502] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Indexed: 05/08/2023]
Abstract
Molecular self-assembly at equilibrium is fundamental to the fields of biological self-organization, the development of novel environmentally responsive polymeric materials, and nanofabrication. Our approach to understanding the principles governing this process is inspired by existing models and measurements for the self-assembly of actin, tubulin, and the ubiquitous icosahedral shell structures of viral capsids. We introduce a family of simple potentials that give rise to the self-assembly of linear polymeric, random surface ("membrane"), tubular ("nanotube"), and hollow icosahedral structures that are similar in many respects to their biological counterparts. The potentials involve equivalent particles and an interplay between directional (dipolar, multipolar) and short-range (van der Waals) interactions. Specifically, we find that the dipolar potential, having a continuous rotational symmetry about the dipolar axis, gives rise to chain formation, while particles with multipolar potentials, having discrete rotational symmetries (square quadrupole or triangular ring of dipoles or "hexapole"), lead to the self-assembly of open sheet, nanotube, and hollow icosahedral geometries. These changes in the geometry of self-assembly are accompanied by significant changes in the kinetics of the organization.
Collapse
Affiliation(s)
- Kevin Van Workum
- National Institute of Standards and Technology, Polymers Division, Gaithersburg, Maryland 20899, USA.
| | | |
Collapse
|
31
|
Abstract
Flory-Huggins-type models of equilibrium polymerization are extended to describe compressible systems and, hence, the pressure dependence of thermodynamic properties. The theory is developed for three different mechanisms of equilibrium polymerization (the free association, monomer-activated polymerization, and chemically initiated polymerization models). In contrast to previous approaches for describing the pressure dependence, the theory delineates the thermodynamic consequences of the size disparities between solvent molecules, unpolymerized monomers, and the monomers within polymers. Basic thermodynamic properties (the extent of polymerization, density, heat capacities C(P) and C(V), etc.) are calculated analytically as functions of pressure, temperature, and composition of the associating species. Illustrative calculations refer to systems that polymerize upon cooling and demonstrate general agreement with numerous experimental trends. Comparisons with results from other theories are also discussed.
Collapse
Affiliation(s)
- Maxim N Artyomov
- The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
32
|
Van Workum K, Douglas JF. Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:031502. [PMID: 15903430 DOI: 10.1103/physreve.71.031502] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Indexed: 05/02/2023]
Abstract
A diverse range of molecular self-organization processes arises from a competition between directional and isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer fluid (SF) with a large dipolar interaction as a minimal self-organization model and focus on basic thermodynamic properties that are needed to characterize the polymerization transition that occurs in this fluid. In particular, we determine the polymerization transition lines from the maximum in the specific heat, C(v), and the inflection point in the extent of polymerization, Phi. We also characterize the geometry (radius of gyration R(g), chain length L, chain topology) of the clusters that form in this associating fluid as a function of temperature, T, and concentration, rho . The pressure, P, and the second virial coefficient, B2, were determined, since these properties contain essential information about the strength of the isotropic (van der Waals) interactions. Our simulations indicate that the locations of the polymerization lines are quantitatively consistent with a model of equilibrium polymerization with the enthalpy of polymerization ("sticking energy") fixed by the minimum in the intermolecular potential. The polymerization transition in the SF is accompanied by a topological transition from predominantly linear to ring polymers upon cooling that is driven by the minimization of the dipolar energy of the clusters. We also find that the basic interaction parameters describing polymerization and phase separation in the SF can be estimated based on the existing theory of equilibrium polymerization, but the theory must be refined to account for ring formation in order to accurately describe the configurational properties of this model self-organizing fluid.
Collapse
Affiliation(s)
- Kevin Van Workum
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | | |
Collapse
|
33
|
Dudowicz J, Freed KF, Douglas JF. Lattice model of equilibrium polymerization. IV. Influence of activation, chemical initiation, chain scission and fusion, and chain stiffness on polymerization and phase separation. J Chem Phys 2003. [DOI: 10.1063/1.1625642] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|