1
|
Ostadsharif Memar Z, Moosavi M. Comparative assessment of the performance of density functionals and dispersion correction on different properties of dicationic ionic liquids - an ab initio molecular dynamics (AIMD) study. Phys Chem Chem Phys 2024; 26:26109-26128. [PMID: 39378023 DOI: 10.1039/d4cp03177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
In this study, we investigated the effect of DFT density functionals and dispersion correction on an imidazolium-based dicationic ionic liquid (DIL) using ab initio molecular dynamics simulations. To achieve this purpose, the electronic structures, as well as the structural and dynamical properties of [C3(mim)2][NTF2]2 DIL, were obtained using the BLYP and PBE functionals, both with and without D3-correction, and the results were compared with experimental values. Radial distribution functions and structure factors revealed that applying D3-correction increases the interaction between the anion and hydrogen atoms of the rings and side chains. The simulation of the studied DIL with the BLYP-D3 functional depicted lower structural heterogeneity compared to the other functionals. Analysis of Voronoi tessellation and linkage chain conformations showed a reduction in the aggregation of the linkage alkyl chains in the presence of D3-correction, which is more pronounced in the BLYP functional than in PBE. Additionally, it was observed that the probability of forming a hydrogen-bond network depends on both the type of used density functionals and applying dispersion correction. The results of dynamical properties, such as the self-diffusion coefficients, velocity autocorrelation function, and van Hove correlation function, as well as ion pair, ion cage, and hydrogen bond dynamics, indicated that applying D3-correction in both density functionals leads to an increase in the dynamics of the studied DIL. Additionally, the ratio of self-diffusion coefficients of the anion to the cation in the BLYP functional is closer to experimental values compared to the PBE functional. Furthermore, the electronic structure, including dipole moment distribution, and also infrared (IR) and power spectra were studied. Applying D3-correction and the type of density functionals have a significant effect on the dipole moment distribution of ions. Moreover, the results of IR and power spectra demonstrated that only in the BLYP functional, by applying D3-correction, the hydrogen bonding between the anion and the hydrogen atoms of the cation is strengthened at high wavenumbers. Thus, we conclude that applying D3 correction to both the BLYP and PBE density functionals improves the accuracy in describing the various properties of the studied system. Overall, the evaluation of different structural, dynamical, and vibrational properties of [C3(mim)2][NTF2]2 DIL suggests that the BLYP-D3 density functional may be the best choice among the studied density functionals.
Collapse
Affiliation(s)
| | - Majid Moosavi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
2
|
Dixit M, Hajari T, Meti MD, Srivastava S, Srivastava A, Daniel J. Ionic Pairing and Selective Solvation of Butylmethylimidazolium Chloride Ion Pairs in DMSO-Water Mixtures: A Comprehensive Examination via Molecular Dynamics Simulations and Potentials of Mean Force Analysis. J Phys Chem B 2024; 128:2168-2180. [PMID: 38415290 DOI: 10.1021/acs.jpcb.3c06876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Ionic liquids (ILs) with dimethyl sulfoxide (DMSO) and water act as a promising solvent medium for the dissolution of cellulose in an efficient manner. To develop a proper solvent system, it is really important to understand the thermodynamics of the molecular solutions consisting of ILs, DMSO, and water. The ion-pairing propensity of the ILs in the presence of DMSO and water plays a crucial role in governing the property of the solvent mixtures. Employing all-atom molecular dynamics simulations, we estimate the potentials of mean force between BMIM+ and Cl- ions in DMSO-water mixtures. Analysis reveals a significant increase in the thermodynamic stability of both contact ion pair (CIP) and solvent-assisted ion pair (SAIP) states with a rising DMSO mole fraction. Thermodynamic assessments highlight the entropic stabilization of CIP states and SAIP states in pure water, in DMSO-water mixtures, and in pure DMSO. The structural analysis reveals that in comparison to the DMSO local density, the local water density is relatively very high around ion pairs, more specifically in the solvation shell of a chloride ion. Preferential binding coefficients also consistently indicate exclusion of DMSO from the ion pair in DMSO-water mixtures. To enhance our understanding regarding the solvent molecules kinetics around the ion pairs, the survival probabilities of DMSO and water are computed. The calculations reveal that the water molecules prefer a prolonged stay in the solvation shell of Cl- ions.
Collapse
Affiliation(s)
- Mayank Dixit
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Timir Hajari
- Department of Chemistry, City College, 102/1, Raja Rammohan Sarani, Kolkata - 700009, India
| | - Manjunath D Meti
- Bio-physical Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Srishti Srivastava
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh 211002, India
| | - Amar Srivastava
- Chemistry Department, Har Sahai (PG) College, Kanpur, Uttar Pradesh 208012, India
| | - Joseph Daniel
- Department of Chemistry, Christ Church College, Kanpur 208001, India
| |
Collapse
|
3
|
Niemöller H, Blasius J, Hollóczki O, Kirchner B. How do alternative amino acids behave in water? A comparative ab initio molecular dynamics study of solvated α-amino acids and α-amino amidines. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Yue K, Doherty B, Acevedo O. Comparison between Ab Initio Molecular Dynamics and OPLS-Based Force Fields for Ionic Liquid Solvent Organization. J Phys Chem B 2022; 126:3908-3919. [PMID: 35594504 DOI: 10.1021/acs.jpcb.2c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OPLS-based force fields (FFs) have been shown to provide accurate bulk-phase properties for a wide variety of imidazolium-based ionic liquids (ILs). However, the ability of OPLS to reproduce an IL solvent structure is not as well-validated given the relative lack of high-level theoretical or experimental data available for comparison. In this study, ab initio molecular dynamics (AIMD) simulations were performed for three widely used ILs: the 1-butyl-3-methylimidazolium cation with chloride, tetrafluoroborate, or hexafluorophosphate anions, that is, [BMIM][Cl], [BMIM][BF4], and [BMIM][PF6], respectively, as a basis for further assessment of two unique IL FFs: the ±0.8 charge-scaled OPLS-2009IL FF and the OPLS-VSIL FF. The OPLS-2009IL FF employs a traditional all-atom functional form, whereas the OPLS-VSIL FF was developed using a virtual site that offloads negative charge to inside the plane of the ring with careful attention given to reproducing hydrogen bonding. Detailed comparisons between AIMD and the OPLS FFs were made based on radial distribution functions (RDFs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) to examine cation-anion interactions and π+-π+ stacking between the imidazolium rings. While both FFs were able to correctly capture the general solvent structure of these popular ILs, the OPLS-VSIL FF quantitatively reproduced interaction distances more accurately. In addition, this work provides further insights into the different short- and long-range structure patterns of these popular ILs.
Collapse
Affiliation(s)
- Kun Yue
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Brian Doherty
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
5
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
6
|
Eawsakul K, Panichayupakaranant P, Ongtanasup T, Warinhomhoun S, Noonong K, Bunluepuech K. Computational study and in vitro alpha-glucosidase inhibitory effects of medicinal plants from a Thai folk remedy. Heliyon 2021; 7:e08078. [PMID: 34632145 PMCID: PMC8488491 DOI: 10.1016/j.heliyon.2021.e08078] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The number of patients with type 2 diabetes mellitus (T2DM) has increased worldwide. Although an instant cure was achieved with the standard treatment acabose, unsatisfactory symptoms associated with cardiovascular disease after acabose administration have been reported. Therefore, it is important to explore new treatments. A Thai folk recipe has long been used for T2DM treatment, and it effectively decreases blood glucose. However, the mechanism of this recipe has never been proven. Therefore, the potential anti-T2DM effect of this recipe, which is used in Thai hospitals, was determined to involve alpha-glucosidase (AG) inhibition with a half maximal inhibitory concentration (IC50). In vitro experiments showed that crude Cinnamomum verum extract (IC50 = 0.35 ± 0.12 mg/mL) offered excellent inhibitory activity, followed by extracts from Tinospora crispa (IC50 = 0.69 ± 0.39 mg/mL), Stephania suberosa (IC50 = 1.50 ± 0.17 mg/mL), Andrographis paniculate (IC50 = 1.78 ± 0.35 mg/mL), and Thunbergia laurifolia (IC50 = 4.66 ± 0.27 mg/mL). However, the potencies of these extracts were lower than that of acabose (IC50 = 0.55 ± 0.11 mg/mL). Therefore, this study investigated and developed a formulation of this recipe using computational docking. Among 61 compounds, 7 effectively inhibited AG, including chlorogenic acid (IC50 = 819.07 pM) through 5 hydrogen bonds (HBs) and 2 hydrophobic interactions (HIs); β-sitosterol (IC50 = 4.46 nM, 6 HIs); ergosterol peroxide (IC50 = 4.18 nM, 6 HIs); borapetoside D (IC50 = 508.63 pM, 7 HBs and 2 HIs); borapetoside A (IC50 = 1.09 nM, 2 HBs and 2 His), stephasubimine (IC50 = 285.37 pM, 6 HIs); and stephasubine (IC50 = 1.09 nM, 3 HBs and 4 HIs). These compounds bind with high affinity to different binding pockets, leading to additive effects. Moreover, the pharmacokinetics of six of these seven compounds (except ergosterol peroxide) showed poor absorption in the gastrointestinal tract, which would allow for competitive binding to AG in the small intestine. These results indicate that the development of these 6 compounds into oral antidiabetic agents is promising.
Collapse
Affiliation(s)
- Komgrit Eawsakul
- School of Medicine, Research Excellence Center for Innovation and Health Product Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Tassanee Ongtanasup
- School of Medicine, Research Excellence Center for Innovation and Health Product Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Sakan Warinhomhoun
- School of Medicine, Research Excellence Center for Innovation and Health Product Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | | | - Kingkan Bunluepuech
- School of Medicine, Research Excellence Center for Innovation and Health Product Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Faculty of Traditional Thai Medicine Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
7
|
|
8
|
Friesen S, Fedotova MV, Kruchinin SE, Buchner R. Hydration and dynamics of L-glutamate ion in aqueous solution. Phys Chem Chem Phys 2021; 23:1590-1600. [PMID: 33409510 DOI: 10.1039/d0cp05489e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aqueous solutions of sodium l-glutamate (NaGlu) in the concentration range 0 < c/M ≤ 1.90 at 25 °C were investigated by dielectric relaxation spectroscopy (DRS) and statistical mechanics (1D-RISM and 3D-RISM calculations) to study the hydration and dynamics of the l-glutamate (Glu-) anion. Although at c → 0 water molecules beyond the first hydration shell are dynamically affected, Glu- hydration is rather fragile and for c ⪆ 0.3 M apparently restricted to H2O molecules hydrogen bonding to the carboxylate groups. These hydrating dipoles are roughly parallel to the anion moment, leading to a significantly enhanced effective dipole moment of Glu-. However, l-glutamate dynamics is determined by the rotational diffusion of individual anions under hydrodynamic slip boundary conditions. Thus, the lifetime of the hydrate complexes, as well as of possibly formed [Na+Glu-]0 ionpairs and l-glutamate aggregates, cannot exceed the characteristic timescale for Glu- rotation.
Collapse
Affiliation(s)
- Sergej Friesen
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Marina V Fedotova
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation.
| | - Sergey E Kruchinin
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation.
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
9
|
Lengvinaitė D, Klimavičius V, Balevicius V, Aidas K. Computational NMR Study of Ion Pairing of 1-Decyl-3-methyl-imidazolium Chloride in Molecular Solvents. J Phys Chem B 2020; 124:10776-10786. [PMID: 33183008 PMCID: PMC7735725 DOI: 10.1021/acs.jpcb.0c07450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/09/2020] [Indexed: 01/14/2023]
Abstract
The 1H NMR spectra of 10-5 mole fraction solutions of 1-decyl-3-methyl-imidazolium chloride ionic liquid in water, acetonitrile, and dichloromethane have been measured. The chemical shift of the proton at position 2 in the imidazolium ring of 1-decyl-3-methyl-imidazolium (H2) is rather different for all three samples, reflecting the shifting equilibrium between the contact pairs and free fully solvated ions. Classical molecular dynamics simulations of the 1-decyl-3-methyl-imidazolium chloride contact ion pair as well as of free ions in water, acetonitrile, and dichloromethane have been conducted, and the quantum mechanics/molecular mechanics methods have been applied to predict NMR chemical shifts for the H2 proton. The chemical shift of the H2 proton was found to be primarily modulated by hydrogen bonding with the chloride anion, while the influence of the solvents-though differing in polarity and capabilities for hydrogen bonding-is less important. By comparing experimental and computational results, we deduce that complete disruption of the ionic liquid into free ions takes place in an aqueous solution. Around 23% of contact ion pairs were found to persist in acetonitrile. Ion-pair breaking into free ions was predicted not to occur in dichloromethane.
Collapse
Affiliation(s)
- Dovilė Lengvinaitė
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania
| | - Vytautas Klimavičius
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania
- Eduard-Zintl
Institute for Inorganic and Physical Chemistry, University of Technology Darmstadt, D-64287 Darmstadt, Germany
| | - Vytautas Balevicius
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania
| | - Kęstutis Aidas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
10
|
Aqueous solutions of hydroxyl-functionalized ionic liquids: Molecular dynamics studies. J Mol Graph Model 2020; 101:107721. [PMID: 32882635 DOI: 10.1016/j.jmgm.2020.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 11/21/2022]
Abstract
A series of aqueous solutions of 1-(n-hydroxyalkyl)-3-(n-hydroxyalkyl) imidazolium bromide ([HOCnCmOHIm][Br], with n and m = 2, 6,10 and 14) were studied by atomistic molecular dynamics simulations. Structural properties were characterized by the radial distribution functions between different pairs, angular distributions and aggregation numbers. Dynamics of the system has been investigated by computing the diffusion of the ions and molecules. Structures of the aggregates formed depend upon the length of the hydroxyalkyl chains. The long-distance spatial correlations observed in solutions with cations having long chain substituent are arising due to the formation of intercalated structures. A thin film like structure is formed in solutions having longer hydroxyalkyl chains, with the structure stabilized by the dispersion interactions between the interdigitated alkyl chains and the hydrogen bond formation between the hydroxyl group of a cation with head group of a different cation. Anions are dispersed near the surface of the film.
Collapse
|
11
|
Kowsari MH, Torabi SM. Molecular Dynamics Insights into the Nanoscale Structural Organization and Local Interaction of Aqueous Solutions of Ionic Liquid 1-Butyl-3-methylimidazolium Nitrate. J Phys Chem B 2020; 124:6972-6985. [PMID: 32687363 DOI: 10.1021/acs.jpcb.0c01803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considering the growing number of applications of the aqueous ionic liquids (ILs), atomistic molecular dynamics (MD) simulations were used to probe the effect of water molar fraction, xw, ranging from 0.00 to 0.90, on the nanoscale local structure of 1-butyl-3-methylimidazolium nitrate, [bmim][NO3], IL. The results prove that, with water addition, the cation-anion, cation-cation, and anion-anion structural correlations are weakened, while strong anion-water and unconventional cation-water hydrogen bonds are formed in the solutions. Water molecules were detected as bridges between nitrate anions, and the water cluster size distribution at different xw's was investigated. Simulation shows a similar pattern of probability densities for water and anion around the acidic hydrogen atoms of the reference cation ring, while both species move away from the cation butyl chain. Increasing the water concentration to xw = 0.90 causes decreasing of the local arrangement of the nearest-neighboring cations, because of the weakening of cation-cation π-π stacking. In addition, this dilution reduces the probability of the in-plane cation-anion conformation, disrupts both the polar ionic network and nonpolar domains, and diminishes the nanoaggregation of the cation butyl chains compared to those of the neat IL. These results can rationalize the origins of the fluidity enhancements and transport property trends upon adding water to the imidazolium-based ILs. The current study proposes a deep atomistic-level insight into the complex coupling between water concentration, microscopic structure, and local interactions of aqueous imidazolium-based ILs with hydrophilic anions.
Collapse
Affiliation(s)
- Mohammad H Kowsari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - S Mohammad Torabi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
12
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Blasius J, Elfgen R, Hollóczki O, Kirchner B. Glucose in dry and moist ionic liquid: vibrational circular dichroism, IR, and possible mechanisms. Phys Chem Chem Phys 2020; 22:10726-10737. [PMID: 32150178 DOI: 10.1039/c9cp06798a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids and their mixtures with water show remarkable features in cellulose processing. For this reason, understanding the behavior of carbohydrates in ionic liquids is important. In the present study, we investigated three d-glucose isomers (α, β and open-chain) in 1-ethyl-3-methylimidazolium acetate in the presence and absence of water, through ab initio molecular dynamics simulations. In the complex hydrogen bonding network of these mixtures, the most interesting observation is that upon water addition every hydrogen bond elongates, except the glucose-glucose hydrogen bond for the open-chain and the α-form which shortens, clearly showing the beginning of the crystallization process. The ring glucose rearranges from on-top to in-plane and the open form changes from a coiled to a more linear arrangement when adding water which explains the contradiction that the center of mass distances of the glucose molecules with other glucose molecules grow while the hydrogen bonds shorten. The appearance of coiled open forms indicates that the previously suggested isomerization between these forms is possible and might play a role in the solubility of the related carbohydrates. The calculated IR and VCD spectra reveal insight into the intermolecular interactions, with good to excellent agreements with experimental spectra. Investigating the role of the cation, distances between the acidic carbon atom of the cation and the glucose carbon atom where ring closure and opening occurs are found, which are way shorter than dispersion-like interactions between aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, D-53115 Bonn, Germany.
| | | | | | | |
Collapse
|
14
|
Yamaoka S, Hyeon-Deuk K. Decelerated Liquid Dynamics Induced by Component-Dependent Supercooling in Hydrogen and Deuterium Quantum Mixtures. J Phys Chem Lett 2020; 11:4186-4192. [PMID: 32375000 DOI: 10.1021/acs.jpclett.0c00801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Isotopic mixtures of p-H2 and o-D2 molecules have been an attractive binary system because they include two kinds of purely isotopic molecules which possess the same electronic potential but the twice different mass inducing differently pronounced nuclear quantum effects (NQEs). Accessing details of structures and dynamics in such quantum mixtures combining complex molecular dynamics with NQEs of different strengths remains a challenging problem. Taking advantage of the nonempirical molecular dynamics method which describes p-H2 and o-D2 molecules, we found that the liquid dynamics slows down at a specific mixing ratio, which can be connected to the observed anomalous slowdown of crystallization in the quantum mixtures. We attributed the decelerated dynamics to the component-dependent supercooling of p-H2 taking place in the mixtures, demonstrating that there is an optimal mixing ratio to hinder crystallization. The obtained physical insights will help in experimentally controlling and achieving unknown quantum mixtures including superfluid.
Collapse
Affiliation(s)
- Shutaro Yamaoka
- Department of Chemistry, Kyoto University, Kyoto 606-8502, Japan
| | - Kim Hyeon-Deuk
- Department of Chemistry, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Vázquez-Montelongo EA, Vázquez-Cervantes JE, Cisneros GA. Current Status of AMOEBA-IL: A Multipolar/Polarizable Force Field for Ionic Liquids. Int J Mol Sci 2020; 21:ijms21030697. [PMID: 31973103 PMCID: PMC7037047 DOI: 10.3390/ijms21030697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 01/25/2023] Open
Abstract
Computational simulations of ionic liquid solutions have become a useful tool to investigate various physical, chemical and catalytic properties of systems involving these solvents. Classical molecular dynamics and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations of IL systems have provided significant insights at the atomic level. Here, we present a review of the development and application of the multipolar and polarizable force field AMOEBA for ionic liquid systems, termed AMOEBA–IL. The parametrization approach for AMOEBA–IL relies on the reproduction of total quantum mechanical (QM) intermolecular interaction energies and QM energy decomposition analysis. This approach has been used to develop parameters for imidazolium– and pyrrolidinium–based ILs coupled with various inorganic anions. AMOEBA–IL has been used to investigate and predict the properties of a variety of systems including neat ILs and IL mixtures, water exchange reactions on lanthanide ions in IL mixtures, IL–based liquid–liquid extraction, and effects of ILs on an aniline protection reaction.
Collapse
Affiliation(s)
| | | | - G. Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX 76201, USA; (E.A.V.-M.); (J.E.V.-C.)
- Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, TX 76201, USA
- Correspondence:
| |
Collapse
|
16
|
Koverga VA, Smortsova Y, Miannay FA, Kalugin ON, Takamuku T, Jedlovszky P, Marekha B, Cordeiro MNDS, Idrissi A. Distance Angle Descriptors of the Interionic and Ion-Solvent Interactions in Imidazolium-Based Ionic Liquid Mixtures with Aprotic Solvents: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:6065-6075. [PMID: 31179700 DOI: 10.1021/acs.jpcb.9b03838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this paper is to quantify the changes of the interionic and ion-solvent interactions in mixtures of imidazolium-based ionic liquids, having tetrafluoroborate (BmimBF4), hexafluorophosphate (BmimPF6), trifluoromethylsulfonate (BmimTFO), or bis(trifluoromethanesulfonyl)imide (BmimTFSI), anions, and polar aprotic molecular solvents, such as acetonitrile (AN), γ-butyrolactone (GBL), and propylene carbonate (PC). For this purpose, we calculate, using the nearest-neighbor approach, the average distance between the imidazolium ring H atom in positions 2, 4, and 5 (H2,4,5) and the nearest high-electronegativity atom of the solvent or anion (X) as distance descriptors, and the mean angle formed by the C2,4,5-H2,4,5 bond and the H2,4,5···X axis around the H2,4,5 atom as angular descriptors of the cation-anion and cation-solvent interactions around the ring C-H groups. The behavior of these descriptors as a function of the ionic liquid mole fraction is analyzed in detail. The obtained results show that the extent of the change of these descriptors with respect to their values in the neat ionic liquid depends both on the nature of the anion and on the mixture composition. Thus, in the case of the mixtures of the molecular solvents with BmimBF4 and BmimTFO, a small change of the distance and a drastic increase of the angular descriptor corresponding to the cation-anion interactions are observed with decreasing mole fraction of the ionic liquid, indicating that the anion moves from the above/below position (with respect to the imidazolium ring plane) to a position that is nearly linearly aligned with the C2-H2 bond and hinders the possible interaction between the C2-H2 group and the solvent molecules. On the other hand, in the case of mixtures of BmimTFSI and BmimPF6 with the molecular solvents, both the observed increase of the distance descriptor and the slight change of the angular descriptor with decreasing ionic liquid mole fraction are compatible with the direct interactions of the solvent with the C2-H2 group. The behavior of these descriptors is correlated with the experimentally observed 1H chemical shift of the C2-H2 group and the red shift of the C2-H2 vibrational mode, particularly at low ionic liquid mole fractions. The present results are thus of great help in interpreting these experimental observations.
Collapse
Affiliation(s)
- Volodymyr A Koverga
- Univ. Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France.,Department of Inorganic Chemistry , V.N. Karazin Kharkiv National University , Svoboda sq. 4 , Kharkiv 61022 , Ukraine.,LAQV@REQUIMTE, Faculty of Sciences, Department of Chemistry and Biochemistry , University of Porto , Rua do Campo Alegre , 4169-007 Porto , Portugal
| | - Yevheniia Smortsova
- Univ. Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| | - François Alexandre Miannay
- Univ. Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| | - Oleg N Kalugin
- Department of Inorganic Chemistry , V.N. Karazin Kharkiv National University , Svoboda sq. 4 , Kharkiv 61022 , Ukraine
| | - Toshiyuki Takamuku
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Honjo-machi, Saga 840-8502 , Japan
| | - Pal Jedlovszky
- Department of Chemistry , Eszterházy Károly University , Leányka utca 6 , H-3300 Eger , Hungary
| | - Bogdan Marekha
- Molecular Spectroscopy Department , Max Planck Institute for Polymer Research , 10 Ackermannweg , 55128 Mainz , Germany
| | - M Natalia D S Cordeiro
- LAQV@REQUIMTE, Faculty of Sciences, Department of Chemistry and Biochemistry , University of Porto , Rua do Campo Alegre , 4169-007 Porto , Portugal
| | - Abdenacer Idrissi
- Univ. Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| |
Collapse
|
17
|
Ma C, Laaksonen A, Liu C, Lu X, Ji X. The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev 2018; 47:8685-8720. [PMID: 30298877 DOI: 10.1039/c8cs00325d] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have been suggested as eco-friendly alternatives to organic solvents. A trace amount of water is often unavoidable as impurity, and water is also added on purpose to reduce their problematically high viscosity and lower their high price. Understanding the distinct effects of water on the properties of ILs/DESs is highly important. In this review, we collect published experimental and theoretical results for IL/DES-H2O systems at varied water concentrations and analyze them. Results from mechanistic studies, thermodynamic modelling and advanced experiments are collected and critically discussed. Six commonly studied IL/DES-H2O systems were selected to map experimental observations onto microscopic results obtained in mechanistic studies. A great variety of distinct contours of the excess properties can be observed over the entire compositional range, indicating that the properties of IL/DES-H2O systems are highly unpredictable. Mechanistic studies clearly demonstrate that the added H2O rapidly changes the heterogeneous 3D structures of pure ILs/DESs, leading to very different properties and behaviour. There are similarities between aqueous electrolytes and IL/DES solutions but the bulky and asymmetric organic cations in ILs/DESs do not conform to the standard salt dissolution and hydration concepts. Thermodynamic modelling previously assumes ILs/DESs to be either a neutral ion-pair or completely dissociated ions, neglecting specific ion hydration effects. A new conceptual framework is suggested for thermodynamic modelling of IL/DES-H2O binary systems to enable new technologies for their practical applications.
Collapse
Affiliation(s)
- Chunyan Ma
- Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, 971 87, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Macchieraldo R, Esser L, Elfgen R, Voepel P, Zahn S, Smarsly BM, Kirchner B. Hydrophilic Ionic Liquid Mixtures of Weakly and Strongly Coordinating Anions with and without Water. ACS OMEGA 2018; 3:8567-8582. [PMID: 31458986 PMCID: PMC6644474 DOI: 10.1021/acsomega.8b00995] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/20/2018] [Indexed: 05/22/2023]
Abstract
With the aid of ab initio molecular dynamics simulations, we investigate an ionic liquid (IL) mixture composed of three components 1-butyl-3-methylimidazolium [C4C1Im]+, tetrafluoroborate [BF4]-, and chloride [Cl]- without and with water. In the pure IL mixture, we observe an already complex network of interactions between cations and anions, and addition of water to the system even extends the complexity. Observed number integrals show that the coordination number between cations and anions is reduced in the system with water compared to that in the pure system. Further studies show that the Coulombic network of the strongly coordinating anion [Cl]- is disturbed by water, while that of the weakly coordinating anion [BF4]- is not. These observations can also be confirmed by the Voronoi polyhedra analysis, which shows that the polar network of microheterogeneous IL collapses by the introduction of water. Hydrogen-acceptor interactions revealed that the [Cl]- anions are transferred from being situated in the IL to the water continuum, while [BF4]- is almost unperturbed; these effects mainly influence the interplay of the ionic liquid network.
Collapse
Affiliation(s)
- Roberto Macchieraldo
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Lars Esser
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Roman Elfgen
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45413 Mülheim an der Ruhr, Germany
| | - Pascal Voepel
- Institute
of Physical Chemistry and Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff Ring 17+16, D-35392 Giessen, Germany
| | - Stefan Zahn
- Leibniz
Institute of Surface Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Bernd M. Smarsly
- Institute
of Physical Chemistry and Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff Ring 17+16, D-35392 Giessen, Germany
| | - Barbara Kirchner
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
- E-mail:
| |
Collapse
|
19
|
Koverga V, Kalugin ON, Miannay FA, Smortsova Y, Goloviznina K, Marekha B, Jedlovszky P, Idrissi A. The local structure in the BmimPF6/acetonitrile mixture: the charge distribution effect. Phys Chem Chem Phys 2018; 20:21890-21902. [DOI: 10.1039/c8cp03546f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of the charge distribution on the local structure in the binary mixture of 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) ionic liquid and acetonitrile is investigated over the entire composition range.
Collapse
Affiliation(s)
- Volodymyr Koverga
- University of Lille
- Faculty of Sciences and Technologies
- LASIR (UMR CNRS A8516)
- Villeneuve d’Ascq Cedex
- France
| | - Oleg N. Kalugin
- Department of Inorganic Chemistry
- V.N. Karazin Kharkiv National University
- Kharkiv
- Ukraine
| | - François-Alexandre Miannay
- University of Lille
- Faculty of Sciences and Technologies
- LASIR (UMR CNRS A8516)
- Villeneuve d’Ascq Cedex
- France
| | - Yevheniia Smortsova
- Department of Inorganic Chemistry
- V.N. Karazin Kharkiv National University
- Kharkiv
- Ukraine
| | - Kateryna Goloviznina
- University of Lille
- Faculty of Sciences and Technologies
- LASIR (UMR CNRS A8516)
- Villeneuve d’Ascq Cedex
- France
| | - Bogdan Marekha
- Max Planck Institute for Polymer Research
- Molecular Spectroscopy Department
- 10 Ackermannweg
- 55128 Mainz
- Germany
| | - Pal Jedlovszky
- Department of Chemistry
- Eszterházy Károly University
- H-3300 Eger
- Hungary
| | - Abdenacer Idrissi
- University of Lille
- Faculty of Sciences and Technologies
- LASIR (UMR CNRS A8516)
- Villeneuve d’Ascq Cedex
- France
| |
Collapse
|
20
|
Fedotova MV, Kruchinin SE, Chuev GN. Local ion hydration structure in aqueous imidazolium-based ionic liquids: The effects of concentration and anion nature. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Kan Z, Zheng D, Ma J. Self-aggregation of trehalose in the mixed solvents of 1,3-dimethylimidazolium ionic liquid and water. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1321756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zigui Kan
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
- School of Sciences, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Dong Zheng
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
22
|
Friesen S, Buchecker T, Cognigni A, Bica K, Buchner R. Hydration and Counterion Binding of [C 12MIM] Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9844-9856. [PMID: 28786678 DOI: 10.1021/acs.langmuir.7b02201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface-active ionic liquids based on imidazolium cations are promising targets for micellar catalysis in aqueous solution, yielding enhanced rate constants compared to surfactants based on n-alkyltrimethylammonium cations and exhibiting a pronounced counterion dependence ( Bica Chem. Commun. 2012 , 48 , 5013 - 5015 ; Cognigni Phys. Chem. Chem. Phys. 2016 , 18 , 13375 - 13384 ). Probably most relevant to these effects is the interplay between headgroup hydration and counterion binding. To obtain more detailed information on these effects, aqueous solutions of 1-dodecyl-3-methylimidazolium ([C12MIM]) bromide, iodide, and triflate (TfO-) were investigated at 45 °C using broadband dielectric spectroscopy, viscosity measurements, and small-angle X-ray scattering experiments. Effective hydration numbers were determined, and information on the locations and mobilities of the condensed counterions, X-, was derived. It was found that [C12MIM] halide micelles were less hydrated than the corresponding n-dodecyltrimethylammonium ([C12TA]X) aggregates. Together with their somewhat weaker counterion condensation, this difference probably explains their higher catalytic activity. Whereas [C12MIM]Br micelles remained roughly spherical in the studied concentration range, rodlike aggregates were formed at high concentrations of the iodide and, in particular, the triflate surfactants. It appears that the much lower mobility of condensed TfO- counterions is the reason for the very low catalytic activity of [C12MIM]TfO micelles.
Collapse
Affiliation(s)
| | | | - Alice Cognigni
- Institut für Angewandte Synthesechemie, Technische Universität Wien , 1040 Vienna, Austria
| | - Katharina Bica
- Institut für Angewandte Synthesechemie, Technische Universität Wien , 1040 Vienna, Austria
| | | |
Collapse
|
23
|
Smiatek J. Aqueous ionic liquids and their effects on protein structures: an overview on recent theoretical and experimental results. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:233001. [PMID: 28398214 DOI: 10.1088/1361-648x/aa6c9d] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ionic liquids (ILs) are used in a variety of technological and biological applications. Recent experimental and simulation results reveal the influence of aqueous ionic liquids on the stability of protein and enzyme structures. Depending on different parameters like the concentration and the ion composition, one can observe distinct stabilization or denaturation mechanisms for various ILs. In this review, we summarize the main findings and discuss the implications with regard to molecular theories of solutions and specific ion effects. A preferential binding model is introduced in order to discuss protein-IL effects from a statistical mechanics perspective. The value of the preferential binding coefficient determines the strength of the ion influence and indicates a shift of the chemical equilibrium either to the native or the denatured state of the protein. We highlight the role of water in order to explain the self-association behavior of the IL species and discuss recent experimental and simulation results in the light of the observed binding effects.
Collapse
Affiliation(s)
- Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
24
|
Schröder C. Proteins in Ionic Liquids: Current Status of Experiments and Simulations. Top Curr Chem (Cham) 2017; 375:25. [PMID: 28176271 PMCID: PMC5480425 DOI: 10.1007/s41061-017-0110-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2017] [Indexed: 01/28/2023]
Abstract
In the last two decades, while searching for interesting applications of ionic liquids as potent solvents, their solvation properties and their general impact on biomolecules, and in particular on proteins, gained interest. It turned out that ionic liquids are excellent solvents for protein refolding and crystallization. Biomolecules showed increased solubilities and stabilities, both operational and thermal, in ionic liquids, which also seem to prevent self-aggregation during solubilization. Biomolecules can be immobilized, e.g. in highly viscous ionic liquids, for particular biochemical processes and can be designed to some extent by the proper choice of the ionic liquid cations and anions, which can be characterized by the Hofmeister series.
Collapse
Affiliation(s)
- Christian Schröder
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Gontrani L, Scarpellini E, Caminiti R, Campetella M. Bio ionic liquids and water mixtures: a structural study. RSC Adv 2017. [DOI: 10.1039/c6ra28545g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study we have explored, by means of ab initio molecular dynamics, a subset of three different water/cho+–phe− mixtures.
Collapse
Affiliation(s)
- Lorenzo Gontrani
- Department of Chemistry
- “La Sapienza” University of Rome
- 00185 Rome
- Italy
| | | | - Ruggero Caminiti
- Department of Chemistry
- “La Sapienza” University of Rome
- 00185 Rome
- Italy
| | - Marco Campetella
- Department of Chemistry
- “La Sapienza” University of Rome
- 00185 Rome
- Italy
| |
Collapse
|
26
|
Kobayashi T, Reid JESJ, Shimizu S, Fyta M, Smiatek J. The properties of residual water molecules in ionic liquids: a comparison between direct and inverse Kirkwood–Buff approaches. Phys Chem Chem Phys 2017; 19:18924-18937. [DOI: 10.1039/c7cp03717a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistic molecular dynamics simulations of aqueous ionic liquid mixtures were performed in order to compare the resulting Kirkwood–Buff integrals with experimental data and the corresponding integrals derived by an inverse Kirkwood–Buff approach.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Institute for Computational Physics
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Joshua E. S. J. Reid
- York Structural Biology Laboratory
- Department of Chemistry
- University of York
- York YO10 5DD
- UK
| | - Seishi Shimizu
- York Structural Biology Laboratory
- Department of Chemistry
- University of York
- York YO10 5DD
- UK
| | - Maria Fyta
- Institute for Computational Physics
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Jens Smiatek
- Institute for Computational Physics
- University of Stuttgart
- 70569 Stuttgart
- Germany
| |
Collapse
|
27
|
Non-ideal viscosity and excess molar volume of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([C 4 mim][BF 4 ]) with water. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Gutowska N, Maciejewski A. The emission properties of bmimBF4 determined using an HPLC system. Significant influence of emission of impurities. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Saeva DR, Petenuci J, Hoffmann MM. Transport Properties of the 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide–Trichloromethane Binary System: Indication of Trichloromethane Segregation. J Phys Chem B 2016; 120:9745-54. [DOI: 10.1021/acs.jpcb.6b06974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David R. Saeva
- The College at Brockport, State University of New York, Brockport, New York 14420, United States
| | - João Petenuci
- The College at Brockport, State University of New York, Brockport, New York 14420, United States
| | - Markus M. Hoffmann
- The College at Brockport, State University of New York, Brockport, New York 14420, United States
| |
Collapse
|
30
|
Barycki M, Sosnowska A, Piotrowska M, Urbaszek P, Rybinska A, Grzonkowska M, Puzyn T. ILPC: simple chemometric tool supporting the design of ionic liquids. J Cheminform 2016; 8:40. [PMID: 27547246 PMCID: PMC4991077 DOI: 10.1186/s13321-016-0152-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Ionic liquids (ILs) found a variety of applications in today’s chemistry. Since their properties depend on the ions constituting particular ionic liquid, it is possible to synthetize IL with desired specification, dependently on its further function. However, this task is not trivial, since knowledge regarding the influence of particular ion on the property of concern is crucial. Therefore, there is a strong need for new, fast and inexpensive methods supporting the process of ionic liquids’ design, making it possible to predefine IL’s properties even before the synthesis. Results We have developed a simple tool (called Ionic Liquid PhysicoChemical predictor: ILPC) that allows for the simultaneous qualitative prediction of four physicochemical properties of ionic liquids: viscosity, n-octanol–water partition coefficient, solubility and enthalpy of fusion. By the means of Principal Component Analysis, we studied 172 ILs and defined distribution trends of those four properties, dependently on the ILs structures. We proved that the qualitative prediction of mentioned properties could be performed on the basis of most simple information we can deliver about ILs, which are their molecular formulas. Conclusions Created tool presented in this paper allows fast, pre-synthesis screening of ILs, with the omission of any experimental steps. It can be helpful in the process of designing ILs with preferred properties. We proved that the information encrypted in molecular formula of ionic liquid could be a valuable source of knowledge regarding the IL’s viscosity, n-octanol–water partition coefficient, solubility and enthalpy of fusion. Moreover, we proved that the influence of both ions, constituting the IL, on each of those four properties indicates same, additive trend.Schematic representation of ILPC performance - the exact position of the ionic liquid on the linear map is determined by its chemical structure ![]() Electronic supplementary material The online version of this article (doi:10.1186/s13321-016-0152-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maciej Barycki
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anita Sosnowska
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Piotrowska
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Urbaszek
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Rybinska
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Monika Grzonkowska
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
31
|
Wang YL, Sarman S, Kloo L, Antzutkin ON, Glavatskih S, Laaksonen A. Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids. J Chem Phys 2016. [DOI: 10.1063/1.4960506] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong-Lei Wang
- Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Sten Sarman
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lars Kloo
- Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Oleg N. Antzutkin
- Chemistry of Interfaces, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Sergei Glavatskih
- System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
32
|
Wang YL, Shimpi MR, Sarman S, Antzutkin ON, Glavatskih S, Kloo L, Laaksonen A. Atomistic Insight into Tetraalkylphosphonium Bis(oxalato)borate Ionic Liquid/Water Mixtures. 2. Volumetric and Dynamic Properties. J Phys Chem B 2016; 120:7446-55. [DOI: 10.1021/acs.jpcb.6b02921] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Oleg N. Antzutkin
- Chemistry
of Interfaces, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Sergei Glavatskih
- Department
of Mechanical Construction and Production, Ghent University, B-9000 Ghent, Belgium
| | | | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
33
|
Dhungana KB, Faria LFO, Wu B, Liang M, Ribeiro MCC, Margulis CJ, Castner EW. Structure of cyano-anion ionic liquids: X-ray scattering and simulations. J Chem Phys 2016; 145:024503. [DOI: 10.1063/1.4955186] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kamal B. Dhungana
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Luiz F. O. Faria
- Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP, Brazil
| | - Boning Wu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Min Liang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Mauro C. C. Ribeiro
- Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP, Brazil
| | | | - Edward W. Castner
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
34
|
Gao J, Wagner NJ. Water Nanocluster Formation in the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate ([C4mim][BF4])-D2O Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5078-84. [PMID: 27152941 DOI: 10.1021/acs.langmuir.6b00494] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The microstructure of mixtures of deuterated water in the ionic liquid [C4mim][BF4] is investigated by small-angle neutron scattering (SANS) measurement. In the salt-rich region, water dissolves in the ionic liquid up to 0.7 mole fraction, whereupon distinct, nanometer-sized water clusters are observed. These water nanoclusters increase in size with increasing water addition while the mole ratio of water dissolved into the ionic liquid nanostructure increases from 2 to 4. These results provide direct confirmation for recent simulations as well insight into the source of nonidealities in some thermophysical and transport properties (e.g., density and viscosity) of salt-rich aqueous mixtures reported in the literature.
Collapse
Affiliation(s)
- Jingsi Gao
- Center for Molecular and Engineering Thermodynamics & Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, United States
| | - Norman J Wagner
- Center for Molecular and Engineering Thermodynamics & Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
35
|
Rybinska A, Sosnowska A, Grzonkowska M, Barycki M, Puzyn T. Filling environmental data gaps with QSPR for ionic liquids: Modeling n-octanol/water coefficient. JOURNAL OF HAZARDOUS MATERIALS 2016; 303:137-144. [PMID: 26530890 DOI: 10.1016/j.jhazmat.2015.10.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/22/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Ionic liquids (ILs) form a wide group of compounds characterized by specific properties that allow using ILs in different fields of science and industry. Regarding that the growing production and use of ionic liquids increase probability of their emission to the environment, it is important to estimate the ability of these compounds to spread in the environment. One of the most important parameters that allow evaluating environmental mobility of compound is n-octanol/water partition coefficient (KOW). Experimental measuring of the KOW values for a large number of compounds could be time consuming and costly. Instead, computational predictions are nowadays being used more often. The paper presents new Quantitative Structure-Property Relationship (QSPR) model that allows predicting the logarithmic values of KOW for 335 ILs, for which the experimentally measured values had been unavailable. We also estimated bioaccumulation potential and point out which group of ILs could have negative impact on environment.
Collapse
Affiliation(s)
- Anna Rybinska
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Anita Sosnowska
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Monika Grzonkowska
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maciej Barycki
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
36
|
Cade EA, Petenuci J, Hoffmann MM. Aggregation Behavior of Several Ionic Liquids in Molecular Solvents of Low Polarity-Indication of a Bimodal Distribution. Chemphyschem 2016; 17:520-9. [DOI: 10.1002/cphc.201500990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Elise A. Cade
- Department of Chemistry and Biochemistry; The College at Brockport; State University of New York; Brockport NY 14420 USA
| | - João Petenuci
- Department of Chemistry and Biochemistry; The College at Brockport; State University of New York; Brockport NY 14420 USA
| | - Markus M. Hoffmann
- Department of Chemistry and Biochemistry; The College at Brockport; State University of New York; Brockport NY 14420 USA
| |
Collapse
|
37
|
Zanatta M, Girard AL, Marin G, Ebeling G, dos Santos FP, Valsecchi C, Stassen H, Livotto PR, Lewis W, Dupont J. Confined water in imidazolium based ionic liquids: a supramolecular guest@host complex case. Phys Chem Chem Phys 2016; 18:18297-304. [DOI: 10.1039/c6cp03112a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Traces of water in some ionic liquids can be regarded as a guest@host supramolecular structure even when diluted in solvents with high dielectric constants.
Collapse
Affiliation(s)
- Marcileia Zanatta
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Anne-Lise Girard
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Graciane Marin
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Gunter Ebeling
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | | | - Chiara Valsecchi
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Hubert Stassen
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Paolo R. Livotto
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - William Lewis
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - Jairton Dupont
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| |
Collapse
|
38
|
Bešter-Rogač M, Fedotova MV, Kruchinin SE, Klähn M. Mobility and association of ions in aqueous solutions: the case of imidazolium based ionic liquids. Phys Chem Chem Phys 2016; 18:28594-28605. [DOI: 10.1039/c6cp05010g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining MD simulations and RISM calculations with experiments, we demonstrated that the interionic interactions of investigated ILs as model 1,1 electrolytes in water solutions are weak but evidently dependent on the molecular structure.
Collapse
Affiliation(s)
| | | | | | - Marco Klähn
- Institute of Chemical and Engineering Sciences
- Agency for Science
- Technology and Research
- Singapore
| |
Collapse
|
39
|
Sha M, Dong H, Luo F, Tang Z, Zhu G, Wu G. Dilute or Concentrated Electrolyte Solutions? Insight from Ionic Liquid/Water Electrolytes. J Phys Chem Lett 2015; 6:3713-3720. [PMID: 26713896 DOI: 10.1021/acs.jpclett.5b01513] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When room-temperature ionic liquids (IL) are used as an electrolyte, their transport behaviors are still under heavy debate due to their complicated ion-associations. In this article, we conducted molecular dynamics simulations to study the molecular scale ion associations from the very dilute 1-butyl-3-methylimidazolium iodide/water solution to the pure IL. It revealed that ions are localized in a multicoordinated ion cage structure with nanoseconds in concentrated IL solutions. Dynamics analyses indicate that the transport of this solution can be depicted by the Debye-Hückel model only in dilute IL/water electrolyte. The velocity and rotational correlation functions showed that the lifetime of translational and rotational motions are at the level of picoseconds and nanoseconds, respectively, because of the ion cage effect. The lifetime of ion association demonstrated that the recombination of association ions was prevalent in IL solutions. It means that the dipolar or stable contact ion-pairs model may not be suitable for depicting the IL transport.
Collapse
Affiliation(s)
- Maolin Sha
- Department of Chemistry and Chemical Engineering, Hefei Normal University , Hefei 230061, P. R. China
| | - Huaze Dong
- Department of Chemistry and Chemical Engineering, Hefei Normal University , Hefei 230061, P. R. China
| | - Fabao Luo
- Department of Chemistry and Chemical Engineering, Hefei Normal University , Hefei 230061, P. R. China
| | - Zhongfeng Tang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P.B. Box 800-204, P. R. China
| | - Guanglai Zhu
- Institute of Atomic and Molecular Physics, Anhui Normal University , Wuhu 241000, P. R. China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P.B. Box 800-204, P. R. China
| |
Collapse
|
40
|
Palchowdhury S, Bhargava BL. Self-Assembly of Cations in Aqueous Solutions of Hydroxyl-Functionalized Ionic Liquids: Molecular Dynamics Studies. J Phys Chem B 2015; 119:11815-24. [DOI: 10.1021/acs.jpcb.5b06151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sourav Palchowdhury
- School of Chemical Sciences, National Institute of Science Education & Research, Bhubaneswar 751005, Odisha, India
| | - B. L. Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research, Bhubaneswar 751005, Odisha, India
| |
Collapse
|
41
|
Abstract
Ionic liquids have become commonplace materials found in research laboratories the world over, and are increasingly utilised in studies featuring water as co-solvent. It is reported herein that proton activities, aH (+) , originating from auto-protolysis of H2O molecules, are significantly altered in mixtures with common ionic liquids comprised of Cl(-), [HSO4 ](-), [CH3SO4 ](-), [CH3COO](-), [BF4](-), relative to pure water. paH (+) values, recorded in partially aqueous media as -log(aH (+)), are observed over a wide range (∼0-13) as a result of hydrolysis (or acid dissociation) of liquid salt ions to their associated parent molecules (or conjugate bases). Brønsted-Lowry acid-base character of ionic liquid ions observed is rooted in equilibria known to govern the highly developed aqueous chemistry of classical organic and inorganic salts, as their well-known aqueous pKs dictate. Classical salt behaviour observed for both protic and aprotic ions in the presence of water suggests appropriate attention need be given to relevant chemical systems in order to exploit, or avoid, the nature of the medium formed.
Collapse
Affiliation(s)
- Gordon W Driver
- Department of Chemistry, Umeå University, KBC-huset, Linnaeus väg 10, 90187 Umeå (Sweden).
| |
Collapse
|
42
|
Jha I, Kumar A, Venkatesu P. The Overriding Roles of Concentration and Hydrophobic Effect on Structure and Stability of Heme Protein Induced by Imidazolium-Based Ionic Liquids. J Phys Chem B 2015; 119:8357-68. [DOI: 10.1021/acs.jpcb.5b04660] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Indrani Jha
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Awanish Kumar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
43
|
Affiliation(s)
- Robert Hayes
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Gregory G. Warr
- School
of Chemistry, The University of Sydney, NSW 2006, Sydney, Australia
| | - Rob Atkin
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| |
Collapse
|
44
|
Payal RS, Balasubramanian S. Dissolution of cellulose in ionic liquids: an ab initio molecular dynamics simulation study. Phys Chem Chem Phys 2015; 16:17458-65. [PMID: 25012815 DOI: 10.1039/c4cp02219j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions determining the dissolution of a monomer of β-cellulose, i.e., cellobiose in a room temperature ionic liquid, [Emim][OAc], have been studied using ab initio molecular dynamics simulations. Although anions are the predominant species in the first coordination shell of cellobiose, cations too are present to a minor extent around it. The presence of low concentration of water in the solution does not significantly alter the nature of the coordination environment of cellobiose. All intra-molecular hydrogen bonds of anti-syn cellobiose are replaced by inter-molecular hydrogen bonds formed with the anions, whereas the anti-anti conformer retains an intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Rajdeep Singh Payal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| | | |
Collapse
|
45
|
Wang YL, Sarman S, Glavatskih S, Antzutkin ON, Rutland MW, Laaksonen A. Atomistic Insight into Tetraalkylphosphonium-Bis(oxalato)borate Ionic Liquid/Water Mixtures. I. Local Microscopic Structure. J Phys Chem B 2015; 119:5251-64. [DOI: 10.1021/acs.jpcb.5b00667] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sergei Glavatskih
- System
and Component Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Mechanical
Construction and Production, Ghent University, B-9000 Ghent, Belgium
| | - Oleg N. Antzutkin
- Chemistry
of Interfaces, Luleå University of Technology, SE-971 87 Luleå, Sweden
- Department
of Physics, Warwick University, CV4 7AL Coventry, United Kingdom
| | - Mark W. Rutland
- Surface and
Corrosion Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Chemistry,
Materials and Surfaces, SP Technical Research Institute of Sweden, SE-114
86 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Stellenbosch
Institute of Advanced Study (STIAS), Wallenberg Research Centre, Stellenbosch University, Marais Street, Stellenbosch 7600, South Africa
| |
Collapse
|
46
|
Schröder C, Sega M, Schmollngruber M, Gailberger E, Braun D, Steinhauser O. On the collective network of ionic liquid/water mixtures. IV. Kinetic and rotational depolarization. J Chem Phys 2015; 140:204505. [PMID: 24880299 DOI: 10.1063/1.4878116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dielectric spectroscopy is a measure of the collective Coulomb interaction in liquid systems. Adding ionic liquids to an aqueous solution results in a decrease of the static value of the generalized dielectric constant which cannot be attributed to kinetic depolarization models characterized by the static conductivity and rotational relaxation constant. However, a dipolar Poisson-Boltzmann model computing the water depolarization in the proximity of ions is not only successful for simple electrolytes but also in case of molecular ionic liquids. Moreover, our simple geometric hydration model is also capable to explain the dielectric depolarization. Both models compute the dielectric constant of water and obtain the overall dielectric constant by averaging the values of its components, water and the ionic liquid, weighted by their volume occupancies. In this sense, aqueous ionic liquid mixtures seem to behave like polar mixtures.
Collapse
Affiliation(s)
- Christian Schröder
- Department of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, A- 1090 Vienna, Austria
| | - Marcello Sega
- Department of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, A- 1090 Vienna, Austria
| | - Michael Schmollngruber
- Department of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, A- 1090 Vienna, Austria
| | - Elias Gailberger
- Department of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, A- 1090 Vienna, Austria
| | - Daniel Braun
- Department of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, A- 1090 Vienna, Austria
| | - Othmar Steinhauser
- Department of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, A- 1090 Vienna, Austria
| |
Collapse
|
47
|
Liu Z, El Abedin SZ, Endres F. Raman and FTIR Spectroscopic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethylsulfonate, its Mixtures with Water and the Solvation of Zinc Ions. Chemphyschem 2015; 16:970-7. [DOI: 10.1002/cphc.201402831] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Indexed: 11/11/2022]
|
48
|
Kumar A, Rani A, Venkatesu P. A comparative study of the effects of the Hofmeister series anions of the ionic salts and ionic liquids on the stability of α-chymotrypsin. NEW J CHEM 2015. [DOI: 10.1039/c4nj01596g] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct interactions between the anion and the catalytic amino acid residues lead to denaturation of CT.
Collapse
Affiliation(s)
- Awanish Kumar
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | | |
Collapse
|
49
|
Rezabal E, Schäfer T. Ionic liquids as solvents of polar and non-polar solutes: affinity and coordination. Phys Chem Chem Phys 2015; 17:14588-97. [DOI: 10.1039/c5cp01774b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Evolution of H2O and CO2 interactions with an ionic liquid (IL) from gas phase to IL phase is described. Affinity is lost and coordination patterns vary in the process, favouring H2O–anion and CO2–cation interactions.
Collapse
Affiliation(s)
- Elixabete Rezabal
- Laboratoire de Chimie Moleculaire
- Department of Chemistry
- Ecole Polytechnique and CNRS
- 91128 Palaiseau Cedex
- France
| | - Thomas Schäfer
- POLYMAT
- University of the Basque Country UPV/EHU 20018 Donostia-San Sebastián
- Spain
- Ikerbasque
- Basque Foundation for Science
| |
Collapse
|
50
|
Wang YL, Sarman S, Li B, Laaksonen A. Multiscale modeling of the trihexyltetradecylphosphonium chloride ionic liquid. Phys Chem Chem Phys 2015; 17:22125-35. [DOI: 10.1039/c5cp02586a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchical trihexyltetradecylphosphonium cationic and chloride anionic models.
Collapse
Affiliation(s)
- Yong-Lei Wang
- System and Component Design
- Department of Machine Design
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Sten Sarman
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Bin Li
- Theoretical Chemistry
- Chemical Center
- Lund University
- SE-221 00 Lund
- Sweden
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|