1
|
Di Grande S, Kállay M, Barone V. Accurate thermochemistry at affordable cost by means of an improved version of the JunChS-F12 model chemistry. J Comput Chem 2023; 44:2149-2157. [PMID: 37432050 DOI: 10.1002/jcc.27187] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
The junChS-F12 composite method has been improved by means of the latest implementation of the CCSD(F12*)(T+) ansatz and validated for the thermochemistry of molecules containing atoms of the first three rows of the periodic table. A thorough benchmark showed that this model, in conjunction with cost-effective revDSD-PBEP86-D3(BJ) reference geometries, offers an optimal compromise between accuracy and computational cost. If improved geometries are sought, the most effective option is to add MP2-F12 core-valence correlation corrections to CCSD(T)-F12b/jun-cc-pVTZ geometries without the need of performing any extrapolation to the complete basis set limit. In the same vein, CCSD(T)-F12b/jun-cc-pVTZ harmonic frequencies are remarkably accurate without any additional contribution. Pilot applications to noncovalent intermolecular interactions, conformational landscapes, and tautomeric equilibria confirm the effectiveness and reliability of the model.
Collapse
Affiliation(s)
- S Di Grande
- Classe di Scienze, Scuola Normale Superiore di Pisa, Pisa, Italy
- Scuola Superiore Meridionale, Napoli, Italy
| | - M Kállay
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Budapest, Hungary
| | - V Barone
- Classe di Scienze, Scuola Normale Superiore di Pisa, Pisa, Italy
| |
Collapse
|
2
|
Nelson PM, Glick ZL, Sherrill CD. Approximating large-basis coupled-cluster theory vibrational frequencies using focal-point approximations. J Chem Phys 2023; 159:094104. [PMID: 37655773 DOI: 10.1063/5.0168608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
The focal-point approximation can be used to estimate a high-accuracy, slow quantum chemistry computation by combining several lower-accuracy, faster computations. We examine the performance of focal-point methods by combining second-order Møller-Plesset perturbation theory (MP2) with coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] for the calculation of harmonic frequencies and that of fundamental frequencies using second-order vibrational perturbation theory (VPT2). In contrast to standard CCSD(T), the focal-point CCSD(T) method approaches the complete basis set (CBS) limit with only triple-ζ basis sets for the coupled-cluster portion of the computation. The predicted harmonic and fundamental frequencies were compared with the experimental values for a set of 20 molecules containing up to six atoms. The focal-point method combining CCSD(T)/aug-cc-pV(T + d)Z with CBS-extrapolated MP2 has mean absolute errors vs experiment of only 7.3 cm-1 for the fundamental frequencies, which are essentially the same as the mean absolute error for CCSD(T) extrapolated to the CBS limit using the aug-cc-pV(Q + d)Z and aug-cc-pV(5 + d)Z basis sets. However, for H2O, the focal-point procedure requires only 3% of the computation time as the extrapolated CCSD(T) result, and the cost savings will grow for larger molecules.
Collapse
Affiliation(s)
- Philip M Nelson
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
3
|
Dahlmann F, Dinu DF, Jusko P, Lochmann C, Gstir T, Marimuthu AN, Liedl KR, Brünken S, Wester R. Vibrational Predissociation Spectra of C 2 N - and C 3 N - : Bending and Stretching Vibrations. Chemphyschem 2023; 24:e202300262. [PMID: 37199236 PMCID: PMC10962567 DOI: 10.1002/cphc.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023]
Abstract
We present infrared predissociation spectra of C2 N- (H2 ) and C 3 N- (H2 ) in the 300-1850 cm-1 range. Measurements were performed using the FELion cryogenic ion trap end user station at the Free Electron Lasers for Infrared eXperiments (FELIX) laboratory. For C2 N- (H2 ), we detected the CCN bending and CC-N stretching vibrations. For the C3 N- (H2 ) system, we detected the CCN bending, the CC-CN stretching, and multiple overtones and/or combination bands. The assignment and interpretation of the presented experimental spectra is validated by calculations of anharmonic spectra within the vibrational configuration interaction (VCI) approach, based on potential energy surfaces calculated at explicitly correlated coupled cluster theory (CCSD(T)-F12/cc-pVTZ-F12). The H2 tag acts as an innocent spectator, not significantly affecting the C2,3 N- bending and stretching mode positions. The recorded infrared predissociation spectra can thus be used as a proxy for the vibrational spectra of the bare anions.
Collapse
Affiliation(s)
- Franziska Dahlmann
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Dennis F. Dinu
- Department of GeneralInorganic and Theoretical ChemistryUniversität InnsbruckInnrain 80/826020InnsbruckAustria
| | - Pavol Jusko
- Max Planck Institute for Extraterrestrial PhysicsGießenbachstraße 185748GarchingGermany
| | - Christine Lochmann
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Thomas Gstir
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Aravindh N. Marimuthu
- Radboud UniversityInstitute for Molecules and MaterialsFELIX LaboratoryToernooiveld 76525EDNijmegen, theNetherlands
| | - Klaus R. Liedl
- Department of GeneralInorganic and Theoretical ChemistryUniversität InnsbruckInnrain 80/826020InnsbruckAustria
| | - Sandra Brünken
- Radboud UniversityInstitute for Molecules and MaterialsFELIX LaboratoryToernooiveld 76525EDNijmegen, theNetherlands
| | - Roland Wester
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
4
|
Palanisamy N, Banik S. An approximation to the vibrational coupled-cluster method for CH-stretching of large molecules: application to naphthalene and anthracene. Phys Chem Chem Phys 2023; 25:20076-20092. [PMID: 37462438 DOI: 10.1039/d3cp01313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
We propose an approximation to the vibrational coupled-cluster method (VCCM) to describe the CH-stretching region of the vibrational spectrum of large molecules. The vibrational modes of a molecule are divided into two sets: the target set and the bath set. The target set includes the CH stretches and the modes that are strongly coupled with the CH stretches and/or involve strong Fermi resonances with a CH stretch fundamental. The rest of the modes are in the bath set. First, the effective harmonic oscillator (EHO) approximation is invoked for the whole system to obtain the zeroth-order frequencies and modified potentials. The effects of interaction between the bath set and the target sets are included in the modified potential from the EHO calculation. The VCCM equations are constructed with the modified potential from the EHO calculations and for the target set only. The transition energies and intensities are calculated using such a truncated VCCM approximation. The proposed method is applied to calculate the IR spectra of naphthalene and anthracene. The results with three different criteria for selecting the modes in the target set are compared with the experimental IR spectra.
Collapse
Affiliation(s)
- Nivedhitha Palanisamy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| | - Subrata Banik
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
5
|
Zhao H, Pan Y, Lau KC. Ferrocene/ferrocenium, cobaltocene/cobaltocenium and nickelocene/nickelocenium: from gas phase ionization energy to one-electron reduction potential in solvated medium. Phys Chem Chem Phys 2023. [PMID: 37325896 DOI: 10.1039/d3cp01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We propose a theoretical procedure for accurate determination of reduction potentials for three metallocene couples, Cp2M+/Cp2M, where M = Fe, Co and Ni. This procedure first computes the gas phase ionization energy (IE) using the explicitly correlated CCSD(T)-F12 method and includes the zero-point energy correction, core-valence electronic correlation, and relativistic and spin-orbit coupling effects. By means of Born-Haber thermochemical cycle, the one-electron reduction potential is obtained as the sum of the gas phase IE and the corresponding Gibbs free energies of solvation (ΔGsolv) for both the neutral and cationic species. Among the three solvent models (PCM, SMD and uESE) investigated here, it turns out that only the SMD model (computed at the DFT level) gives the best estimation of the value for "ΔGsolv(cation) - ΔGsolv(neutral)" and thus, combining with the accurate IE values, the theoretical protocol is capable of yielding reliable values (in V) for , and . These predictions compare favorably with the available experimental data (in V): , , and . We show that our theoretical procedure is reliable for accurate reduction potential predictions of Cp2Fe+/Cp2Fe, Cp2Co+/Cp2Co and Cp2Ni+/Cp2Ni redox couples in aqueous and non-aqueous media; the maximum absolute deviation is as small as ≈120 mV, which outperforms those of the existing theoretical methods.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Yi Pan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Minenkov Y, Cavallo L, Peterson KA. Influence of the complete basis set approximation, tight weighted-core, and diffuse functions on the DLPNO-CCSD(T1) atomization energies of neutral H,C,O-compounds. J Comput Chem 2023; 44:687-696. [PMID: 36399072 DOI: 10.1002/jcc.27033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
The impact of complete basis set extrapolation schemes (CBS), diffuse functions, and tight weighted-core functions on enthalpies of formation predicted via the DLPNO-CCSD(T1) reduced Feller-Peterson-Dixon approach has been examined for neutral H,C,O-compounds. All tested three-point (TZ/QZ/5Z) extrapolation schemes result in mean unsigned deviation (MUD) below 2 kJ mol-1 relative to the experiment. The two-point QZ/5Z and TZ/QZ CBS 1 / l max 3 extrapolation schemes are inferior to their inverse power counterpart ( 1 / l max + 1 / 2 4 ) by 1.3 and 4.3 kJ mol-1 . The CBS extrapolated frozen core atomization energies are insensitive (within 1 kJ mol-1 ) to augmentation of the basis set with tight weighted core functions. The core-valence correlation effects converge already at triple-ζ, although double-ζ/triple-ζ CBS extrapolation performs better and is recommended. The effect of diffuse function augmentation converges slowly, and cannot be reproduced with double- ζ or triple- ζ calculations as these are plagued with basis set superposition and incompleteness errors.
Collapse
Affiliation(s)
- Yury Minenkov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation.,Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russian Federation
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Li SC, Lin YC, Li YP. Comparative Analysis of Uncoupled Mode Approximations for Molecular Thermochemistry and Kinetics. J Chem Theory Comput 2022; 18:6866-6877. [PMID: 36269729 DOI: 10.1021/acs.jctc.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The accurate prediction of thermochemistry and kinetic parameters is an important task for reaction modeling. Unfortunately, the commonly used harmonic oscillator model is often not accurate enough due to the absence of anharmonic effects. In this work, we improve the representation of an anharmonic potential energy surface (PES) using uncoupled mode (UM) approximations, which model the full-dimensional PES as a sum of one-dimensional potentials of each mode. We systematically analyze different PES sampling schemes and coordinate systems for constructing the one-dimensional potentials, and benchmark the performance of UM methods on data sets of molecular thermochemistry and kinetic properties. The results show that the accuracy of the UM approach strongly depends on how the one-dimensional potentials are defined. If one-dimensional potentials are constructed by sampling along normal mode directions (UM-N) or along the directions that minimize intermode coupling (E- and E'-optimized), the accuracies of the predicted properties are not significantly improved compared to the harmonic oscillator model. However, significant improvements can be achieved by sampling the torsional modes separately from the vibrational modes (UM-T and UM-VT). In this work, three types of coordinate systems are examined, including redundant internal coordinates (RIC), hybrid internal coordinates (HIC), and translation-rotation-internal coordinates (TRIC). The HIC and TRIC coordinate systems can outperform RIC since transition state species may contain large-amplitude interfragmentary motions that regular internal coordinates can not describe adequately. Among all the methods we examined, the activation energies and pre-exponential factors calculated using UM-VT with either TRIC or HIC best agree with the reference values. Since UM-VT requires only a number of additional single point energy calculations for each independent mode, the scaling of computational costs of UM-VT is the same as that of the standard harmonic oscillator model, making UM-VT an appealing way of calculating the thermochemistry and kinetic properties for large-size systems.
Collapse
Affiliation(s)
- Shih-Cheng Li
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yen-Chun Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Pei Li
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,Taiwan International Graduate Program on Sustainable Chemical Science and Technology (TIGP-SCST), Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| |
Collapse
|
8
|
Semidalas E, Martin JML. Automatic generation of complementary auxiliary basis sets for explicitly correlated methods. J Comput Chem 2022; 43:1690-1700. [PMID: 35852227 PMCID: PMC9544771 DOI: 10.1002/jcc.26970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 07/02/2022] [Indexed: 11/15/2022]
Abstract
Explicitly correlated calculations, aside from the orbital basis set, typically require three auxiliary basis sets: Coulomb-exchange fitting (JK), resolution of the identity MP2 (RI-MP2), and complementary auxiliary basis set (CABS). If unavailable for the orbital basis set and chemical elements of interest, the first two can be auto-generated on the fly using existing algorithms, but not the third. In this paper, we present a quite simple algorithm named autoCABS; a Python implementation under a free software license is offered at Github. For the cc-pVnZ-F12 (n = D,T,Q,5), the W4-08 thermochemical benchmark, and the HFREQ2014 set of harmonic frequencies, we demonstrate that autoCABS-generated CABS basis sets are comparable in quality to purpose-optimized OptRI basis sets from the literature, and that the quality difference becomes entirely negligible as n increases.
Collapse
Affiliation(s)
- Emmanouil Semidalas
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceReḥovotIsrael
| | - Jan M. L. Martin
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceReḥovotIsrael
| |
Collapse
|
9
|
Alecu I, Gao Y, Marshall P. Experimental and Computational Studies of the Kinetics of the Reaction of Hydrogen Peroxide with the Amidogen Radical. J Chem Phys 2022; 157:014304. [DOI: 10.1063/5.0095618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pulsed laser photolysis / laser-induced fluorescence method is used to study the kinetics of the reaction of NH2 with H2O2 to yield a second-order rate constant of (2.42 {plus minus} 0.55) × 10-14 cm3 molecule-1 s-1 at 412 K in 10-22 mbar Ar bath gas. There are no prior measurements for comparison. To check this value and to enable reliable extrapolation to other temperatures we also compute thermal rate constants for this process over the temperature range 180 - 3000 K via multi-structural canonical variational transition state theory with small-curvature multidimensional tunneling (MS-CVT/SCT). The CVT/SCT rate constants are derived using a dual-level direct dynamics approach utilizing single-point CCSD(T)-F12b/cc-pVQZ-F12 energies - corrected for core-valence and scalar relativistic effects - and M06-2X/MG3S geometries, gradients, and Hessians for all stationary and non-stationary points along the reaction path. The multi-structural method with torsional anharmonicity based on a coupled torsional potential (MS-T(C)) is then employed to calculate correction factors for the rate constants, accounting for the comprehensive effects of torsional anharmonicity on the kinetics of this reaction system. The final MS-CVT/SCT rate constants are found to be in good agreement with our measurements, and can be expressed in modified Arrhenius form as 2.13 × 10-15 ( T/298 K)4.02 exp(-513 K/ T) cm3 molecule-1 s-1 over the temperature range 298-3000 K.
Collapse
Affiliation(s)
- Ionut Alecu
- University of North Texas, United States of America
| | - Yide Gao
- University of North Texas, United States of America
| | - Paul Marshall
- Department of Chemistry, University of North Texas, United States of America
| |
Collapse
|
10
|
Vogt E, Simkó I, Császár AG, Kjaergaard HG. Reduced-dimensional vibrational models of the water dimer. J Chem Phys 2022; 156:164304. [PMID: 35490001 DOI: 10.1063/5.0090013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A model based on the finite-basis representation of a vibrational Hamiltonian expressed in internal coordinates is developed. The model relies on a many-mode, low-order expansion of both the kinetic energy operator and the potential energy surface (PES). Polyad truncations and energy ceilings are used to control the size of the vibrational basis to facilitate accurate computations of the OH stretch and HOH bend intramolecular transitions of the water dimer (H2 16O)2. Advantages and potential pitfalls of the applied approximations are highlighted. The importance of choices related to the treatment of the kinetic energy operator in reduced-dimensional calculations and the accuracy of different water dimer PESs are discussed. A range of different reduced-dimensional computations are performed to investigate the wavenumber shifts in the intramolecular transitions caused by the coupling between the intra- and intermolecular modes. With the use of symmetry, full 12-dimensional vibrational energy levels of the water dimer are calculated, predicting accurately the experimentally observed intramolecular fundamentals. It is found that one can also predict accurate intramolecular transition wavenumbers for the water dimer by combining a set of computationally inexpensive reduced-dimensional calculations, thereby guiding future effective-Hamiltonian treatments.
Collapse
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Irén Simkó
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
11
|
Roy TK. Performance of Vibrational Self-Consistent Field Theory for Accurate Potential Energy Surfaces: Fundamentals, Excited States, and Intensities. J Phys Chem A 2022; 126:608-622. [PMID: 35050620 DOI: 10.1021/acs.jpca.1c09989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The performance of vibrational structure calculations beyond harmonic approximation in the framework of the vibrational self-consistent field method with second-order perturbation corrections (VSCF-PT2) is investigated in conjunction with very accurate potential energy surfaces (PESs) given by various coupled-cluster electronic structure theories. The quality of anharmonic calculations depends on the accuracy of the underlying multidimensional PES obtained from its functional form, which is given by the level of electronic structure theory. Two such highest levels of typical coupled-cluster electronic structure methods, CCSD and the ″gold standard″ CCSD(T), along with their variants such as CCD, CR-CCL (completely renormalized CR-CC(2,3) approach), and CCSD(TQ) are tested for the construction of accurate anharmonic potentials without any fitting or ad hoc scaling and using cc-pVTZ basis sets. The accuracy of VSCF-PT2 theory in comparison to experimental values is tested for a series of 16 molecules with 135 fundamental bands, 64 overtones, and combination bands and also for 39 intensities. It is found that CCD and CCSD bind the potential tighter than CCSD(T) and the computed VSCF-PT2 transitions are more blue-shifted showing higher deviation from the experiment. In general, VSCF-PT2 results computed at the CCSD(T) potential offer a good cost/accuracy ratio, with the mean absolute deviation and the mean absolute percentage error with the experiment being ∼16 cm-1 and 1.38, respectively, for fundamentals. Additionally, while the CR-CCL and CCSD(TQ) methods offer similar levels of accuracies as compared to CCSD(T), the former offers a better accuracy/cost ratio than the latter and is a suitable alternative to CCSD(T).
Collapse
Affiliation(s)
- Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu and Kashmir 181143, India
| |
Collapse
|
12
|
Jarraya M, Bellili A, Barreau L, Cubaynes D, Garcia GA, Poisson L, Hochlaf M. Probing the dynamics of the photo-induced decarboxylation of neutral and ionic pyruvic acid. Faraday Discuss 2022; 238:266-294. [DOI: 10.1039/d2fd00023g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the electronically excited pyruvic acid (PA) and of its unimolecular decomposition upon single photon ionization are investigated by means of a table top fs laser and VUV...
Collapse
|
13
|
Mendolicchio M, Bloino J, Barone V. General Perturb-Then-Diagonalize Model for the Vibrational Frequencies and Intensities of Molecules Belonging to Abelian and Non-Abelian Symmetry Groups. J Chem Theory Comput 2021; 17:4332-4358. [PMID: 34085530 PMCID: PMC8280743 DOI: 10.1021/acs.jctc.1c00240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 11/29/2022]
Abstract
In this paper, we show that the standard second-order vibrational perturbation theory (VPT2) for Abelian groups can be used also for non-Abelian groups without employing specific equations for two- or threefold degenerate vibrations but rather handling in the proper way all the degeneracy issues and deriving the peculiar spectroscopic signatures of non-Abelian groups (e.g., l -doubling) by a posteriori transformations of the eigenfunctions. Comparison with the results of previous conventional implementations shows a perfect agreement for the vibrational energies of linear and symmetric tops, thus paving the route to the transparent extension of the equations already available for asymmetric tops to the energies of spherical tops and the infrared and Raman intensities of molecules belonging to non-Abelian symmetry groups. The whole procedure has been implemented in our general engine for vibro-rotational computations beyond the rigid rotor/harmonic oscillator model and has been validated on a number of test cases.
Collapse
Affiliation(s)
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
14
|
Hanson-Heine MWD. Reduced Two-Electron Interactions in Anharmonic Molecular Vibrational Calculations Involving Localized Normal Coordinates. J Chem Theory Comput 2021; 17:4383-4391. [PMID: 34087068 DOI: 10.1021/acs.jctc.1c00314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spatially localized vibrational normal mode coordinates are shown to reduce the importance of calculating the full set of two-electron terms in the molecular electronic Schrödinger equation. Electron correlation and dispersion interactions become less significant in (E,E)-1,3,5,7-octatetraene vibrational self-consistent field calculations when displacing remote atoms along multiple coordinates. Electron correlation interactions between spatially remote modes are also found to be less important compared to their corresponding uncorrelated interaction terms. Attenuation of the Coulomb operator indicates that the two-electron terms between remote electrons become less important for accurately describing the strongly contributing mode-coupling terms between sets of localized vibrational modes.
Collapse
|
15
|
Tschöpe M, Schröder B, Erfort S, Rauhut G. High-Level Rovibrational Calculations on Ketenimine. Front Chem 2021; 8:623641. [PMID: 33585403 PMCID: PMC7873934 DOI: 10.3389/fchem.2020.623641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
From an astrochemical point of view ketenimine (CH2CNH) is a complex organic molecule (COM) and therefore likely to be a building block for biologically relevant molecules. Since it has been detected in the star-forming region Sagittarius B2(N), it is of high relevance in this field. Although experimental data are available for certain bands, for some energy ranges such as above 1200 cm-1 reliable data virtually do not exist. In addition, high-level ab initio calculations are neither reported for ketenimine nor for one of its deuterated isotopologues. In this paper, we provide for the first time data from accurate quantum chemical calculations and a thorough analysis of the full rovibrational spectrum. Based on high-level potential energy surfaces obtained from explicitly correlated coupled-cluster calculations including up to 4-mode coupling terms, the (ro)vibrational spectrum of ketenimine has been studied in detail by variational calculations relying on rovibrational configuration interaction (RVCI) theory. Strong Fermi resonances were found for all isotopologues. Rovibrational infrared intensities have been obtained from dipole moment surfaces determined from the distinguishable cluster approximation. A comparison of the spectra of the CH2CNH molecule with experimental data validates our results, but also reveals new insight about the system, which shows very strong Coriolis coupling effects.
Collapse
Affiliation(s)
- Martin Tschöpe
- Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Benjamin Schröder
- Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Sebastian Erfort
- Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
16
|
Esch BVD, Peters LDM, Sauerland L, Ochsenfeld C. Quantitative Comparison of Experimental and Computed IR-Spectra Extracted from Ab Initio Molecular Dynamics. J Chem Theory Comput 2021; 17:985-995. [PMID: 33512155 DOI: 10.1021/acs.jctc.0c01279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimentally measured infrared spectra are often compared to their computed equivalents. However, the accordance is typically characterized by visual inspection, which is prone to subjective judgment. The primary challenge for a similarity-based analysis is that the artifacts introduced by each approach are very different and, therefore, may require preprocessing steps to determine and correct impeding irregularities. To allow for automated objective assessment, we propose a practical and comprehensive workflow involving scaling factors, a novel baseline correction scheme, and peak smoothing. The resulting spectra can then easily be compared quantitatively using similarity measures, for which we found the Pearson correlation coefficient to be the most suitable. The proposed procedure is then applied to compare the agreement of the experimental infrared spectra from the NIST Chemistry Web book with the calculated spectra using standard harmonic frequency analysis and spectra extracted from ab initio molecular dynamics simulations at different levels of theory. We conclude that the direct, quantitative comparison of calculated and measured IR spectra might become a novel, sophisticated approach to benchmark quantum-chemical methods. In the present benchmark, simulated spectra based on ab initio molecular dynamics show in general better agreement with the experiment than static calculations.
Collapse
Affiliation(s)
- Beatriz von der Esch
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Laurens D M Peters
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Lena Sauerland
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| |
Collapse
|
17
|
Bader F, Tremblay JC, Paulus B. A pair potential modeling study of F3− in neon matrices. Phys Chem Chem Phys 2021; 23:886-899. [DOI: 10.1039/d0cp05031h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First-principles investigations of the trifluoride anion in a neon environment reveal a small blue-shift of the fundamental vibrational excitations.
Collapse
Affiliation(s)
- Frederik Bader
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- D-14195, Berlin
- Germany
| | | | - Beate Paulus
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- D-14195, Berlin
- Germany
| |
Collapse
|
18
|
Nejad A, Crittenden DL. On the separability of large-amplitude motions in anharmonic frequency calculations. Phys Chem Chem Phys 2020; 22:20588-20601. [PMID: 32966420 DOI: 10.1039/d0cp03515g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear vibrational theories based upon the Watson Hamiltonian are ubiquitous in quantum chemistry, but are generally unable to model systems in which the wavefunction can delocalise over multiple energy minima, i.e. molecules that have low-energy torsion and inversion barriers. In a 2019 Chemical Reviews article, Puzzarini et al. note that a common workaround is to simply decouple these problematic modes from all other vibrations in the system during anharmonic frequency calculations. They also point out that this approximation can be "ill-suited", but do not quantify the errors introduced. In this work, we present the first systematic investigation into how separating out or constraining torsion and inversion vibrations within potential energy surface (PES) expansions affects the accuracy of computed fundamental wavenumbers for the remaining vibrational modes, using a test set of 19 tetratomic molecules for which high quality analytic potential energy surfaces and fully-coupled anharmonic reference fundamental frequencies are available. We find that the most effective and efficient strategy is to remove the mode in question from the PES expansion entirely. This introduces errors of up to +10 cm-1 in stretching fundamentals that would otherwise couple to the dropped mode, and ±5 cm-1 in all other fundamentals. These errors are approximately commensurate with, but not necessarily additional to, errors due to the choice of electronic structure model used in constructing spectroscopically accurate PES.
Collapse
Affiliation(s)
- Arman Nejad
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany.
| | - Deborah L Crittenden
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
19
|
Mathea T, Rauhut G. Assignment of vibrational states within configuration interaction calculations. J Chem Phys 2020; 152:194112. [DOI: 10.1063/5.0009732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tina Mathea
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
20
|
Klinting EL, Lauvergnat D, Christiansen O. Vibrational Coupled Cluster Computations in Polyspherical Coordinates with the Exact Analytical Kinetic Energy Operator. J Chem Theory Comput 2020; 16:4505-4520. [DOI: 10.1021/acs.jctc.0c00261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Wilson AL, Outeiral C, Dowd SE, Doig AJ, Popelier PLA, Waltho JP, Almond A. Deconvolution of conformational exchange from Raman spectra of aqueous RNA nucleosides. Commun Chem 2020; 3:56. [PMID: 36703475 PMCID: PMC9814580 DOI: 10.1038/s42004-020-0298-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/06/2020] [Indexed: 01/29/2023] Open
Abstract
Ribonucleic acids (RNAs) are key to the central dogma of molecular biology. While Raman spectroscopy holds great potential for studying RNA conformational dynamics, current computational Raman prediction and assignment methods are limited in terms of system size and inclusion of conformational exchange. Here, a framework is presented that predicts Raman spectra using mixtures of sub-spectra corresponding to major conformers calculated using classical and ab initio molecular dynamics. Experimental optimization allowed purines and pyrimidines to be characterized as predominantly syn and anti, respectively, and ribose into exchange between equivalent south and north populations. These measurements are in excellent agreement with Raman spectroscopy of ribonucleosides, and previous experimental and computational results. This framework provides a measure of ribonucleoside solution populations and conformational exchange in RNA subunits. It complements other experimental techniques and could be extended to other molecules, such as proteins and carbohydrates, enabling biological insights and providing a new analytical tool.
Collapse
Affiliation(s)
- Alex L. Wilson
- grid.5379.80000000121662407Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Science, Faculty of Science and Engineering, The University of Manchester, M1 7DN Manchester, UK
| | - Carlos Outeiral
- grid.5379.80000000121662407Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Science, Faculty of Science and Engineering, The University of Manchester, M1 7DN Manchester, UK
| | - Sarah E. Dowd
- grid.5379.80000000121662407Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Science, Faculty of Science and Engineering, The University of Manchester, M1 7DN Manchester, UK
| | - Andrew J. Doig
- grid.5379.80000000121662407Division of Neuroscience and Experimental Psychology, Michael Smith Building, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT Manchester, UK
| | - Paul L. A. Popelier
- grid.5379.80000000121662407Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Science, Faculty of Science and Engineering, The University of Manchester, M1 7DN Manchester, UK
| | - Jonathan P. Waltho
- grid.5379.80000000121662407Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Science, Faculty of Science and Engineering, The University of Manchester, M1 7DN Manchester, UK ,grid.11835.3e0000 0004 1936 9262Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, UK
| | - Andrew Almond
- grid.5379.80000000121662407Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Science, Faculty of Science and Engineering, The University of Manchester, M1 7DN Manchester, UK
| |
Collapse
|
22
|
Petrenko T, Rauhut G. Account of non-Condon effects in time-independent Raman wavefunction theory: Calculation of the S 1 ← S 0 vibronic absorption spectrum of formaldehyde. J Chem Phys 2020; 152:114109. [DOI: 10.1063/5.0003272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Taras Petrenko
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
23
|
Köck EM, Bernard J, Podewitz M, Dinu DF, Huber RG, Liedl KR, Grothe H, Bertel E, Schlögl R, Loerting T. Alpha-Carbonic Acid Revisited: Carbonic Acid Monomethyl Ester as a Solid and its Conformational Isomerism in the Gas Phase. Chemistry 2020; 26:285-305. [PMID: 31593601 PMCID: PMC6972543 DOI: 10.1002/chem.201904142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/07/2019] [Indexed: 11/16/2022]
Abstract
In this work, earlier studies reporting α‐H2CO3 are revised. The cryo‐technique pioneered by Hage, Hallbrucker, and Mayer (HHM) is adapted to supposedly prepare carbonic acid from KHCO3. In methanolic solution, methylation of the salt is found, which upon acidification transforms to the monomethyl ester of carbonic acid (CAME, HO‐CO‐OCH3). Infrared spectroscopy data both of the solid at 210 K and of the evaporated molecules trapped and isolated in argon matrix at 10 K are presented. The interpretation of the observed bands on the basis of carbonic acid [as suggested originally by HHM in their publications from 1993–1997 and taken over by Winkel et al., J. Am. Chem. Soc. 2007 and Bernard et al., Angew. Chem. Int. Ed. 2011] is inferior compared with the interpretation on the basis of CAME. The assignment relies on isotope substitution experiments, including deuteration of the OH‐ and CH3‐ groups as well as 12C and 13C isotope exchange and on variation of the solvents in both preparation steps. The interpretation of the single molecule spectroscopy experiments is aided by a comprehensive calculation of high‐level ab initio frequencies for gas‐phase molecules and clusters in the harmonic approximation. This analysis provides evidence for the existence of not only single CAME molecules but also CAME dimers and water complexes in the argon matrix. Furthermore, different conformational CAME isomers are identified, where conformational isomerism is triggered in experiments through UV irradiation. In contrast to earlier studies, this analysis allows explanation of almost every single band of the complex spectra in the range between 4000 and 600 cm−1.
Collapse
Affiliation(s)
- Eva-Maria Köck
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020, Innsbruck, Austria.,Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Jürgen Bernard
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020, Innsbruck, Austria.,Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Dennis F Dinu
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Roland G Huber
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Hinrich Grothe
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
| | - Erminald Bertel
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020, Innsbruck, Austria
| | - Robert Schlögl
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020, Innsbruck, Austria
| |
Collapse
|
24
|
Dinu DF, Podewitz M, Grothe H, Loerting T, Liedl KR. Decomposing anharmonicity and mode-coupling from matrix effects in the IR spectra of matrix-isolated carbon dioxide and methane. Phys Chem Chem Phys 2020; 22:17932-17947. [DOI: 10.1039/d0cp02121k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and computational approach revealed similarities and differences in the vibrational signature of matrix-isolated carbon dioxide and methane.
Collapse
Affiliation(s)
- Dennis F. Dinu
- Institute of General
- Inorganic and Theoretical Chemistry
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| | - Maren Podewitz
- Institute of General
- Inorganic and Theoretical Chemistry
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| | - Hinrich Grothe
- Institute of Materials Chemistry
- TU Wien
- A-1060 Vienna
- Austria
| | - Thomas Loerting
- Institute of Physical Chemistry
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| | - Klaus R. Liedl
- Institute of General
- Inorganic and Theoretical Chemistry
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| |
Collapse
|
25
|
Furuya K, Sakamoto A, Tasumi M. Anharmonic Vibrational Analysis of Dihalogenomethanes and Dihalogenoethanes by Density-Functional Theory Calculations. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuhiko Furuya
- Analysis Technology Center, Research & Development Management Headquarters, Fujifilm Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 250-0193, Japan
| | - Akira Sakamoto
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Mitsuo Tasumi
- Sapiarc Research Laboratory, 5-14-19-101 Roppongi, Minato-ku, Tokyo 106-0032, Japan
| |
Collapse
|
26
|
Dinu DF, Podewitz M, Grothe H, Liedl KR, Loerting T. Toward Elimination of Discrepancies between Theory and Experiment: Anharmonic Rotational-Vibrational Spectrum of Water in Solid Noble Gas Matrices. J Phys Chem A 2019; 123:8234-8242. [PMID: 31433184 PMCID: PMC6767348 DOI: 10.1021/acs.jpca.9b07221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Rotational–vibrational
spectroscopy of water in solid noble
gas matrices has been studied for many decades. Despite that, discrepancies
persist in the literature about the assignment of specific bands.
We tackle the involved rotational–vibrational spectrum of the
water isotopologues H216O, HD16O,
and D216O with an unprecedented combination
of experimental high-resolution matrix isolation infrared (MI-IR)
spectroscopy and computational anharmonic vibrational spectroscopy
by vibrational configuration interaction (VCI) on high-level ab initio
potential energy surfaces. With VCI, the average deviation to gas-phase
experiments is reduced from >100 to ≈1 cm–1 when compared to harmonic vibrational spectra. Discrepancies between
MI-IR and VCI spectra are identified as matrix effects rather than
missing anharmonicity in the theoretical approach. Matrix effects
are small in Ne (≈1.5 cm–1) and a bit larger
in Ar (≈10 cm–1). Controversial assignments
in Ne MI-IR spectra are resolved, for example, concerning the ν3 triad in HDO. We identify new transitions, for example, the
ν2 101 ← 110 transition
in D2O and H2O or the ν3 000 ← 101 transition in D2O, and
reassign bands, for example, the band at 3718.9 cm–1 that is newly assigned as the 110 ← 111 transition. The identification and solution of discrepancies for
a well-studied benchmark system such as water prove the importance
of an iterative and one-hand combination of theory and experiment
in the field of high-resolution infrared spectroscopy of single molecules.
As the computational costs involved in the VCI approach are reasonably
low, such combined experimental/theoretical studies can be extended
to molecules larger than triatomics.
Collapse
Affiliation(s)
- Dennis F Dinu
- Institute of Materials Chemistry , TU Wien , A-1060 Vienna , Austria
| | | | - Hinrich Grothe
- Institute of Materials Chemistry , TU Wien , A-1060 Vienna , Austria
| | | | | |
Collapse
|
27
|
Abbott AS, Turney JM, Zhang B, Smith DGA, Altarawy D, Schaefer HF. PES-Learn: An Open-Source Software Package for the Automated Generation of Machine Learning Models of Molecular Potential Energy Surfaces. J Chem Theory Comput 2019; 15:4386-4398. [DOI: 10.1021/acs.jctc.9b00312] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adam S. Abbott
- Center for Computational Quantum Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Justin M. Turney
- Center for Computational Quantum Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Boyi Zhang
- Center for Computational Quantum Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Daniel G. A. Smith
- Molecular Sciences Software Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Doaa Altarawy
- Molecular Sciences Software Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
28
|
Ziegler B, Rauhut G. Accurate Vibrational Configuration Interaction Calculations on Diborane and Its Isotopologues. J Phys Chem A 2019; 123:3367-3373. [DOI: 10.1021/acs.jpca.9b01604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin Ziegler
- University of Stuttgart, Institute for Theoretical Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- University of Stuttgart, Institute for Theoretical Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
29
|
Meisner J, Hallmen PP, Kästner J, Rauhut G. Vibrational analysis of methyl cation—Rare gas atom complexes: CH3+—Rg (Rg = He, Ne, Ar, Kr). J Chem Phys 2019; 150:084306. [DOI: 10.1063/1.5084100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jan Meisner
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Philipp P. Hallmen
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Johannes Kästner
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
30
|
Bellili A, Gouid Z, Gazeau MC, Bénilan Y, Fray N, Guillemin JC, Hochlaf M, Schwell M. Single photon ionization of methyl isocyanide and the subsequent unimolecular decomposition of its cation: experiment and theory. Phys Chem Chem Phys 2019; 21:26017-26026. [DOI: 10.1039/c9cp04310a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methyl isocyanide, CH3NC, is a key compound in astrochemistry and astrobiology.
Collapse
Affiliation(s)
- A. Bellili
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| | - Z. Gouid
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| | - M. C. Gazeau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques
- LISA
- UMR CNRS 7583
- Université Paris-Est-Créteil
- Université de Paris
| | - Y. Bénilan
- Laboratoire Interuniversitaire des Systèmes Atmosphériques
- LISA
- UMR CNRS 7583
- Université Paris-Est-Créteil
- Université de Paris
| | - N. Fray
- Laboratoire Interuniversitaire des Systèmes Atmosphériques
- LISA
- UMR CNRS 7583
- Université Paris-Est-Créteil
- Université de Paris
| | - J. C. Guillemin
- Univ Rennes
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- ISCR UMR6226
- F-35000 Rennes
| | - M. Hochlaf
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| | - M. Schwell
- Laboratoire Interuniversitaire des Systèmes Atmosphériques
- LISA
- UMR CNRS 7583
- Université Paris-Est-Créteil
- Université de Paris
| |
Collapse
|
31
|
|
32
|
Zhao HY, Lau KC, Garcia GA, Nahon L, Carniato S, Poisson L, Schwell M, Al-Mogren MM, Hochlaf M. Unveiling the complex vibronic structure of the canonical adenine cation. Phys Chem Chem Phys 2018; 20:20756-20765. [PMID: 29989120 DOI: 10.1039/c8cp02930j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenine, a DNA base, exists as several tautomers and isomers that are closely lying in energy and that may form a mixture upon vaporization of solid adenine. Indeed, it is challenging to bring adenine into the gas phase, especially as a unique tautomer. The experimental conditions were tuned to prepare a jet-cooled canonical adenine (9H-adenine). This isolated DNA base was ionized by single VUV photons from a synchrotron beamline and the corresponding slow photoelectron spectrum was compared to ab initio computations of the neutral and ionic species. We report the vibronic structure of the X+ 2A'' (D0), A+ 2A' (D1) and B+ 2A'' (D2) electronic states of the 9H adenine cation, from the adiabatic ionization energy (AIE) up to AIE + 1.8 eV. Accurate AIEs are derived for the 9H-adenine (X[combining tilde] 1A') + hν → 9H-adenine+ (X+ 2A'', A+ 2A', B+ 2A'') + e- transitions. Close to the AIE, we fully assign the rich vibronic structure solely to the 9H-adenine (X 1A') + hν → 9H-adenine+ (X+ 2A'') transition. Importantly, we show that the lowest cationic electronic states of canonical adenine are coupled vibronically. The present findings are important for understanding the effects of ionizing radiation and the charge distribution on this elementary building block of life, at ultrafast, short, and long timescales.
Collapse
Affiliation(s)
- Hong Yan Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Heindel JP, Yu Q, Bowman JM, Xantheas SS. Benchmark Electronic Structure Calculations for H3O+(H2O)n, n = 0–5, Clusters and Tests of an Existing 1,2,3-Body Potential Energy Surface with a New 4-Body Correction. J Chem Theory Comput 2018; 14:4553-4566. [DOI: 10.1021/acs.jctc.8b00598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joseph P. Heindel
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Qi Yu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Sotiris S. Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box
999, MS K1-83, Richland, Washington 99352, United States
| |
Collapse
|
34
|
Feller D, Davidson ER. A theoretical study of the adiabatic and vertical ionization potentials of water. J Chem Phys 2018; 148:234308. [PMID: 29935496 DOI: 10.1063/1.5037346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Theoretical predictions of the three lowest adiabatic and vertical ionization potentials of water were obtained from the Feller-Peterson-Dixon approach. This approach combines multiple levels of coupled cluster theory with basis sets as large as aug-cc-pV8Z in some cases and various corrections up to and including full configuration interaction theory. While agreement with experiment for the adiabatic ionization potential of the lowest energy 2B1 state was excellent, differences for other states were much larger, sometimes exceeding 10 kcal/mol (0.43 eV). Errors of this magnitude are inconsistent with previous benchmark work on 52 adiabatic ionization potentials, where a root mean square of 0.20 kcal/mol (0.009 eV) was found. Difficulties in direct comparisons between theory and experiment for vertical ionization potentials are discussed. With regard to the differences found for the 2A1/2Πu and 2B2 adiabatic ionization potentials, a reinterpretation of the experimental spectrum appears justified.
Collapse
Affiliation(s)
- David Feller
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Ernest R Davidson
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| |
Collapse
|
35
|
Zhu Y, Ping L, Bai M, Liu Y, Song H, Li J, Yang M. Tracking the energy flow in the hydrogen exchange reaction OH + H 2O → H 2O + OH. Phys Chem Chem Phys 2018; 20:12543-12556. [PMID: 29693667 DOI: 10.1039/c8cp00938d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prototypical hydrogen exchange reaction OH + H2O → H2O + OH has attracted considerable interest due to its importance in a wide range of chemically active environments. In this work, an accurate global potential energy surface (PES) for the ground electronic state was developed based on ∼44 000 ab initio points at the level of UCCSD(T)-F12a/aug-cc-pVTZ. The PES was fitted using the fundamental invariant-neural network method with a root mean squared error of 4.37 meV. The mode specific dynamics was then studied by the quasi-classical trajectory method on the PES. Furthermore, the normal mode analysis approach was employed to calculate the final vibrational state distribution of the product H2O, in which a new scheme to acquire the Cartesian coordinates and momenta of each atom in the product molecule from the trajectories was proposed. It was found that, on one hand, excitation of either the symmetric stretching mode or the asymmetric stretching mode of the reactant H2O promotes the reaction more than the translational energy, which can be rationalized by the sudden vector projection model. On the other hand, the relatively higher efficacy of exciting the symmetric stretching mode than that of the asymmetric stretching mode is caused by the prevalence of the indirect mechanism at low collision energies and the stripping mechanism at high collision energies. In addition, the initial collision energy turns ineffectively into the vibrational energy of the products H2O and OH while a fraction of the energy transforms into the rotational energy of the product H2O. Fundamental excitation of the stretching modes of H2O results in the product H2O having the highest population in the fundamental state of the asymmetric stretching mode, followed by the ground state and the fundamental state of the symmetric stretching mode.
Collapse
Affiliation(s)
- Yongfa Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Krasnoshchekov SV, Schutski RS, Craig NC, Sibaev M, Crittenden DL. Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes. J Chem Phys 2018; 148:084102. [DOI: 10.1063/1.5020295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sergey V. Krasnoshchekov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russian Federation
| | | | - Norman C. Craig
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, USA
| | - Marat Sibaev
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
37
|
Morgan WJ, Matthews DA, Ringholm M, Agarwal J, Gong JZ, Ruud K, Allen WD, Stanton JF, Schaefer HF. Geometric Energy Derivatives at the Complete Basis Set Limit: Application to the Equilibrium Structure and Molecular Force Field of Formaldehyde. J Chem Theory Comput 2018; 14:1333-1350. [DOI: 10.1021/acs.jctc.7b01138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W. James Morgan
- Center for Computational Quantum Chemistry (CCQC), University of Georgia, Athens, Georgia 30602, United States
| | - Devin A. Matthews
- Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, Austin, Texas 78712, United States
| | - Magnus Ringholm
- Hylleraas Centre for Quantum Molecular Science, Department of Chemistry, University of Tromsø − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jay Agarwal
- Center for Computational Quantum Chemistry (CCQC), University of Georgia, Athens, Georgia 30602, United States
| | - Justin Z. Gong
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Science, Department of Chemistry, University of Tromsø − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Wesley D. Allen
- Center for Computational Quantum Chemistry (CCQC), University of Georgia, Athens, Georgia 30602, United States
| | - John F. Stanton
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry (CCQC), University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
38
|
Petrenko T, Rauhut G. Refined analysis of the X̃ 2A 2←X̃ 1A 1 photoelectron spectrum of furan. J Chem Phys 2018; 148:054306. [PMID: 29421890 DOI: 10.1063/1.5018928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The X̃ 2A2←X̃ 1A1 photoelectron spectrum of furan has been studied by a time-independent eigenstate-free Raman wave function approach based on multi-dimensional potential energy surfaces obtained from explicitly correlated distinguishable clusters calculations. Individual vibronic transitions with the most significant Franck-Condon factors were determined by our recently developed residual-based algorithm for the calculation of eigenpairs in conjunction with the formalism of contracted invariant Krylov subspaces. The account of anharmonic and temperature effects allowed us to explain most bands in an experimental high-resolution zero kinetic energy photoelectron spectrum. This led to the reassignment of many spectral features, as well as a refined interpretation of the intensity mechanism for the corresponding transitions.
Collapse
Affiliation(s)
- Taras Petrenko
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
39
|
Trabelsi T, Kumar M, Francisco JS. Substituent effects on the spectroscopic properties of Criegee intermediates. J Chem Phys 2017; 147:164303. [DOI: 10.1063/1.4998170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Petrenko T, Rauhut G. A General Approach for Calculating Strongly Anharmonic Vibronic Spectra with a High Density of States: The X̃2B1 ← X̃1A1 Photoelectron Spectrum of Difluoromethane. J Chem Theory Comput 2017; 13:5515-5527. [DOI: 10.1021/acs.jctc.7b00468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taras Petrenko
- Institute for Theoretical Chemistry, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| |
Collapse
|
41
|
Khomyakov DG, Timerghazin QK. Toward reliable modeling of S-nitrosothiol chemistry: Structure and properties of methyl thionitrite (CH3SNO), an S-nitrosocysteine model. J Chem Phys 2017; 147:044305. [DOI: 10.1063/1.4995300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Dmitry G. Khomyakov
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | - Qadir K. Timerghazin
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| |
Collapse
|
42
|
Schmitz G, Christiansen O. Accuracy of Frequencies Obtained with the Aid of Explicitly Correlated Wave Function Based Methods. J Chem Theory Comput 2017; 13:3602-3613. [PMID: 28686442 DOI: 10.1021/acs.jctc.7b00476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We asses the basis set convergence of harmonic frequencies using different explicitly correlated wave function based methods. All commonly available CCSD(T) variants as well as MP2-F12 and MP4(F12*) are considered, and a hierarchy of the different approaches is established. As for reaction and atomization energies, CCSD(F12*)(T*) is a close approximation to CCSD(F12)(T*) and clearly superior to the other tested approximations. The used scaling for the triples correction enhances the accuracy relative to CCSD(F12*)(T) especially for small basis sets and is very attractive since no additional computational costs are added. However, this scaling slightly breaks size consistency, and therefore we additionally study the accuracy of CCSD(F12*)(T*) and CCSD(F12*)(T) in the context of calculating anharmonic frequencies to check if this causes problems in the generation of the potential energy surface (PES). We find a fast basis set convergence for harmonic and anharmonic frequencies. Already in the cc-pVDZ-F12 basis, the RMSD to the CBS limit is only around 4-5 cm-1.
Collapse
Affiliation(s)
- Gunnar Schmitz
- Department of Chemistry, Aarhus University , Aarhus, Denmark
| | | |
Collapse
|
43
|
Feller D. Estimating the intrinsic limit of the Feller-Peterson-Dixon composite approach when applied to adiabatic ionization potentials in atoms and small molecules. J Chem Phys 2017; 147:034103. [DOI: 10.1063/1.4993625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Puzzarini C, Biczysko M, Peterson KA, Francisco JS, Linguerri R. Accurate spectroscopic characterization of the HOC(O)O radical: A route toward its experimental identification. J Chem Phys 2017; 147:024302. [DOI: 10.1063/1.4990437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician,” Università degli Studi di Bologna, Via Selmi 2, I-40126 Bologna, Italy
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Joseph S. Francisco
- Department of Chemistry and Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Roberto Linguerri
- Laboratorie Modélisation et Simulation Multi Echelle, Université Paris–Est, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
45
|
Linguerri R, Puzzarini C, Al Mogren MM, Francisco JS, Hochlaf M. Benchmark study of the structural and spectroscopic parameters of the hydroxymethyl peroxy (HOCH2OO) radical and its decomposition reaction to HO2 and H2CO. J Chem Phys 2017; 146:144303. [DOI: 10.1063/1.4979573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roberto Linguerri
- Laboratorie Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 Blvd. Descartes, 77454 Marne-la-Vallée, France
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician,” Universitá di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Muneerah Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Joseph S. Francisco
- Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | - Majdi Hochlaf
- Laboratorie Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 Blvd. Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
46
|
Szczepaniak M, Moc J. Cyanoform and Its Isomers. Relative Stabilities, Spectroscopic Features, and Rearrangements by Coupled Cluster and MCSCF-Based Methods. J Phys Chem A 2017; 121:1319-1327. [PMID: 28094531 DOI: 10.1021/acs.jpca.6b10951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although an isolation of elusive tricyanomethane HC(CN)3 was recently reported, the existence of other HC4N3 species has yet to be confirmed. In this work, the relative stabilities, spectroscopic features, and rearrangements of tricyanomethane and its four isomers are examined using single- (CCSD(T), CCSD(T)-F12) and multireference (MCSCF, MRPT2) methods. Tricyanomethane and dicyanoketenimine (NC)2CCNH, which are found to be the two most stable HC4N3 isomers lying within 9 kcal/mol, can be discriminated by their spectroscopic parameters. The predicted stepwise interconversion path relating HC(CN)3 and (NC)2CCNH features the HC4N3 species comprising the C-C-N ring moiety, with the largest barrier being associated with the initial H migration to one of the CN carbons. Adding a water molecule reduces the H migration barrier strongly and makes it possible to interconvert tricyanomethane to dicyanoketenimine in a "concerted" way.
Collapse
Affiliation(s)
- Marek Szczepaniak
- Faculty of Chemistry, Wroclaw University , F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Jerzy Moc
- Faculty of Chemistry, Wroclaw University , F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
47
|
Kenmoe S, Biedermann PU. Water aggregation and dissociation on the ZnO(101̄0) surface. Phys Chem Chem Phys 2017; 19:1466-1486. [DOI: 10.1039/c6cp07516a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DFT studies reveal a hierarchy of water aggregates including dimers, quasi-1D ladders and a novel honeycomb-double monolayer.
Collapse
Affiliation(s)
- Stephane Kenmoe
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
| | | |
Collapse
|
48
|
Hochlaf M. Advances in spectroscopy and dynamics of small and medium sized molecules and clusters. Phys Chem Chem Phys 2017; 19:21236-21261. [DOI: 10.1039/c7cp01980g] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigations of the spectroscopy and dynamics of small- and medium-sized molecules and clusters represent a hot topic in atmospheric chemistry, biology, physics, atto- and femto-chemistry and astrophysics.
Collapse
Affiliation(s)
- Majdi Hochlaf
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| |
Collapse
|
49
|
Orek C, Kłos J, Lique F, Bulut N. Ab initio studies of the Rg-NO(+)(X(1)Σ(+)) van der Waals complexes (Rg = He, Ne, Ar, Kr, and Xe). J Chem Phys 2016; 144:204303. [PMID: 27250302 DOI: 10.1063/1.4950813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We used the explicitly correlated variant of the coupled clusters method with single, double, and noniterative triple excitations [CCSD(T)-F12] to compute two-dimensional potential energy surfaces of van der Waals complexes formed by rare gas atoms (Rg) and NO(+)(X(1)Σ(+)) cations. We used the correlation-consistent, triple-zeta (cc-pVTZ-F12) atomic basis sets, and for Kr and Xe rare gases, we employed corresponding pseudopotential cc-pVTZ-PP-F12 atomic basis sets. These basis sets were additionally augmented with mid-bond functions. The complexes are all of skewed T-shape type with Rg atom being closer to the N-side. Using analytical representation of the potentials, we have estimated zero-point energy corrected dissociation energies from anharmonic calculations with BOUND program and also from the harmonic approximation. The binding energies increase with the polarization of the Rg atom in series from He to Xe and are 196 cm(-1), 360 cm(-1), 1024 cm(-1), 1434 cm(-1), and 2141 cm(-1), respectively. Their corresponding dissociation energies are 132 cm(-1), 300 cm(-1), 927 cm(-1), 1320 cm(-1), and 1994 cm(-1) for the complexes with He to Xe, respectively. We find good agreement with previous theoretical and experimental results. The harmonic vibrational frequencies were calculated for the bending and stretching modes of the Rg-NO(+) complexes.
Collapse
Affiliation(s)
- Cahit Orek
- Physics Department, Faculty of Science, Firat University, Elazig, Turkey
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - François Lique
- LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre, France
| | - Niyazi Bulut
- Physics Department, Faculty of Science, Firat University, Elazig, Turkey
| |
Collapse
|
50
|
Li YP, Bell AT, Head-Gordon M. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules. J Chem Theory Comput 2016; 12:2861-70. [DOI: 10.1021/acs.jctc.5b01177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi-Pei Li
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1462, United States
| | - Alexis T. Bell
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1462, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720-1462, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|