1
|
Roy S, Ahmed M, Nihonyanagi S, Tahara T. Time-resolved heterodyne-detected electronic sum frequency generation (TR-HD-ESFG) spectroscopy: A new approach to explore interfacial dynamics. J Chem Phys 2024; 161:174202. [PMID: 39494797 DOI: 10.1063/5.0235176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Aqueous interfaces containing organic/inorganic molecules are important in various biological, industrial, and atmospheric processes. So far, the study on the dynamics of interfacial molecules has been carried out with time-resolved vibrational sum-frequency generation (TR-VSFG) and time-resolved electronic sum-frequency generation (TR-ESFG) techniques. Although the ESFG probe is powerful for investigating interfacial photochemical dynamics of solute molecules by monitoring the electronic transition of transients or photoproducts at the interface, heterodyne detection is highly desirable for obtaining straightforward information, particularly in time-resolved measurements. So far, heterodyne detection has been realized only for TR-VSFG measurements but not for TR-ESFG measurements. In this paper, we report on femtosecond time-resolved heterodyne-detected ESFG (TR-HD-ESFG) spectroscopy for the first time. With TR-HD-ESFG developed, we measured the time-resolved electronic ΔImχ(2) spectra (pump-induced changes in the imaginary part of the second-order susceptibility) of a prototype dye, malachite green (MG), at the air/water interface. The obtained ΔImχ(2) spectra clearly show not only the ground-state bleach but also the excited-state band of MG at the air/water interface, demonstrating the high potential of TR-HD-ESFG as a new powerful tool to investigate ultrafast reaction dynamics at the interface.
Collapse
Affiliation(s)
- Subhadip Roy
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mohammed Ahmed
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Centre for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Centre for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Centre for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Huang-Fu ZC, Zhang T, Brown JB, Qian Y, Fisher H, Rao Y. In-plane orientational motions of the functional groups of molecules at the air/water interface by time-resolved vibrational sum frequency generation. J Chem Phys 2024; 161:164711. [PMID: 39469964 DOI: 10.1063/5.0230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
The movements of molecules at interfaces and surfaces are restricted by their asymmetric environments, leading to anisotropic orientational motions. In this work, in-plane orientational motions of the -C=O and -CF3 groups of coumarin 153 (C153) at the air/water interface were measured using time-resolved (TR) vibrational sum frequency generation (SFG). The in-plane orientational time constants of the -C=O and -CF3 groups of C153 are found to be 41.5 ± 8.2 and 36.0 ± 4.5 ps. These values are over five-times faster than that of 198 ± 15 ps for the permanent dipole of the whole C153 molecule at the interface, which may indicate that the two groups experience different interfacial friction in the plane. These differences could also be the result of the permanent dipole of C153 being almost five times those of the -C=O and -CF3 groups. The difference in orientational motions reveals the microscopic heterogeneous environment that molecules experience at the interface. While the interfacial dynamics of the two functional groups are similar, our TR-SFG experiments allowed the quantification of the in-plane dynamics of individual functional groups for the first time. Our experimental findings about the interfacial molecular motion have implications for molecular rotations, energy transfer, and charge transfer at material interfaces, photocatalysis interfaces, and biological cell/membrane aqueous interfaces.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Haley Fisher
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
3
|
Huang-Fu ZC, Qian Y, Zhang T, Brown JB, Rao Y. Development of phase-cycling interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) spectroscopy. J Chem Phys 2024; 161:114201. [PMID: 39291691 DOI: 10.1063/5.0227560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Two-dimensional electronic spectroscopy (2D-ES) has become an important technique for studying energy transfer, electronic coupling, and electronic-vibrational coherence in the past ten years. However, since 2D-ES is not interface specific, the electronic information at surfaces and interfaces could not be demonstrated clearly. Two-dimensional electronic sum-frequency generation (2D-ESFG) is an emerging spectroscopic technique that explores the correlations between different interfacial electronic transitions and is the extension of 2D-ES to surface and interfacial specificity. In this work, we present the detailed development and implementation of phase-cycling 2D-ESFG spectroscopy using an acousto-optic pulse shaper in a pump-probe geometry. With the pulse pair generated by a pulse shaper rather than optical devices based on birefringence or interference, this 2D-ESFG setup enables rapid scanning, phase cycling, and the separation of rephasing and nonrephasing signals. In addition, by collecting data in a rotating frame, we greatly improve experimental efficiency. We demonstrate the method for azo-derivative molecules at the air/water interface. This method could be readily extended to different interfaces and surfaces. The unique phase-cycling 2D-ESFG technique enables one to quantify the energy transfer, charge transfer, electronic coupling, and many other electronic properties and dynamics at surfaces and interfaces with precision and relative ease of use. Our goal in this article is to present the fine details of the fourth-order nonlinear optical technique in a manner that is comprehensive, succinct, and approachable such that other researchers can implement, improve, and adapt it to probe unique and innovative problems to advance the field.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
4
|
De R, Calvet NA, Dietzek-Ivanšić B. Charge Transfer Dynamics in Organic-Inorganic Hybrid Heterostructures-Insights by Vibrational-Sum Frequency Generation Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202313574. [PMID: 38471070 DOI: 10.1002/anie.202313574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Organic-inorganic heterostructures play a pivotal role in modern electronic and optoelectronic applications including photodetectors and field effect transistors, as well as in solar energy conversion such as photoelectrodes of dye-sensitized solar cells, photoelectrochemical cells, and in organic photovoltaics. To a large extent, performance of such devices is controlled by charge transfer dynamics at and across (inner) interfaces, e.g., between a wide band gap semiconductor and molecular sensitizers and/or catalysts. Hence, a detailed understanding of the structure-dynamics-function relationship of such functional interfaces is necessary to rationalize possible performance limitations of these materials and devices on a molecular level. Vibrational sum-frequency generation (VSFG) spectroscopy, as an interface-sensitive spectroscopic technique, allows to obtain chemically specific information from interfaces and combines such chemical insights with ultrafast time resolution, when integrated as a spectroscopic probe into a pump-probe scheme. Thus, this minireview discusses the advantages and potential of VSFG spectroscopy for investigating interfacial charge transfer dynamics and structural changes at inner interfaces. A critical perspective of the unique spectroscopic view of otherwise inaccessible interfaces is presented, which we hope opens new opportunities for an improved understanding of function-determining processes in complex materials, and brings together communities who are devoted to designing materials and devices with spectroscopists.
Collapse
Affiliation(s)
- Ratnadip De
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Neus A Calvet
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
5
|
Li B, Ma Y, Han X, Hu P, Lu X. Enhanced Sum Frequency Generation for Monolayers on Au Relative to Silica: Local Field Factors and SPR Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:659-667. [PMID: 36580605 DOI: 10.1021/acs.langmuir.2c03016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using metals as signal magnified substrates, surface plasmon-enhanced sum frequency generation (SFG) vibrational spectroscopy is a promising technique to probe weak molecular-level signals at surfaces and interfaces. In this study, the vibrational signals of the n-alkane monolayer on the gold (Au) and silica substrates are investigated using the broadband femtosecond SFG. The enhancement factors are discovered to be up to ∼1076 and ∼31 for the methyl symmetric and asymmetric stretching (ss and as) modes of the monolayer, respectively. By systematically analyzing the second-order nonlinear susceptibility tensor components (χijks), the Fresnel coefficients (Fijks), and the surface plasmon resonance (SPR) effect, we find that the interplay between Fijk and χijk terms and the SPR effect dominate the SFG signal enhancement. Our study reveals that the relative contributions of different influencing factors (i.e., Fresnel coefficients and SPR) to the SFG signal enhancement provide an approach to interpreting enhanced SFG vibrational signals detected from probe molecules on distinct substrates and may finally guide the design of the experimental methodology to improve the detection sensitivity and signal-to-noise ratio.
Collapse
Affiliation(s)
- Bolin Li
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui230031, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yonghao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Pengcheng Hu
- School of Medical Imaging, Xuzhou Medical College, Xuzhou, Jiangsu221004, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
6
|
Wang H, Xiong W. Revealing the Molecular Physics of Lattice Self-Assembly by Vibrational Hyperspectral Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3017-3031. [PMID: 35238562 DOI: 10.1021/acs.langmuir.1c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lattice self-assemblies (LSAs), which mimic protein assemblies, were studied using a new nonlinear vibrational imaging technique called vibrational sum-frequency generation (VSFG) microscopy. This technique successfully mapped out the mesoscopic morphology, microscopic geometry, symmetry, and ultrafast dynamics of an LSA formed by β-cyclodextrin (β-CD) and sodium dodecyl sulfate (SDS). The spatial imaging also revealed correlations between these different physical properties. Such knowledge shed light on the functions and mechanical properties of LSAs. In this Feature Article, we briefly introduce the fundamental principles of the VSFG microscope and then discuss the in-depth molecular physics of the LSAs revealed by this imaging technique. The application of the VSFG microscope to the artificial LSAs also paved the way for an alternative approach to studying the structure-dynamic-function relationships of protein assemblies, which were essential for life and difficult to study because of their various and complicated interactions. We expect that the hyperspectral VSFG microscope could be broadly applied to many noncentrosymmetric soft materials.
Collapse
|
7
|
Uriarte LM, Vitale R, Niziński S, Hadjidemetriou K, Zala N, Lukacs A, Greetham GM, Sazanovich IV, Weik M, Ruckebusch C, Meech SR, Sliwa M. Structural Information about the trans-to- cis Isomerization Mechanism of the Photoswitchable Fluorescent Protein rsEGFP2 Revealed by Multiscale Infrared Transient Absorption. J Phys Chem Lett 2022; 13:1194-1202. [PMID: 35085441 DOI: 10.1021/acs.jpclett.1c02920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RsEGFP2 is a reversibly photoswitchable fluorescent protein used in super-resolved optical microscopies, which can be toggled between a fluorescent On state and a nonfluorescent Off state. Previous time-resolved ultraviolet-visible spectroscopic studies have shown that the Off-to-On photoactivation extends over the femto- to millisecond time scale and involves two picosecond lifetime excited states and four ground state intermediates, reflecting a trans-to-cis excited state isomerization, a millisecond deprotonation, and protein structural reorganizations. Femto- to millisecond time-resolved multiple-probe infrared spectroscopy (TRMPS-IR) can reveal structural aspects of intermediate species. Here we apply TRMPS-IR to rsEGFP2 and implement a Savitzky-Golay derivative analysis to correct for baseline drift. The results reveal that a subpicosecond twisted excited state precursor controls the trans-to-cis isomerization and the chromophore reaches its final position in the protein pocket within 100 ps. A new step with a time constant of 42 ns is reported and assigned to structural relaxation of the protein that occurs prior to the deprotonation of the chromophore on the millisecond time scale.
Collapse
Affiliation(s)
- Lucas M Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Raffaele Vitale
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Stanisław Niziński
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | | | - Ninon Zala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| |
Collapse
|
8
|
Stingel AM, Petersen PB. Full spectrum 2D IR spectroscopy reveals below-gap absorption and phonon dynamics in the mid-IR bandgap semiconductor InAs. J Chem Phys 2021; 155:104202. [PMID: 34525815 DOI: 10.1063/5.0056217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the mid-infrared spectral region spans more than 3000 cm-1, ultrafast mid-IR spectroscopies are normally limited to the spectral bandwidth that can be generated in optical parametric amplifiers-typically a few hundred cm-1. As such, the spectral coverage in conventional two dimensional infrared (2D IR) spectroscopy captures only about 1% of the full potential 2D mid-IR spectrum. Here, we present 2D IR spectra using a continuum source as both the excitation and probe pulses, thus capturing close to the full 2D IR spectrum. While the continuum pulses span the entire mid-IR range, they are currently too weak to efficiently excite molecular vibrational modes but strong enough to induce electronic responses and excite phonons in semiconductors. We demonstrate the full spectrum 2D IR spectroscopy of the mid-IR bandgap semiconductor indium arsenide with a bandgap at 2855 cm-1. The measured response extends far below the bandgap and is due to field-induced band-shifting, causing probe absorption below the bandgap. While the band-shifting induces an instantaneous response that exists only during pulse overlap, the 2D IR spectra reveal additional off-diagonal features that decay on longer timescales. These longer-lived off-diagonal features result from coherent phonons excited via a Raman-like process at specific excitation frequencies. This study illustrates that the full spectrum 2D IR spectroscopy of electronic states in the mid-IR is possible with current continuum pulse technology and is effective in characterizing semiconductor properties.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Pickering JD, Chatterley AS, Bregnhøj M, Weidner T. A liquid surface height controller for surface spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:094104. [PMID: 34598483 DOI: 10.1063/5.0057849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We present a simple and inexpensive liquid surface height controller that can monitor and maintain the height of a liquid surface in a surface-sensitive experiment. The system is based on a commercial laser pointer, universal serial bus webcam, syringe pump, and homemade control software. The system can sense changes in the height of the surface of ±1 µm, and the maximum range of the device without readjustment is around 2.5 mm. The intended use of the device is to maintain the height of a sample at the air-water interface in a sum-frequency generation spectroscopy measurement, which constantly changes due to water evaporation. A demonstration of the system maintaining the height of a water surface to a tolerance of ±5 µm over a period of 8 h is shown to illustrate the stability of a system controlled by this device.
Collapse
Affiliation(s)
- James D Pickering
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Liu X, Li BH, Liang Y, Zeng W, Li H, Zhou C, Ren Z, Yang X. Efficient generation of narrowband picosecond pulses from a femtosecond laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083001. [PMID: 34470371 DOI: 10.1063/5.0056050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
In some applications of broadband ultrafast spectroscopy, such as surface sum frequency generation vibrational spectroscopy, femtosecond stimulated Raman spectroscopy (SRS), and coherent anti-Stokes Raman spectroscopy, a narrowband picosecond pulse is required to obtain a high spectral resolution. Here, we present a method to generate narrowband picosecond second harmonic (SH) and fundamental frequency (FF) pulses with high-conversion efficiency from a Ti:sapphire femtosecond laser amplifier. The narrowband picosecond SH pulse was generated based on the group velocity mismatch between the SH and FF pulses in a nonlinear crystal of β-barium borate (BBO). The small SH nonlinear optical coefficient was optimized by changing the azimuth angle of a thick BBO crystal, successfully avoiding the saturation effect in the SH generation process. The SH pulse was then used to pump an optical parametric amplifier to efficiently amplify the narrowband FF seed pulse, which was obtained with an etalon by spectrally filtering the output from the femtosecond laser amplifier. Dual-wavelength output, which could be very useful in femtosecond SRS, was also realized.
Collapse
Affiliation(s)
- Xinting Liu
- School of Dayu Zhang, Dalian University of Technology, Dalian 116024, China
| | - Bo-Han Li
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Liang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Zeng
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huang Li
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chuanyao Zhou
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
11
|
Petti MK, Ostrander JS, Birdsall ER, Kunz MB, Armstrong ZT, Alperstein AM, Zanni MT. A Proposed Method to Obtain Surface Specificity with Pump-Probe and 2D Spectroscopies. J Phys Chem A 2020; 124:3471-3483. [PMID: 32255629 PMCID: PMC7993518 DOI: 10.1021/acs.jpca.9b11791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Surfaces and interfaces are ubiquitous in nature. From cell membranes, to photovoltaic thin films, surfaces have important function in both biological and materials systems. Spectroscopic techniques have been developed to probe systems like these, such as sum frequency generation (SFG) spectroscopies. The advantage of SFG spectroscopy, a second-order spectroscopy, is that it can distinguish between signals produced from molecules in the bulk versus on the surface. We propose a polarization scheme for third-order spectroscopy experiments, such as pump-probe and 2D spectroscopy, to select for surface signals and not bulk signals. This proposed polarization condition uses one pulse perpendicular compared to the other three to isolate cross-peaks arising from molecules with polar and uniaxial (i.e., biaxial) order at a surface, while removing the signal from bulk isotropic molecules. In this work, we focus on two of these cases: XXXY and YYYX, which differ by the sign of the cross-peak they create. We compare this technique to SFG spectroscopy and vibrational circular dichroism to provide insight to the behavior of the cross-peak signal. We propose that these singularly cross-polarized schemes provide odd-ordered spectroscopies the surface-specificity typically associated with even-ordered techniques.
Collapse
Affiliation(s)
- Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erin R Birdsall
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Miriam Bohlmann Kunz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary T Armstrong
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ariel M Alperstein
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Ge A, Rudshteyn B, Zhu J, Maurer RJ, Batista VS, Lian T. Electron-Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces. J Phys Chem Lett 2018; 9:406-412. [PMID: 29227669 DOI: 10.1021/acs.jpclett.7b02885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A combination of time-resolved vibrational spectroscopy and density functional theory techniques have been applied to study the vibrational energy relaxation dynamics of the Re(4,4'-dicyano-2,2'-bipyridine)(CO)3Cl (Re(CO)3Cl) catalyst for CO2 to CO conversion bound to gold surfaces. The kinetics of vibrational relaxation exhibits a biexponential decay including an ultrafast initial relaxation and complete recovery of the ground vibrational state. Ab initio molecular dynamics simulations and time-dependent perturbation theory reveal the former to be due to vibrational population exchange between CO stretching modes and the latter to be a combination of intramolecular vibrational relaxation (IVR) and electron-hole pair (EHP)-induced energy transfer into the gold substrate. EHP-induced energy transfer from the Re(CO)3Cl adsorbate into the gold surface occurs on the same time scale as IVR of Re(CO)3Cl in aprotic solvents. Therefore, it is expected to be particularly relevant to understanding the reduced catalytic activity of the homogeneous catalyst when anchored to a metal surface.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Benjamin Rudshteyn
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Yale Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Jingyi Zhu
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Reinhard J Maurer
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Victor S Batista
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Yale Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Tan J, Luo Y, Ye S. A Highly Sensitive Femtosecond Time-Resolved Sum Frequency Generation Vibrational Spectroscopy System with Simultaneous Measurement of Multiple Polarization Combinations. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1706114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Ghosh A, Ostrander JS, Zanni MT. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem Rev 2017; 117:10726-10759. [PMID: 28060489 PMCID: PMC5500453 DOI: 10.1021/acs.chemrev.6b00582] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Collapse
Affiliation(s)
| | - Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Kisley L, Miller KA, Guin D, Kong X, Gruebele M, Leckband DE. Direct Imaging of Protein Stability and Folding Kinetics in Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21606-21617. [PMID: 28553706 DOI: 10.1021/acsami.7b01371] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We apply fast relaxation imaging (FReI) as a novel technique for investigating the folding stability and dynamics of proteins within polyacrylamide hydrogels, which have diverse and widespread uses in biotechnology. FReI detects protein unfolding in situ by imaging changes in fluorescence resonance energy transfer (FRET) after temperature jump perturbations. Unlike bulk measurements, diffraction-limited epifluorescence imaging combined with fast temperature perturbations reveals the impact of local environment effects on protein-biomaterial compatibility. Our experiments investigated a crowding sensor protein (CrH2) and phosphoglycerate kinase (PGK), which undergoes cooperative unfolding. The crowding sensor quantifies the confinement effect of the cross-linked hydrogel: the 4% polyacrylamide hydrogel is similar to aqueous solution (no confinement), while the 10% hydrogel is strongly confining. FRAP measurements and protein concentration gradients in the 4% and 10% hydrogels further support this observation. PGK reveals that noncovalent interactions of the protein with the polymer surface are more important than confinement for determining protein properties in the gel: the mere presence of hydrogel increases protein stability, speeds up folding relaxation, and promotes irreversible binding to the polymer even at the solution-gel interface, whereas the difference between the 4% and the 10% hydrogels is negligible despite their large difference in confinement. The imaging capabilities of FReI, demonstrated to be diffraction limited, further revealed spatially homogeneous protein unfolding across the hydrogels at 500 nm length scales and revealed differences in protein properties at the gel-solution boundary.
Collapse
Affiliation(s)
- Lydia Kisley
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Kali A Miller
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Drishti Guin
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Xinyu Kong
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Deborah E Leckband
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Chemical and Biomolecular Engineering, and ⊥Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Nihonyanagi S, Yamaguchi S, Tahara T. Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy. Chem Rev 2017; 117:10665-10693. [DOI: 10.1021/acs.chemrev.6b00728] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Shoichi Yamaguchi
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | | |
Collapse
|
17
|
Vanselous H, Stingel AM, Petersen PB. Interferometric 2D Sum Frequency Generation Spectroscopy Reveals Structural Heterogeneity of Catalytic Monolayers on Transparent Materials. J Phys Chem Lett 2017; 8:825-830. [PMID: 28151677 DOI: 10.1021/acs.jpclett.6b03025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular monolayers exhibit structural and dynamical properties that are different from their bulk counterparts due to their interaction with the substrate. Extracting these distinct properties is crucial for a better understanding of processes such as heterogeneous catalysis and interfacial charge transfer. Ultrafast nonlinear spectroscopic techniques such as 2D infrared (2D IR) spectroscopy are powerful tools for understanding molecular dynamics in complex bulk systems. Here, we build on technical advancements in 2D IR and heterodyne-detected sum frequency generation (SFG) spectroscopy to study a CO2 reduction catalyst on nanostructured TiO2 with interferometric 2D SFG spectroscopy. Our method combines phase-stable heterodyne detection employing an external local oscillator with a broad-band pump pulse pair to provide the first high spectral and temporal resolution 2D SFG spectra of a transparent material. We determine the overall molecular orientation of the catalyst and find that there is a static structural heterogeneity reflective of different local environments at the surface.
Collapse
Affiliation(s)
- Heather Vanselous
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Ashley M Stingel
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Poul B Petersen
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Donovan MA, Lutz H, Yimer YY, Pfaendtner J, Bonn M, Weidner T. LK peptide side chain dynamics at interfaces are independent of secondary structure. Phys Chem Chem Phys 2017; 19:28507-28511. [DOI: 10.1039/c7cp05897g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time observation of the ultrafast motions of leucine side chains within model peptides at the water–air interface with representative folds – α-helix, 310-helix, β-strand – show that interfacial dynamics are mostly determined by surface interactions.
Collapse
Affiliation(s)
| | - Helmut Lutz
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Yeneneh Y. Yimer
- Department of Chemical Engineering
- University of Washington
- 105 Benson Hall
- Seattle
- USA
| | - Jim Pfaendtner
- Department of Chemical Engineering
- University of Washington
- 105 Benson Hall
- Seattle
- USA
| | - Mischa Bonn
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Department of Chemical Engineering
- University of Washington
| |
Collapse
|
19
|
Xiao S, Figge F, Stirnemann G, Laage D, McGuire JA. Orientational Dynamics of Water at an Extended Hydrophobic Interface. J Am Chem Soc 2016; 138:5551-60. [DOI: 10.1021/jacs.6b01820] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shunhao Xiao
- Department
of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Florian Figge
- Department
of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guillaume Stirnemann
- CNRS Laboratoire
de Biochimie Théorique, Institut de Biologie Physico-Chimique,
Univ. Paris Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Damien Laage
- École
Normale
Supérieure-PSL Research University, Département de Chimie,
Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| | - John A. McGuire
- Department
of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
20
|
Donovan MA, Yimer YY, Pfaendtner J, Backus EHG, Bonn M, Weidner T. Ultrafast Reorientational Dynamics of Leucine at the Air–Water Interface. J Am Chem Soc 2016; 138:5226-9. [DOI: 10.1021/jacs.6b01878] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Michael A. Donovan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yeneneh Y. Yimer
- Department
of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - Jim Pfaendtner
- Department
of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - Ellen H. G. Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
21
|
Lee CM, Kafle K, Huang S, Kim SH. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope. J Phys Chem B 2015; 120:102-16. [PMID: 26718642 DOI: 10.1021/acs.jpcb.5b10290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall).
Collapse
Affiliation(s)
- Christopher M Lee
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Kabindra Kafle
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Shixin Huang
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Singh PC. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H2O and HOD water at charged interfaces. J Chem Phys 2015; 142:212431. [DOI: 10.1063/1.4918644] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Prashant C. Singh
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Dutschk V, Karapantsios T, Liggieri L, McMillan N, Miller R, Starov V. Smart and green interfaces: from single bubbles/drops to industrial environmental and biomedical applications. Adv Colloid Interface Sci 2014; 209:109-26. [PMID: 24679903 DOI: 10.1016/j.cis.2014.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 01/15/2023]
Abstract
Interfaces can be called Smart and Green (S&G) when tailored such that the required technologies can be implemented with high efficiency, adaptability and selectivity. At the same time they also have to be eco-friendly, i.e. products must be biodegradable, reusable or simply more durable. Bubble and drop interfaces are in many of these smart technologies the fundamental entities and help develop smart products of the everyday life. Significant improvements of these processes and products can be achieved by implementing and manipulating specific properties of these interfaces in a simple and smart way, in order to accomplish specific tasks. The severe environmental issues require in addition attributing eco-friendly features to these interfaces, by incorporating innovative, or, sometimes, recycle materials and conceiving new production processes which minimize the use of natural resources and energy. Such concept can be extended to include important societal challenges related to support a sustainable development and a healthy population. The achievement of such ambitious targets requires the technology research to be supported by a robust development of theoretical and experimental tools, needed to understand in more details the behavior of complex interfaces. A wide but not exhaustive review of recent work concerned with green and smart interfaces is presented, addressing different scientific and technological fields. The presented approaches reveal a huge potential in relation to various technological fields, such as nanotechnologies, biotechnologies, medical diagnostics, and new or improved materials.
Collapse
|
24
|
Engelhardt K, Peukert W, Braunschweig B. Vibrational sum-frequency generation at protein modified air–water interfaces: Effects of molecular structure and surface charging. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Ricks AM, Anfuso CL, Rodríguez-Córdoba W, Lian T. Vibrational relaxation dynamics of catalysts on TiO2 Rutile (110) single crystal surfaces and anatase nanoporous thin films. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Rosenfeld DE, Nishida J, Yan C, Gengeliczki Z, Smith BJ, Fayer MD. Dynamics of Functionalized Surface Molecular Monolayers Studied with Ultrafast Infrared Vibrational Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2012; 116:23428-23440. [PMID: 23259027 PMCID: PMC3523711 DOI: 10.1021/jp307677b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The structural dynamics of thin films consisting of tricarbonyl (1,10-phenanthroline)rhenium chloride (RePhen(CO)(3)Cl) linked to an alkyl silane monolayer through a triazole linker synthesized on silica-on-calcium-fluoride substrates are investigated using ultrafast infrared (IR) techniques. Ultrafast 2D IR vibrational echo experiments and polarization selective heterodyne detected transient grating (HDTG) measurements, as well as polarization dependent FT-IR and AFM experiments are employed to study the samples. The vibrational echo experiments measure spectral diffusion, while the HDTG experiments measure the vibrational excited state population relaxation and investigate the vibrational transition dipole orientational anisotropy decay. To investigate the anticipated impact of vibrational excitation transfer, which can be caused by the high concentration of RePhen(CO)(3)Cl in the monolayer, a concentration dependence of the spectral diffusion is measured. To generate a range of concentrations, mixed monolayers consisting of both hydrogen terminated and triazole/RePhen(CO)(3)Cl terminated alkyl silanes are synthesized. It is found that the measured rate of spectral diffusion is independent of concentration, with all samples showing spectral diffusion of 37 ± 6 ps. To definitively test for vibrational excitation transfer, polarization selective HDTG experiments are conducted. Excitation transfer will cause anisotropy decay. Polarization resolved heterodyne detected transient grating spectroscopy is sensitive to anisotropy decay (depolarization) caused by excitation transfer and molecular reorientation. The HDTG experiments show no evidence of anisotropy decay on the appropriate time scale, demonstrating the absence of excitation transfer the RePhen(CO)(3)Cl. Therefore the influence of excitation transfer on spectral diffusion is inconsequential in these samples, and the vibrational echo measurements of spectral diffusion report solely on structural dynamics. A small amount of very fast (~2 ps time scale) anisotropy decay is observed. The decay is concentration independent, and is assigned to wobbling-in-a-cone orientational motions of the RePhen(CO)(3)Cl. Theoretical calculations reported previously for experiments on a single concentration of the same type of sample suggested the presence of some vibrational excitation transfer and excitation transfer induced spectral diffusion. Possible reasons for the experimentally observed lack of excitation transfer in these high concentration samples are discussed.
Collapse
Affiliation(s)
| | - Jun Nishida
- Department of Chemistry Stanford University, Stanford, CA 94305
| | - Chang Yan
- Department of Chemistry Stanford University, Stanford, CA 94305
| | | | - Brian J. Smith
- Department of Chemistry Stanford University, Stanford, CA 94305
| | | |
Collapse
|
27
|
Verreault D, Hua W, Allen HC. From Conventional to Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy: Probing Water Organization at Aqueous Interfaces. J Phys Chem Lett 2012; 3:3012-3028. [PMID: 26292243 DOI: 10.1021/jz301179g] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Elucidation of water organization at aqueous interfaces has remained a challenging problem. Conventional vibrational sum frequency generation (VSFG) spectroscopy and its most recent extension, phase-sensitive VSFG (PS-VSFG), have emerged as powerful experimental methods for unraveling structural information at various aqueous interfaces. In this Perspective, we briefly describe the two possible VSFG detection modes, and we point out features that make these methods highly suited to address questions about water organization at air/aqueous interfaces. Several important aqueous interfacial systems are discussed to illustrate the versatility of these methods. Remaining challenges and exciting prospective directions are also presented.
Collapse
Affiliation(s)
- Dominique Verreault
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Wei Hua
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Challa JR, Du Y, McCamant DW. Femtosecond stimulated Raman spectroscopy using a scanning multichannel technique. APPLIED SPECTROSCOPY 2012; 66:227-232. [PMID: 22449287 DOI: 10.1366/11-06457] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A scanning multichannel technique (SMT) has been implemented in femtosecond stimulated Raman spectroscopy (FSRS). By combining several FSRS spectra detected at slightly different positions of the spectrograph via SMT, we have eliminated the systematic noise patterns ("fixed pattern noise") due to the variation in sensitivity and noise characteristics of the individual charge-coupled device (CCD) pixels. In nonresonant FSRS, solvent subtraction can effectively remove the systematic noise pattern even without SMT. However, in the case of resonant FSRS, we show that a similar solvent subtraction procedure is ineffective at removing the noise patterns without SMT. Application of SMT results in averaged FSRS spectra with improved signal-to-noise ratios that approach the shot-noise limit.
Collapse
Affiliation(s)
- J Reddy Challa
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, New York 14627, USA
| | | | | |
Collapse
|
29
|
Hsieh CS, Campen RK, Vila Verde AC, Bolhuis P, Nienhuys HK, Bonn M. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy. PHYSICAL REVIEW LETTERS 2011; 107:116102. [PMID: 22026687 DOI: 10.1103/physrevlett.107.116102] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Indexed: 05/31/2023]
Abstract
We report the real-time measurement of the ultrafast reorientational motion of water molecules at the water-air interface, using femtosecond time- and polarization-resolved vibrational sum-frequency spectroscopy. Vibrational excitation of dangling OH bonds along a specific polarization axis induces a transient anisotropy that decays due to the reorientation of vibrationally excited OH groups. The reorientation of interfacial water is shown to occur on subpicosecond time scales, several times faster than in the bulk, which can be attributed to the lower degree of hydrogen bond coordination at the interface. Molecular dynamics simulations of interfacial water dynamics are in quantitative agreement with experimental observations and show that, unlike in bulk, the interfacial reorientation occurs in a largely diffusive manner.
Collapse
Affiliation(s)
- Cho-Shuen Hsieh
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Bonn M, Bakker HJ, Ghosh A, Yamamoto S, Sovago M, Campen RK. Structural inhomogeneity of interfacial water at lipid monolayers revealed by surface-specific vibrational pump-probe spectroscopy. J Am Chem Soc 2011; 132:14971-8. [PMID: 20882964 DOI: 10.1021/ja106194u] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report vibrational lifetime measurements of the OH stretch vibration of interfacial water in contact with lipid monolayers, using time-resolved vibrational sum frequency (VSF) spectroscopy. The dynamics of water in contact with four different lipids are reported and are characterized by vibrational relaxation rates measured at 3200, 3300, 3400, and 3500 cm(-1). We observe that the water molecules with an OH frequency ranging from 3300 to 3500 cm(-1) all show vibrational relaxation with a time constant of T(1) = 180 ± 35 fs, similar to what is found for bulk water. Water molecules with OH groups near 3200 cm(-1) show distinctly faster relaxation dynamics, with T(1) < 80 fs. We successfully model the data by describing the interfacial water containing two distinct subensembles in which spectral diffusion is, respectively, rapid (3300-3500 cm(-1)) and absent (3200 cm(-1)). We discuss the potential biological implications of the presence of the strongly hydrogen-bonded, rapidly relaxing water molecules at 3200 cm(-1) that are decoupled from the bulk water system.
Collapse
Affiliation(s)
- Mischa Bonn
- FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Ataka K, Kottke T, Heberle J. Thinner, Smaller, Faster: IR Techniques To Probe the Functionality of Biological and Biomimetic Systems. Angew Chem Int Ed Engl 2010; 49:5416-24. [DOI: 10.1002/anie.200907114] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Ataka K, Kottke T, Heberle J. Dünner, kleiner, schneller - wie die IR-Spektroskopie zur Aufklärung des Funktionsmechanismus biologischer und biomimetischer Systeme beiträgt. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Yamamoto S, Ghosh A, Nienhuys HK, Bonn M. Ultrafast inter- and intramolecular vibrational energy transfer between molecules at interfaces studied by time- and polarization-resolved SFG spectroscopy. Phys Chem Chem Phys 2010; 12:12909-18. [DOI: 10.1039/c0cp00538j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Bredenbeck J, Ghosh A, Nienhuys HK, Bonn M. Interface-specific ultrafast two-dimensional vibrational spectroscopy. Acc Chem Res 2009; 42:1332-42. [PMID: 19441810 DOI: 10.1021/ar900016c] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Surfaces and interfaces are omnipresent in nature. They are not just the place where two bulk media meet. Surfaces and interfaces play key roles in a diversity of fields ranging from heterogeneous catalysis and membrane biology to nanotechnology. They are the site of important dynamical processes, such as transport phenomena, energy transfer, molecular interactions, as well as chemical reactions. Tools to study molecular structure and dynamics that can be applied to the delicate molecular layers at surfaces and interfaces are thus highly desirable. The advent of multidimensional optical spectroscopies, which are the focus of a special issue of Accounts of Chemical Research, and in particular of two-dimensional infrared (2D-IR) spectroscopy has been a breakthrough in the investigation of ultrafast molecular dynamics in bulk media. This Account reviews our recent work extending 2D-IR spectroscopy to make it surface-specific, allowing us to reveal the structure and dynamics of specifically interfacial molecules. 2D-IR spectroscopy provides direct information on the coupling of specific vibrational modes. Coupling between different modes can be resolved and quantified by exciting a particular mode at a specific frequency and probing the effect of the excitation on a different mode at a different frequency. The response is thus measured as a function of two frequencies: the excitation and the probe frequency, which provides a two-dimensional vibrational spectrum. When two vibrational modes are coupled, this will give rise to the intensity in the off-diagonal part of the 2D-IR spectrum. The intensity of the cross-peak is determined by the strength of the coupling between the two modes, which, in turn, is determined by molecular conformation. One can therefore relate the 2D-IR spectrum to the molecular structure. By delaying pump and probe pulses relative to one another, one can obtain additional information about conformational fluctuations. The surface-specific 2D-IR approach presented here combines the virtues of 2D-IR with the surface specificity and sub-monolayer sensitivity of vibrational sum frequency generation (SFG). We demonstrate its application on a self-assembled monolayer of a primary alcohol on water. It allows for the elucidation of different contributions to the coupling between the different interfacial methyl and methylene stretching modes. Although the surface 2D-IR technique presented here is conceptually closely related to its bulk counterpart, it is shown to have distinct characteristics, owing to the preferential alignment of molecules at the interface and the strict selection rules of the SFG probing scheme. We present an analytic theoretical framework that incorporates these effects and present simulations on instructive examples as well as on the alcohol monolayer. Overall, these results illustrate the potential of extending 2D-IR spectroscopy to the investigation of surface molecular dynamics.
Collapse
Affiliation(s)
- Jens Bredenbeck
- Fundamental Research on Matter (FOM)−Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands
| | - Avishek Ghosh
- Fundamental Research on Matter (FOM)−Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands
| | - Han-Kwang Nienhuys
- Fundamental Research on Matter (FOM)−Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands
| | - Mischa Bonn
- Fundamental Research on Matter (FOM)−Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands
| |
Collapse
|