1
|
Shah FA. REVISITING THE PHYSICAL AND CHEMICAL NATURE OF THE MINERAL COMPONENT OF BONE. Acta Biomater 2025:S1742-7061(25)00075-3. [PMID: 39892685 DOI: 10.1016/j.actbio.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The physico-chemical characteristics of bone mineral remain heavily debated. On the nanoscale, bone mineral resides both inside and outside the collagen fibril as distinct compartments fused together into a cohesive continuum. On the micrometre level, larger aggregates are arranged in a staggered pattern described as crossfibrillar tessellation. Unlike geological and synthetic hydroxy(l)apatite, bone mineral is a unique form of apatite deficient in calcium and hydroxyl ions with distinctive carbonate and acid phosphate substitutions (CHAp), together with a minor contribution of amorphous calcium phosphate as a surface layer around a crystalline core of CHAp. In mammalian bone, an amorphous solid phase has not been observed, though an age-dependent shift in the amorphous-to-crystalline character is observed. Although octacalcium phosphate has been postulated as a bone mineral precursor, there is inconsistent evidence of calcium phosphate phases other than CHAp in the extracellular matrix. In association with micropetrosis, magnesium whitlockite is occasionally detected, indicating pathological calcification rather than a true extracellular matrix component. Therefore, the terms 'biomimetic' or 'bone-like' should be used cautiously in descriptions of synthetic biomaterials. The practice of reporting the calcium-to-phosphorus ratio (Ca/P) as proxy for bone mineral maturity oversimplifies the chemistry since both Ca2+ and PO43- ions are partially substituted. Moreover, non-mineral sources of phosphorus are ignored. Alternative compositional metrics should be considered. In the context of bone tissue and bone mineral, the term 'mature' must be used carefully, with clear criteria that consider both compositional and structural parameters and the potential impact on mechanical properties. STATEMENT OF SIGNIFICANCE: Bone mineral exhibits a unique hierarchical structure and is classified as intrafibrillar and extrafibrillar mineral compartments with distinct physico-chemical characteristics. The dynamic nature of bone mineral, i.e., evolving chemical composition and physical form, is poorly understood. For instance, bone mineral is frequently described as "hydroxy(l)apatite", even though the OH- content of mature bone mineral is negligible. Moreover, the calcium-to-phosphorus ratio is often taken as an indicator of bone mineral maturity without acknowledging substitutions at calcium and phosphate sites. This review takes a comprehensive look at the structure and composition of bone mineral, highlighting how experimental data are misinterpreted and unresolved concerns that warrant further investigation, which have implications for characterisation of bone material properties and development of bone repair biomaterials.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden.
| |
Collapse
|
2
|
Zeng P, Fu Y, Pang Y, He T, Wu Y, Tang R, Qin A, Kong X. Solid-State Nuclear Magnetic Resonance Identifies Abnormal Calcium Phosphate Formation in Diseased Bones. ACS Biomater Sci Eng 2021; 7:1159-1168. [PMID: 33617226 DOI: 10.1021/acsbiomaterials.0c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crystallites of calcium phosphate (CaP) in bones consist of hydroxyl apatite (HA) and amorphous calcium phosphate (ACP). These nanoscale structures of CaP are sculptured by biological bone formation and resorption processes and are one of the crucial factors that determine the overall strength of the constructs. We used one- and two-dimensional 1H-31P solid-state nuclear magnetic resonance (SSNMR) to investigate the nanoscopic structural changes of CaP. Two quantitative measurables are deduced based on the heterogeneous linewidth of 31P signal and the ratio of ACP to HA, which characterize the mineral crystallinity and the relative proportion of ACP, respectively. We analyzed bones from different murine models of osteopetrosis and osteoporosis and from human samples with osteoporosis and osteoarthritis. It shows that the ACP content increases notably in osteopetrotic bones that are characterized by defective osteoclastic resorption, whereas the overall crystallinity increases in osteoporotic bones that are marked by overactive osteoclastic resorption. Similar pathological characteristics are observed for the sclerotic bones of late-stage osteoarthritis, as compared to those of the osteopetrotic bones. These findings suggest that osteoclast-related bone diseases not only alter the bone density macroscopically but also lead to abnormal formation of CaP crystallites. The quantitative measurement by SSNMR provides a unique perspective on the pathology of bone diseases at the nanoscopic level.
Collapse
Affiliation(s)
- Pingmei Zeng
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yao Fu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yichuan Pang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Tian He
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yuanyuan Wu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Ruikang Tang
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Xueqian Kong
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
3
|
Kaflak A, Moskalewski S, Kolodziejski W. The solid-state proton NMR study of bone using a dipolar filter: apatite hydroxyl contentversusanimal age. RSC Adv 2019; 9:16909-16918. [PMID: 35516370 PMCID: PMC9064436 DOI: 10.1039/c9ra01902b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
The hydroxyl content of bone apatite mineral has been measured using proton solid-state NMR performed with a multiple-pulse dipolar filter under slow magic angle spinning (MAS). This new method succeeded in resolving and relatively enhancing the main hydroxyl peak at ca. 0 ppm from whole bone, making it amenable to rigorous quantitative analysis. The proposed methodology, involving line fitting, the measurement of the apatite concentration in the studied material and adequate calibration, was proved to be convenient and suitable for monitoring bone mineral hydroxylation in different species and over the lifetime of the animal. It was found that the hydroxyl content in the cranial bone mineral of pig and rats remained in the 5–10% range, with reference to stoichiometric hydroxyapatite. In rats, the hydroxyl content showed a non-monotonic increase with age, which was governed by biological processes rather than by chemical, thermodynamically driven apatite maturation. Mineral hydroxylation in whole bone can be accurately studied using proton MAS NMR with a multiple-pulse dipolar filter.![]()
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| | - Stanisław Moskalewski
- Medical University of Warsaw
- Department of Histology and Embryology
- Warsaw 02-004
- Poland
| | - Waclaw Kolodziejski
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| |
Collapse
|
4
|
Sorte EG, Alam TM. 1 H- 19 F REDOR-filtered NMR spin diffusion measurements of domain size in heterogeneous polymers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:1006-1014. [PMID: 28577309 DOI: 10.1002/mrc.4623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1 H-19 F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1 H detection, plus both 1 H➔13 C cross polarization and 1 H➔19 F cross polarization detection schemes. This 1 H-19 F REDOR-filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR-based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR-filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.
Collapse
Affiliation(s)
- Eric G Sorte
- Department of Organic Material Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Todd M Alam
- Department of Organic Material Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| |
Collapse
|
5
|
Mao J, Cao X, Olk DC, Chu W, Schmidt-Rohr K. Advanced solid-state NMR spectroscopy of natural organic matter. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:17-51. [PMID: 28552171 DOI: 10.1016/j.pnmrs.2016.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided.
Collapse
Affiliation(s)
- Jingdong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Blvd., Norfolk, VA 23529, United States.
| | - Xiaoyan Cao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, United States.
| | - Dan C Olk
- National Laboratory for Agriculture and the Environment, 1015 N. University Blvd., Ames, IA 50011, United States.
| | - Wenying Chu
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Blvd., Norfolk, VA 23529, United States.
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, United States.
| |
Collapse
|
6
|
Singh C, Rai RK, Kayastha AM, Sinha N. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:132-135. [PMID: 26352739 DOI: 10.1002/mrc.4331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 06/05/2023]
Abstract
Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.
Collapse
Affiliation(s)
- Chandan Singh
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ratan Kumar Rai
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
| | - Arvind M Kayastha
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
| |
Collapse
|
7
|
Bychkova AV, Iordanskii AL, Kovarski AL, Sorokina ON, Kosenko RY, Markin VS, Filatova AG, Gumargalieva KZ, Rogovina SZ, Berlin AA. Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s199507801502007x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Duer MJ. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:98-110. [PMID: 25797009 DOI: 10.1016/j.jmr.2014.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/15/2014] [Accepted: 12/23/2014] [Indexed: 05/06/2023]
Abstract
Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.
Collapse
Affiliation(s)
- Melinda J Duer
- Dept. of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
9
|
Abstract
We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, (17)O NMR data on bone and compare them with (17)O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate-like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets.
Collapse
|
10
|
Bonhomme C, Gervais C, Laurencin D. Recent NMR developments applied to organic-inorganic materials. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 77:1-48. [PMID: 24411829 DOI: 10.1016/j.pnmrs.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
In this contribution, the latest developments in solid state NMR are presented in the field of organic-inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented.
Collapse
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM2 UM1 ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
11
|
Hong M, Schmidt-Rohr K. Magic-angle-spinning NMR techniques for measuring long-range distances in biological macromolecules. Acc Chem Res 2013; 46:2154-63. [PMID: 23387532 PMCID: PMC3714308 DOI: 10.1021/ar300294x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The determination of molecular structures using solid-state NMR spectroscopy requires distance measurement through nuclear-spin dipole-dipole couplings. However, most dipole-coupling techniques compete with the transverse (T2) relaxation of the nuclear spins, whose time constants are at most several tens of milliseconds, which limits the ability to measure weak dipolar couplings or long distances. In the last 10 years, we have developed a number of magic-angle-spinning (MAS) solid-state NMR techniques to measure distances of 15-20 Å. These methods take advantage of the high gyromagnetic ratios of (1)H and (19)F spins, multispin effects that speed up dipolar dephasing, and (1)H and (19)F spin diffusion that probes distances in the nanometer range. Third-spin heteronuclear detection provides a method for determining (1)H dipolar couplings to heteronuclear spins. We have used this technique to measure hydrogen-bond lengths, torsion angles, the distribution of protein conformations, and the oligomeric assembly of proteins. We developed a new pulse sequence, HARDSHIP, to determine weak long-range (1)H-heteronuclear dipolar couplings in the presence of strong short-range couplings. This experiment allows us to determine crystallite thicknesses in biological nanocomposites such as bone. The rotational-echo double-resonance (REDOR) technique allows us to detect multispin (13)C-(31)P and (13)C-(2)H dipolar couplings. Quantitative analysis of these couplings provides information about the structure of peptides bound to phospholipid bilayers and the geometry of ligand-binding sites in proteins. Finally, we also use relayed magnetization transfer, or spin diffusion, to measure long distances. z-Magnetization can diffuse over several nanometers because its long T1 relaxation times allow it to survive for hundreds of milliseconds. We developed (1)H spin diffusion to probe the depths of protein insertion into the lipid bilayer and protein-water interactions. On the other hand, (19)F spin diffusion of site-specifically fluorinated molecules allowed us to elucidate the oligomeric structures of membrane peptides.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, 50011, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, 50011, United States
| |
Collapse
|
12
|
Celinski VR, Weber J, Schmedt Auf der Günne J. C-REDOR curves of extended spin systems. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 49-50:12-22. [PMID: 23141477 DOI: 10.1016/j.ssnmr.2012.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
The convergence of simulated C-REDOR curves of (infinitely) large spin systems is investigated with respect to the number of spins considered in the calculations. Taking a sufficiently large number of spins (>20,000 spins) into account enables the simulation of converged C-REDOR curves over the entire time period and not only the initial regime. The calculations are based on an existing approximation within first order average Hamiltonian theory (AHT), which assumes the absence of homonuclear dipole-dipole interactions. The C-REDOR experiment generates an average Hamiltonian close to the idealized AHT behavior even for multiple spin systems including multiple homonuclear dipole-dipole interactions which is shown from numerically exact calculations of the spin dynamics. Experimentally it is shown that calculations accurately predict the full, experimental C-REDOR curves of the multi-spin systems (31)P-(19)F in apatite, (31)P-(1)H in potassium trimetaphosphimate and (1)H-(31)P in potassium dihydrogen phosphate. We also present (13)C-(1)H and (15)N-(1)H data for the organic compounds glycine, l-alanine and l-histidine hydrochloride monohydrate which require consideration of molecular motion. Furthermore, we investigated the current limits of the method from systematic errors and we suggest a simple way to calculate errors for homogeneous and heterogeneous samples from experimental data.
Collapse
|
13
|
Witter R, Roming M, Feldmann C, Ulrich AS. Multilayered core–shell structure of polyol-stabilized calcium fluoride nanoparticles characterized by NMR. J Colloid Interface Sci 2013; 390:250-7. [DOI: 10.1016/j.jcis.2012.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/07/2012] [Accepted: 09/03/2012] [Indexed: 11/30/2022]
|
14
|
Cui X, Liu X, Tatton AS, Brown SP, Ye H, Marsh A. Nanodiamond promotes surfactant-mediated triglyceride removal from a hydrophobic surface at or below room temperature. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3225-32. [PMID: 22676238 DOI: 10.1021/am300560z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We demonstrate that ca. 5 nm nanodiamond particles dramatically improve triglyceride lipid removal from a hydrophobic surface at room temperature using either anionic or nonionic surfactants. We prepare nanodiamond-surfactant colloids, measure their stability by dynamic light scattering and use quartz crystal microbalance-dissipation, a technique sensitive to surface mass, in order to compare their ability to remove surface-bound model triglyceride lipid with ionic and nonionic aqueous surfactants at 15-25 °C. Oxidized, reduced, ω-alkylcarboxylic acid, and ω-alkylamidoamine surface-modified adducts are prepared, and then characterized by techniques including (13)C cross-polarization (CP) magic-angle spinning (MAS) NMR. Clear improvement in removal of triglyceride was observed in the presence of nanodiamond, even at 15 °C, both with nanodiamond-surfactant colloids, and by prior nanoparticle deposition on interfacial lipid, showing that nanodiamonds are playing a crucial role in the enhancement of the detergency process, providing unique leads in the development of new approaches to low-temperature cleaning.
Collapse
Affiliation(s)
- Xianjin Cui
- School of Engineering and Applied Science, Aston University , Birmingham, B4 7ET United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Simpson AJ, McNally DJ, Simpson MJ. NMR spectroscopy in environmental research: from molecular interactions to global processes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:97-175. [PMID: 21397118 DOI: 10.1016/j.pnmrs.2010.09.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Affiliation(s)
- André J Simpson
- Environmental NMR Center, Department of Chemistry, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
16
|
Io T, Fukami T, Yamamoto K, Suzuki T, Xu J, Tomono K, Ramamoorthy A. Homogeneous nanoparticles to enhance the efficiency of a hydrophobic drug, antihyperlipidemic probucol, characterized by solid-state NMR. Mol Pharm 2010; 7:299-305. [PMID: 19938876 DOI: 10.1021/mp900254y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A low absorption in the gastrointestinal tract of hydrophobic pharmaceutical compounds in use today considerably limits their bioavailability, and therefore they are taken in large doses in order to reach the therapeutic plasma concentration, which inevitably results in undesired side effects. In this study, we demonstrate a new nanoparticle approach to overcome this problem, and our experimental results show that this approach has a high efficiency of drug loading and is easily adaptable to industrial scale. Characterization of nanoparticles containing a cholesterol-lowering hydrophobic drug, probucol, using a variety of biophysical techniques revealed higher homogeneity of these particles compared to those prepared using other approaches. Intermolecular interactions of these nanoparticles are probed at high resolution by magic angle spinning solid-state NMR experiments.
Collapse
Affiliation(s)
- Takeshi Io
- College of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Kong X, Wadhwa K, Verkade JG, Schmidt-Rohr K. Determination of the Structure of a Novel Anion Exchange Fuel Cell Membrane by Solid-State Nuclear Magnetic Resonance Spectroscopy. Macromolecules 2009. [DOI: 10.1021/ma802613k] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xueqian Kong
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011
| | - Kuldeep Wadhwa
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011
| | - John G. Verkade
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011
| | - Klaus Schmidt-Rohr
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
18
|
Fang X, Mao J, Levin EM, Schmidt-Rohr K. Nonaromatic Core−Shell Structure of Nanodiamond from Solid-State NMR Spectroscopy. J Am Chem Soc 2009; 131:1426-35. [DOI: 10.1021/ja8054063] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- XiaoWen Fang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, Ames Laboratory DOE, Ames, Iowa 50011, and Department of Physics and Astronomy, Iowa State University, Iowa 50011
| | - JingDong Mao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, Ames Laboratory DOE, Ames, Iowa 50011, and Department of Physics and Astronomy, Iowa State University, Iowa 50011
| | - E. M. Levin
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, Ames Laboratory DOE, Ames, Iowa 50011, and Department of Physics and Astronomy, Iowa State University, Iowa 50011
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, Ames Laboratory DOE, Ames, Iowa 50011, and Department of Physics and Astronomy, Iowa State University, Iowa 50011
| |
Collapse
|
19
|
Kaflak A, Kolodziejski W. Kinetics of 1H --> 31P NMR cross-polarization in bone apatite and its mineral standards. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2008; 46:335-41. [PMID: 18306247 DOI: 10.1002/mrc.2207] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Kinetics of NMR cross-polarization (CP) from protons to phosphorus-31 nuclei was studied in the following samples: mineral of whole human bone, apatite prepared from bone, natural brushite, synthetic hydroxyapatite (hydrated and calcined), and synthetic carbonatoapatite of type B with 9 wt% of CO(3) (2-). In order to avoid an effect of magic angle spinning on CP and relaxation, the experiments were carried out on static samples. Parameters of the CP kinetics were discussed for trabecular and cortical bone tissue from adult subjects in comparison to the synthetic mineral standards. It was found that carbonatoapatite shows similar CP behavior to the bone mineral. Both materials undergo two-component CP kinetics. The fast-relaxing classical component is from the surface of apatite crystals and the slow-relaxing nonclassical component comes from the crystal interior. The components have been unambiguously assigned using inverse CP from phosphorus-31 to protons. The study provides information on a structured water layer, which covers crystal surface of carbonato- and bone apatite. The layer encompasses ca 40% of apatite phosphorus and its thickness is more than ca 2 nm.
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul. Banacha 1, 02-097 Warszawa, Poland
| | | |
Collapse
|
20
|
|
21
|
Mao Q, Schleidt S, Zimmermann H, Jeschke G. Molecular Motion in Surfactant Layers Inside Polymer Composites with Synthetical Magadiite. MACROMOL CHEM PHYS 2007. [DOI: 10.1002/macp.200700183] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Kaflak A, Kolodziejski W. Phosphorus-31 spin-lattice NMR relaxation in bone apatite and its mineral standards. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2007; 31:174-83. [PMID: 17621456 DOI: 10.1016/j.ssnmr.2007.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 05/13/2023]
Abstract
Phosphorus-31 spin-lattice relaxation, both in the laboratory (B(0)=4.7 T) and rotating frame (B(1)=2.2 mT), was studied in the following samples: mineral of whole human bone (samples B1-B6), apatite prepared from bone (BHA), natural brushite (BRU), synthetic hydroxyapatite hydrated (HAh) and calcined (HAc), and synthetic carbonatoapatite of type B (CHA-B) with 9 wt% of CO(3)(2-). The T(1)(P) relaxation time was determined directly using the saturation recovery technique, while the T(1 rho)(P) relaxation time was measured via (1)H-->(31)P CP by incrementing the (31)P spin-lock. In order to avoid an effect of magic-angle spinning (MAS) on CP and relaxation, the experiments were carried out on static samples. The (31)P spin-lattice relaxation was discussed for trabecular and cortical bone tissue from adult subjects in comparison to the synthetic mineral standards. None of the reference materials has matched accurately the relaxation behaviour of the bone mineral. The most striking differences between the examined substances were observed for T(1)(P), which for human bone was sample dependent and appeared in the range 55-100 s, while for HAh, HAc, and CHA-B was 7.2, 10.0, and 25.8 s, respectively. Possible reasons of so large relaxation diversity were discussed. It has been suggested that T(1)(P) of apatites is to some extent dependent on the concentration of the structural hydroxyl groups, and this in turn is controlled by the material crystallinity. It was also found that T(1)(P) decreased on hydration by ca. 30%. For T(1rho)(P), both its magnitude and dependence on the CP contact time gave useful structural information. The dehydrated samples (HAc and BHA) had long T(1 rho)(P) over 250 ms. Those, which contained water, either structural (BRU) or adsorbed on the crystal surface (HAh, CHA-B, and B1-B6), had shorter T(1 rho)(P) below 120 ms. It was concluded that the effect of water on T(1 rho)(P) is much more pronounced than on T(1)(P). The interpretation has involved P-OH groups and adsorbed water, which cover the apatite crystal surface.
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul Banacha 1, Warszawa, Poland
| | | |
Collapse
|