1
|
Mitchell E, Turney JM, Schaefer HF. Automatic Differentiation for Explicitly Correlated MP2. J Chem Theory Comput 2024; 20:8529-8538. [PMID: 39311755 PMCID: PMC11465469 DOI: 10.1021/acs.jctc.4c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Automatic differentiation (AD) offers a route to achieve arbitrary-order derivatives of challenging wave function methods without the use of analytic gradients or response theory. Currently, AD has been predominantly used in methods where first- and/or second-order derivatives are available, but it has not been applied to methods lacking available derivatives. The most robust approximation of explicitly correlated MP2, MP2-F12/3C(FIX)+CABS, is one such method. By comparing the results of MP2-F12 computed with AD versus finite-differences, it is shown that (a) optimized geometries match to about 10-3 Å for bond lengths and a 10-6 degree for angles, and (b) dipole moments match to about 10-6 D. Hessians were observed to have poorer agreement with numerical results (10-5), which is attributed to deficiencies in AD implementations currently. However, it is notable that vibrational frequencies match within 10-2 cm-1. The use of AD also allowed the prediction of MP2-F12/3C(FIX)+CABS IR intensities for the first time.
Collapse
Affiliation(s)
- Erica
C. Mitchell
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Center
for Computational Quantum Chemistry, University
of Georgia, Athens, Georgia 30602, United States
| | - Justin M. Turney
- Center
for Computational Quantum Chemistry, University
of Georgia, Athens, Georgia 30602, United States
| | - Henry F. Schaefer
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Center
for Computational Quantum Chemistry, University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Masios N, Hummel F, Grüneis A, Irmler A. Investigating the Basis Set Convergence of Diagrammatically Decomposed Coupled-Cluster Correlation Energy Contributions for the Uniform Electron Gas. J Chem Theory Comput 2024; 20:5937-5950. [PMID: 38976839 PMCID: PMC11270826 DOI: 10.1021/acs.jctc.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
We investigate the convergence of coupled-cluster (CC) correlation energies and related quantities with respect to the employed basis set size for the uniform electron gas (UEG) to gain a better understanding of the basis set incompleteness error (BSIE). To this end, coupled-cluster doubles (CCD) theory is applied to the three-dimensional UEG for a range of densities, basis set sizes, and electron numbers. We present a detailed analysis of individual diagrammatically decomposed contributions to the amplitudes at the level of CCD theory. In particular, we show that only two terms from the amplitude equations contribute to the asymptotic large-momentum behavior of the transition structure factor, corresponding to the cusp region at short interelectronic distances. However, due to the coupling present in the amplitude equations, all decomposed correlation energy contributions show the same asymptotic convergence behavior to the complete basis set limit. These findings provide an additional rationale for the success of a recently proposed correction to the BSIE of CC theory. Lastly, we examine the BSIE in the CCD plus perturbative triples [CCD(T)] method, as well as in the newly proposed CCD plus complete perturbative triples [CCD(cT)] method.
Collapse
Affiliation(s)
- Nikolaos Masios
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Felix Hummel
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Andreas Irmler
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| |
Collapse
|
3
|
Urban L, Laqua H, Thompson TH, Ochsenfeld C. Efficient Exploitation of Numerical Quadrature with Distance-Dependent Integral Screening in Explicitly Correlated F12 Theory: Linear Scaling Evaluation of the Most Expensive RI-MP2-F12 Term. J Chem Theory Comput 2024; 20:3706-3718. [PMID: 38626443 PMCID: PMC11099969 DOI: 10.1021/acs.jctc.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
We present a linear scaling atomic orbital based algorithm for the computation of the most expensive exchange-type RI-MP2-F12 term by employing numerical quadrature in combination with CABS-RI to avoid six-center-three-electron integrals. Furthermore, a robust distance-dependent integral screening scheme, based on integral partition bounds [Thompson, T. H.; Ochsenfeld, C. J. Chem. Phys. 2019, 150, 044101], is used to drastically reduce the number of the required three-center-one-electron integrals substantially. The accuracy of our numerical quadrature/CABS-RI approach and the corresponding integral screening is thoroughly assessed for interaction and isomerization energies across a variety of numerical integration grids. Our method outperforms the standard density fitting/CABS-RI approach with errors below 1 μEh even for small grid sizes and moderate screening thresholds. The choice of the grid size and screening threshold allows us to tailor our ansatz to a desired accuracy and computational efficiency. We showcase the approach's effectiveness for the chemically relevant system valinomycin, employing a triple-ζ F12 basis set combination (C54H90N6O18, 5757 AO basis functions, 10,266 CABS basis functions, 735,783 grid points). In this context, our ansatz achieves higher accuracy combined with a 135× speedup compared to the classical density fitting based variant, requiring notably less computation time than the corresponding RI-MP2 calculation. Additionally, we demonstrate near-linear scaling through calculations on linear alkanes. We achieved an 817-fold acceleration for C80H162 and an extrapolated 28,765-fold acceleration for C200H402, resulting in a substantially reduced computational time for the latter─from 229 days to just 11.5 min. Our ansatz may also be adapted to the remaining MP2-F12 terms, which will be the subject of future work.
Collapse
Affiliation(s)
- Lars Urban
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
- Max
Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Henryk Laqua
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Travis H. Thompson
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
- Max
Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
4
|
Wang Y, Guo Y, Neese F, Valeev EF, Li W, Li S. Cluster-in-Molecule Approach with Explicitly Correlated Methods for Large Molecules. J Chem Theory Comput 2023; 19:8076-8089. [PMID: 37920973 DOI: 10.1021/acs.jctc.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In this article, we present a series of explicitly correlated local correlation methods developed under the cluster-in-molecule (CIM) framework, including explicitly correlated second-order Møller-Plesset perturbation (MP2), coupled-cluster singles and doubles (CCSD), domain-based local pair natural orbital CCSD (DLPNO-CCSD), and DLPNO-CCSD with perturbative triples (DLPNO-CCSD(T)). In these methods, F12 correction is decomposed into contributions from each occupied local molecular orbital and then evaluated independently in a given cluster, which consists of a subset of localized orbitals. These newly developed methods allow F12 calculations of large molecules (up to 145 atoms for quasi-one-dimensional systems) on a single node. We use these methods to investigate the relative stability between extended and folded alkane C30H62, the relative stability of four secondary structures of a polyglycine Ace(Gly)10NH2, and the binding energies of two host-guest complexes. The results demonstrate that the combination of CIM with F12 methods is a promising way to investigate large molecules with small basis set errors.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Ten-No SL. Nonunitary projective transcorrelation theory inspired by the F12 ansatz. J Chem Phys 2023; 159:171103. [PMID: 37921247 DOI: 10.1063/5.0175337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
An alternative nonunitary transcorrelation, inspired by the F12 ansatz, is investigated. In contrast to the Jastrow transcorrelation of Boys-Handy, the effective Hamiltonian of this projective transcorrelation features: 1. a series terminating formally at four-body interactions. 2. no spin-contamination within the non-relativistic framework. 3. simultaneous satisfaction of the singlet and triplet first-order cusp conditions. 4. arbitrary choices of pairs for correlation including frozen-core approximations. We discuss the connection between the projective transcorrelation and F12 theory with applications to small molecules, to show that the cusp conditions play an important role to reduce the uncertainty arising from the nonunitary transformation.
Collapse
Affiliation(s)
- Seiichiro L Ten-No
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Lee N, Thom AJW. Studies on the Transcorrelated Method. J Chem Theory Comput 2023; 19:5743-5759. [PMID: 37640393 PMCID: PMC10500994 DOI: 10.1021/acs.jctc.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 08/31/2023]
Abstract
We investigate the possibility of using a transcorrelated (TC) Hamiltonian to describe electron correlation. A method to obtain TC wavefunctions was developed based on the mathematical framework of the bi-variational principle. This involves the construction of an effective TC Hamiltonian matrix, which can be solved in a self-consistent manner. This was optimized using a method we call second-order-moment minimization and demonstrate that it is possible to obtain highly accurate energies for some closed-shell atoms and helium-like ions. The effects of certain correlator terms on the description of electron-electron and electron-nuclear cusps were also examined graphically, and some TC wavefunctions were compared against near-exact Hylleraas wavefunctions.
Collapse
Affiliation(s)
- Nicholas Lee
- Department
of Chemistry, Physical and Theoretical Chemistry
Laboratory, South Parks
Road, Oxford OX1 3QZ, U.K.
| | - Alex J. W. Thom
- Yusuf
Hamied Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Duchemin I, Levitt A. Computing photoionization spectra in Gaussian basis sets. J Chem Phys 2023; 159:084109. [PMID: 37610023 DOI: 10.1063/5.0160074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
We present a method to compute the photoionization spectra of atoms and molecules in linear-response, time-dependent density functional theory. The electronic orbital variations corresponding to ionized electrons are expanded on a basis set of delocalized functions, obtained as the solution of the inhomogeneous Helmholtz equation, with gaussian basis set functions as the right-hand side. The resulting scheme is able to reproduce the photoionization spectra without any need for artificial regularization or localization. We demonstrate that this Green's function-based approach is able to produce accurate spectra for semilocal exchange-correlation functionals, even using relatively small standard gaussian basis sets.
Collapse
Affiliation(s)
- Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L Sim, Grenoble 38054, France
| | - Antoine Levitt
- Université Paris-Saclay, CNRS, Laboratoire de mathématiques d'Orsay, Orsay 91405, France
| |
Collapse
|
8
|
Jensen AB, Kubečka J, Schmitz G, Christiansen O, Elm J. Massive Assessment of the Binding Energies of Atmospheric Molecular Clusters. J Chem Theory Comput 2022; 18:7373-7383. [PMID: 36417753 DOI: 10.1021/acs.jctc.2c00825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Quantum chemical studies of the formation and growth of atmospheric molecular clusters are important for understanding aerosol particle formation. However, the search for the lowest free-energy cluster configuration is extremely time consuming. This makes high-level benchmark data sets extremely valuable in the quest for the global minimum as it allows the identification of cost-efficient computational methodologies, as well as the development of high-level machine learning (ML) models. Herein, we present a highly versatile quantum chemical data set comprising a total of 11 749 (acid)1-2(base)1-2 cluster configurations, containing up to 44 atoms. Utilizing the LUMI supercomputer, we calculated highly accurate PNO-CCSD(F12*)(T)/cc-pVDZ-F12 binding energies of the full set of cluster configurations leading to an unprecedented data set both in regard to sheer size and with respect to the level of theory. We employ the constructed benchmark set to assess the performance of various semiempirical and density functional theory methods. In particular, we find that the r2-SCAN-3c method shows excellent performance across the data set related to both accuracy and CPU time, making it a promising method to employ during cluster configurational sampling. Furthermore, applying the data sets, we construct ML models based on Δ-learning and provide recommendations for future application of ML in cluster configurational sampling.
Collapse
Affiliation(s)
| | - Jakub Kubečka
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Gunnar Schmitz
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.,Department of Chemistry, iClimate, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Nakatsuji H, Nakashima H, Kurokawa YI. Accurate scaling functions of the scaled Schrödinger equation. J Chem Phys 2022; 156:014113. [PMID: 34998320 DOI: 10.1063/5.0077495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The scaling function g of the scaled Schrödinger equation (SSE) is generalized to obtain accurate solutions of the Schrödinger equation (SE) with the free complement (FC) theory. The electron-nuclear and electron-electron scaling functions, giA and gij, respectively, are generalized. From the relations between SE and SSE at the inter-particle distances being zero and infinity, the scaling function must satisfy the collisional (or coalescent) condition and the asymptotic condition, respectively. Based on these conditions, general scaling functions are classified into "correct" (satisfying both conditions), "reasonable" (satisfying only collisional condition), and "approximate but still useful" (not satisfying collisional condition) classes. Several analytical scaling functions are listed for each class. Popular functions riA and rij belong to the reasonable class. The qualities of many electron-electron scaling functions are examined variationally for the helium atom using the FC theory. Although the complement functions of FC theory are produced generally from both the potential and kinetic operators in the Hamiltonian, those produced from the kinetic operator were shown to be less important than those produced from the potential operator. Hence, we used only the complement functions produced from the potential operator and showed that the correct-class gij functions gave most accurate results and the reasonable-class functions were less accurate. Among the examined correct and reasonable functions, the conventional function rij was worst in accuracy, although it was still very accurate. Thus, we have many potentially accurate "correct" scaling functions for use in FC theory to solve the SEs of atoms and molecules.
Collapse
Affiliation(s)
- Hiroshi Nakatsuji
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyo-ku, Kyoto 606-8305, Japan
| | - Hiroyuki Nakashima
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyo-ku, Kyoto 606-8305, Japan
| | - Yusaku I Kurokawa
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyo-ku, Kyoto 606-8305, Japan
| |
Collapse
|
10
|
Doran AE, Qiu DL, Hirata S. Monte Carlo MP2-F12 for Noncovalent Interactions: The C 60 Dimer. J Phys Chem A 2021; 125:7344-7351. [PMID: 34433271 DOI: 10.1021/acs.jpca.1c05021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A scalable stochastic algorithm is presented that can evaluate explicitly correlated (F12) second-order many-body perturbation (MP2) energies of weak, noncovalent, intermolecular interactions. It first transforms the formulas of the MP2 and F12 energy differences into a short sum of high-dimensional integrals of Green's functions in real space and imaginary time. These integrals are then evaluated by the Monte Carlo method augmented by parallel execution, redundant-walker convergence acceleration, direct-sampling autocorrelation elimination, and control-variate error reduction. By sharing electron-pair walkers across the supermolecule and its subsystems spanned by the joint basis set, the statistical uncertainty is reduced by one to 2 orders of magnitude in the MP2 binding energy corrected for the basis-set incompleteness and superposition errors. The method predicts the MP2-F12/aug-cc-pVDZ binding energy of 19.1 ± 4.0 kcal mol-1 for the C60 dimer at the center distance of 9.748 Å.
Collapse
Affiliation(s)
- Alexander E Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David L Qiu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Giner E. A new form of transcorrelated Hamiltonian inspired by range-separated DFT. J Chem Phys 2021; 154:084119. [PMID: 33639725 DOI: 10.1063/5.0044683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present work introduces a new form of explicitly correlated factor in the context of the transcorrelated methods. The new correlation factor is obtained from the r12 ≈ 0 mathematical analysis of the transcorrelated Hamiltonian, and its analytical form is obtained such that the leading order in 1/r12 of the scalar part of the effective two-electron potential reproduces the long-range interaction of the range-separated density functional theory. The resulting correlation factor exactly imposes the cusp and is tuned by a unique parameter μ, which controls both the depth of the coulomb hole and its typical range in r12. The transcorrelated Hamiltonian obtained with such a new correlation factor has a straightforward analytical expression depending on the same parameter μ, and its physical contents continuously change by varying μ: One can change from a non-divergent repulsive Hamiltonian at large μ to a purely attractive one at small μ. We investigate the convergence of the ground state eigenvalues and right eigenvectors of such a new transcorrelated Hamiltonian as a function of the basis set and as a function of μ on a series of two-electron systems. We found that the convergence toward the complete basis set is much faster for quite a wide range of values of μ. We also propose a specific value of μ, which essentially reproduces the results obtained with the frozen Gaussian geminal introduced by Ten-no [Chem. Phys. Lett. 330, 169 (2000)].
Collapse
Affiliation(s)
- Emmanuel Giner
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, 4 place Jussieu, Paris 75005, France
| |
Collapse
|
12
|
Urban L, Thompson TH, Ochsenfeld C. A scaled explicitly correlated F12 correction to second-order Møller-Plesset perturbation theory. J Chem Phys 2021; 154:044101. [PMID: 33514114 DOI: 10.1063/5.0033411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An empirically scaled version of the explicitly correlated F12 correction to second-order Møller-Plesset perturbation theory (MP2-F12) is introduced. The scaling eliminates the need for many of the most costly terms of the F12 correction while reproducing the unscaled explicitly correlated F12 interaction energy correction to a high degree of accuracy. The method requires a single, basis set dependent scaling factor that is determined by fitting to a set of test molecules. We present factors for the cc-pVXZ-F12 (X = D, T, Q) basis set family obtained by minimizing interaction energies of the S66 set of small- to medium-sized molecular complexes and show that our new method can be applied to accurately describe a wide range of systems. Remarkably good explicitly correlated corrections to the interaction energy are obtained for the S22 and L7 test sets, with mean percentage errors for the double-zeta basis of 0.60% for the F12 correction to the interaction energy, 0.05% for the total electron correlation interaction energy, and 0.03% for the total interaction energy, respectively. Additionally, mean interaction energy errors introduced by our new approach are below 0.01 kcal mol-1 for each test set and are thus negligible for second-order perturbation theory based methods. The efficiency of the new method compared to the unscaled F12 correction is shown for all considered systems, with distinct speedups for medium- to large-sized structures.
Collapse
Affiliation(s)
- L Urban
- Department of Chemistry, Ludwig-Maximilians-University Munich (LMU Munich), D-81377 Munich, Germany
| | - T H Thompson
- Department of Chemistry, Ludwig-Maximilians-University Munich (LMU Munich), D-81377 Munich, Germany
| | - C Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians-University Munich (LMU Munich), D-81377 Munich, Germany
| |
Collapse
|
13
|
Kedžuch S, Šimunek J, Veis M, Noga J. Doubly Occupied Pair Coupled Cluster F12 Approach. J Chem Theory Comput 2020; 16:7372-7380. [PMID: 32866010 DOI: 10.1021/acs.jctc.0c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by reports of the good performance of the doubly occupied pair coupled cluster (pCCD) theory in describing static electron correlation, we have introduced and implemented a variant thereof that includes single excitations and explicitly treats the dynamic electron correlation using the F12 methodology (pCCSD-F12). This drastically reduces the computation scaling with respect to the standard method using the full double-excitation operator (CCSD-F12). Slater-type geminals as a correlation factor, together with fixed cusp conditions, were used, which is known as the SP-ansatz. For sample model systems, we have investigated the performance of reference states constructed from either canonical or localized molecular orbitals. Finaly, the employment of Brueckner orbitals has been tested, which causes the single excitations to naturally vanish from the wave function expansion (B-pCCD-F12). Our test systems include different-sized rings of hydrogen atoms and dissociation curves for small molecules such as HF, N2, and CO2; and comparison with CCSD-F12 is presented for a series of reaction enthalpies.
Collapse
Affiliation(s)
- Stanislav Kedžuch
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia.,RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ján Šimunek
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Matej Veis
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Jozef Noga
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia.,Computing Centre, Centre of Operations of the Slovak Academy of Sciences, Dúbravská cesta 9, SK-84535 Bratislava, Slovakia
| |
Collapse
|
14
|
Thompson TH, Ochsenfeld C. Integral partition bounds for fast and effective screening of general one-, two-, and many-electron integrals. J Chem Phys 2019; 150:044101. [DOI: 10.1063/1.5048491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Travis H. Thompson
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
15
|
Tew DP, Kats D. Relaxing Constrained Amplitudes: Improved F12 Treatments of Orbital Optimization and Core–Valence Correlation Energies. J Chem Theory Comput 2018; 14:5435-5440. [DOI: 10.1021/acs.jctc.8b00792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David P. Tew
- Max Planck Institute for Solid State
Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max Planck Institute for Solid State
Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
16
|
Przybytek M. Dispersion Energy of Symmetry-Adapted Perturbation Theory from the Explicitly Correlated F12 Approach. J Chem Theory Comput 2018; 14:5105-5117. [DOI: 10.1021/acs.jctc.8b00470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michał Przybytek
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
17
|
Barca GM, Loos PF. Recurrence Relations for Four-Electron Integrals Over Gaussian Basis Functions. ADVANCES IN QUANTUM CHEMISTRY 2018. [DOI: 10.1016/bs.aiq.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
|
19
|
Guo Y, Sivalingam K, Valeev EF, Neese F. Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12). J Chem Phys 2017; 147:064110. [DOI: 10.1063/1.4996560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Guo
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Schmitz G, Christiansen O. Accuracy of Frequencies Obtained with the Aid of Explicitly Correlated Wave Function Based Methods. J Chem Theory Comput 2017; 13:3602-3613. [PMID: 28686442 DOI: 10.1021/acs.jctc.7b00476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We asses the basis set convergence of harmonic frequencies using different explicitly correlated wave function based methods. All commonly available CCSD(T) variants as well as MP2-F12 and MP4(F12*) are considered, and a hierarchy of the different approaches is established. As for reaction and atomization energies, CCSD(F12*)(T*) is a close approximation to CCSD(F12)(T*) and clearly superior to the other tested approximations. The used scaling for the triples correction enhances the accuracy relative to CCSD(F12*)(T) especially for small basis sets and is very attractive since no additional computational costs are added. However, this scaling slightly breaks size consistency, and therefore we additionally study the accuracy of CCSD(F12*)(T*) and CCSD(F12*)(T) in the context of calculating anharmonic frequencies to check if this causes problems in the generation of the potential energy surface (PES). We find a fast basis set convergence for harmonic and anharmonic frequencies. Already in the cc-pVDZ-F12 basis, the RMSD to the CBS limit is only around 4-5 cm-1.
Collapse
Affiliation(s)
- Gunnar Schmitz
- Department of Chemistry, Aarhus University , Aarhus, Denmark
| | | |
Collapse
|
21
|
Barca GMJ, Loos PF. Three- and four-electron integrals involving Gaussian geminals: Fundamental integrals, upper bounds, and recurrence relations. J Chem Phys 2017; 147:024103. [DOI: 10.1063/1.4991733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Giuseppe M. J. Barca
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Pierre-François Loos
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
22
|
Grüneis A, Hirata S, Ohnishi YY, Ten-no S. Perspective: Explicitly correlated electronic structure theory for complex systems. J Chem Phys 2017; 146:080901. [DOI: 10.1063/1.4976974] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas Grüneis
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart,
Germany
- Department Chemie, Technische Universität München (TUM), Lichtenbergstrasse 4, D-85747 Garching,
Germany
- Graduate School of Science, Technology, and Innovation,
Kobe University, Nada-ku, Kobe 657-8501,
Japan
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu-ya Ohnishi
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Seiichiro Ten-no
- Graduate School of Science, Technology, and Innovation,
Kobe University, Nada-ku, Kobe 657-8501,
Japan
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
23
|
Schmitz G, Hättig C. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques. J Chem Phys 2016; 145:234107. [DOI: 10.1063/1.4972001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gunnar Schmitz
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| |
Collapse
|
24
|
Hehn AS, Holzer C, Klopper W. Explicitly-correlated ring-coupled-cluster-doubles theory: Including exchange for computations on closed-shell systems. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Johnson CM, Doran AE, Zhang J, Valeev EF, Hirata S. Monte Carlo explicitly correlated second-order many-body perturbation theory. J Chem Phys 2016; 145:154115. [DOI: 10.1063/1.4964854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cole M. Johnson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Alexander E. Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jinmei Zhang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
26
|
Affiliation(s)
- Giuseppe M. J. Barca
- Research School of Chemistry, Australian National University, ACT 2601, Australia
| | - Peter M. W. Gill
- Research School of Chemistry, Australian National University, ACT 2601, Australia
| |
Collapse
|
27
|
Tew DP. Explicitly correlated coupled-cluster theory with Brueckner orbitals. J Chem Phys 2016; 145:074103. [DOI: 10.1063/1.4960655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David P. Tew
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
28
|
Ohnishi YY, Ten-no S. Explicitly correlated frequency-independent second-order green's function for accurate ionization energies. J Comput Chem 2016; 37:2447-53. [DOI: 10.1002/jcc.24468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Yu-ya Ohnishi
- Graduate School of System Informatics; Kobe University; Nada-Ku Kobe 657-8501 Japan
| | - Seiichiro Ten-no
- Graduate School of System Informatics; Kobe University; Nada-Ku Kobe 657-8501 Japan
- Graduate School of Science; Technology, and Innovation, Kobe University; Nada-Ku Kobe 657-8501 Japan
| |
Collapse
|
29
|
Kersten JAF, Booth GH, Alavi A. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo. J Chem Phys 2016; 145:054117. [DOI: 10.1063/1.4959245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. A. F. Kersten
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - Ali Alavi
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
30
|
Hirata S, Shiozaki T, Johnson CM, Talman JD. Numerical solution of the Sinanoǧlu equation using a multicentre radial-angular grid. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1199822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University , Evanston, IL, USA
| | - Cole M. Johnson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - James D. Talman
- Department of Applied Mathematics, University of Western Ontario , London, Canada
| |
Collapse
|
31
|
Ohnishi YY, Ishimura K, Ten-no S. Interaction Energy of Large Molecules from Restrained Denominator MP2-F12. J Chem Theory Comput 2014; 10:4857-61. [DOI: 10.1021/ct500738g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-ya Ohnishi
- Graduate
School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Kazuya Ishimura
- Institute
for
Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Seiichiro Ten-no
- Graduate
School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
32
|
Stephens SL, Zaleski DP, Mizukami W, Tew DP, Walker NR, Legon AC. Distortion of ethyne on coordination to silver acetylide, C2H2⋅⋅⋅AgCCH, characterised by broadband rotational spectroscopy and ab initio calculations. J Chem Phys 2014; 140:124310. [DOI: 10.1063/1.4868035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Usvyat D. Linear-scaling explicitly correlated treatment of solids: Periodic local MP2-F12 method. J Chem Phys 2013; 139:194101. [DOI: 10.1063/1.4829898] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Demel O, Kedžuch S, Noga J, Pittner J. Perturbative triples correction for explicitly correlated Mukherjee’s state-specific coupled cluster method. Mol Phys 2013. [DOI: 10.1080/00268976.2013.809488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Ohnishi YY, Ten-no S. Alternative formulation of explicitly correlated third-order Møller–Plesset perturbation theory. Mol Phys 2013. [DOI: 10.1080/00268976.2013.793846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
|
37
|
Ten-no S, Yamaki D. Communication: Explicitly correlated four-component relativistic second-order Møller-Plesset perturbation theory. J Chem Phys 2012; 137:131101. [DOI: 10.1063/1.4757415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
38
|
State specific multireference Møller–Plesset perturbation theory: A few applications to ground, excited and ionized states. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Bokhan D, Trubnikov DN. Explicitly correlated second-order Møller-Plesset perturbation theory employing pseudospectral numerical quadratures. J Chem Phys 2012; 136:204110. [PMID: 22667543 DOI: 10.1063/1.4719037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We implemented explicitly correlated second-order Møller-Plesset perturbation theory with numerical quadratures using pseudospectral construction of grids. Introduction of pseudospectral approach for the calculation of many-electron integrals gives a possibility to use coarse grids without significant loss of precision in correlation energies, while the number of points in the grid is reduced about nine times. The use of complementary auxiliary basis sets as the sets of dealiasing functions is justified at both theoretical and computational levels. Benchmark calculations for a set of 16 molecules have shown the possibility to keep an error of second-order correlation energies within 1 milihartree (mH) with respect to MP2-F12 method with dense grids. Numerical tests for a set of 13 isogyric reactions are also performed.
Collapse
Affiliation(s)
- Denis Bokhan
- Laboratory of Molecular Beams, Physical Chemistry Division, Department of Chemistry, Moscow Lomonosov State University, Moscow 119991, Russian Federation.
| | | |
Collapse
|
40
|
Seth M, Ziegler T. Range-Separated Exchange Functionals with Slater-Type Functions. J Chem Theory Comput 2012; 8:901-7. [DOI: 10.1021/ct300006h] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Michael Seth
- Department of Chemistry, University of Calgary,
University
Drive 2500, Calgary, AB T2N-1N4, Canada
| | - Tom Ziegler
- Department of Chemistry, University of Calgary,
University
Drive 2500, Calgary, AB T2N-1N4, Canada
| |
Collapse
|
41
|
Yanai T, Shiozaki T. Canonical transcorrelated theory with projected Slater-type geminals. J Chem Phys 2012; 136:084107. [DOI: 10.1063/1.3688225] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
42
|
|
43
|
Demel O, Kedžuch S, Švaňa M, Ten-no S, Pittner J, Noga J. An explicitly correlated Mukherjee's state specific coupled cluster method: development and pilot applications. Phys Chem Chem Phys 2012; 14:4753-62. [DOI: 10.1039/c2cp23198k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Hättig C, Klopper W, Köhn A, Tew DP. Explicitly Correlated Electrons in Molecules. Chem Rev 2011; 112:4-74. [DOI: 10.1021/cr200168z] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Wim Klopper
- Abteilung für Theoretische Chemie, Institut für Physikalische Chemie, Karlsruher Institut für Technologie, KIT-Campus Süd, Postfach 6980, D-76049 Karlsruhe, Germany
| | - Andreas Köhn
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - David P. Tew
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
45
|
Kong L, Bischoff FA, Valeev EF. Explicitly Correlated R12/F12 Methods for Electronic Structure. Chem Rev 2011; 112:75-107. [DOI: 10.1021/cr200204r] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liguo Kong
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Florian A. Bischoff
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
46
|
Lange AW, Herbert JM. A simple polarizable continuum solvation model for electrolyte solutions. J Chem Phys 2011; 134:204110. [PMID: 21639427 DOI: 10.1063/1.3592372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We propose a Debye-Hückel-like screening model (DESMO) that generalizes the familiar conductor-like screening model (COSMO) to solvents with non-zero ionic strength and furthermore provides a numerical generalization of the Debye-Hückel model that is applicable to non-spherical solute cavities. The numerical implementation of DESMO is based upon the switching/Gaussian (SWIG) method for smooth cavity discretization, which we have recently introduced in the context of polarizable continuum models (PCMs). This approach guarantees that the potential energy is a smooth function of the solute geometry and analytic gradients for DESMO are reported here. The SWIG formalism also facilitates analytic implementation of two other PCMs that are based on a screened Coulomb potential: the "integral equation formalism" (IEF-PCM) and the "surface and simulation of volume polarization for electrostatics" [SS(V)PE] method. Fully analytic implementations of these screened PCMs are reported here for the first time. Numerical results, for model systems where an exact solution of the linearized Poisson-Boltzmann equation is available, demonstrate that these screened PCMs are highly accurate. In realistic test cases, they are as accurate as the best available three-dimensional finite-difference methods. In polar solvents, DESMO is nearly as accurate as more sophisticated screened PCMs, but is significantly simpler and more efficient.
Collapse
Affiliation(s)
- Adrian W Lange
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
47
|
Tew DP, Helmich B, Hättig C. Local explicitly correlated second-order Møller–Plesset perturbation theory with pair natural orbitals. J Chem Phys 2011; 135:074107. [DOI: 10.1063/1.3624370] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
48
|
Kedžuch S, Demel O, Pittner J, Ten-no S, Noga J. Multireference F12 coupled cluster theory: The Brillouin-Wigner approach with single and double excitations. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.06.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Wilke JJ, Schaefer HF. Spin-Restriction in Explicitly Correlated Coupled Cluster Theory: The Z-Averaged CCSD(2)R12 Approach. J Chem Theory Comput 2011; 7:2416-26. [DOI: 10.1021/ct200292z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jeremiah J. Wilke
- Center for Computational Chemistry, University of Georgia, Athens, Georgia, United States
| | - Henry F. Schaefer
- Center for Computational Chemistry, University of Georgia, Athens, Georgia, United States
| |
Collapse
|
50
|
Ishimura K, Ten-no S. MPI/OpenMP hybrid parallel implementation of second-order Møller–Plesset perturbation theory using numerical quadratures. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0980-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|