1
|
Manzoor AA, Romita L, Hwang DK. A review on microwell and microfluidic geometric array fabrication techniques and its potential applications in cellular studies. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ahmad Ali Manzoor
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Lauren Romita
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
2
|
Tang X, Liu X, Li P, Liu F, Kojima M, Huang Q, Arai T. On-Chip Cell–Cell Interaction Monitoring at Single-Cell Level by Efficient Immobilization of Multiple Cells in Adjustable Quantities. Anal Chem 2020; 92:11607-11616. [DOI: 10.1021/acs.analchem.0c01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaoqing Tang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pengyun Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fengyu Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Masaru Kojima
- Department of Materials Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
3
|
Effect of particle-particle interaction on dielectrophoretic single particle trap in a sudden contraction flow. NANOTECHNOLOGY AND PRECISION ENGINEERING 2018. [DOI: 10.1016/j.npe.2018.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Kim HS, Devarenne TP, Han A. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction. LAB ON A CHIP 2015; 15:2467-75. [PMID: 25939721 DOI: 10.1039/c4lc01316f] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microfluidic devices and lab-on-a-chip technologies have been extensively used in high-throughput single-cell analysis applications using their capability to precisely manipulate cells as well as their microenvironment. Although significant technological advances have been made in single-cell capture, culture, and analysis techniques, most microfluidic systems cannot selectively retrieve samples off-chip for additional examinations. Being able to retrieve target cells of interest from large arrays of single-cell culture compartments is especially critical in achieving high-throughput single-cell screening applications, such as a mutant library screening. We present a high-throughput microfluidic single-cell screening platform capable of investigating cell properties, such as growth and biomolecule production, followed by selective extraction of particular cells showing desired traits to off-chip reservoirs for sampling or further analysis. The developed platform consists of 1024 single-cell trapping/culturing sites, where opening and closing of each trap can be individually controlled with a microfluidic OR logic gate. By opening only a specific site out of the 1024 trapping sites and applying backflow, particular cells of interest could be selectively released and collected off-chip. Using a unicellular microalga Chlamydomonas reinhardtii, single-cell capture and selective cell extraction capabilities of the developed platform were successfully demonstrated. The growth profile and intracellular lipid accumulation of the cells were also analyzed inside the platform, where 6-8 hours of doubling time and on-chip stained lipid bodies were successfully identified, demonstrating the compatibility of the system for cell culture and fluorescent tagging assays.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | | | | |
Collapse
|
5
|
Chung J, Ingram PN, Bersano-Begey T, Yoon E. Traceable clonal culture and chemodrug assay of heterogeneous prostate carcinoma PC3 cells in microfluidic single cell array chips. BIOMICROFLUIDICS 2014; 8:064103. [PMID: 25553180 PMCID: PMC4232586 DOI: 10.1063/1.4900823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/13/2014] [Indexed: 05/03/2023]
Abstract
Cancer heterogeneity has received considerable attention for its role in tumor initiation and progression, and its implication for diagnostics and therapeutics in the clinic. To facilitate a cellular heterogeneity study in a low cost and highly efficient manner, we present a microfluidic platform that allows traceable clonal culture and characterization. The platform captures single cells into a microwell array and cultures them for clonal expansion, subsequently allowing on-chip characterization of clonal phenotype and response against drug treatments. Using a heterogeneous prostate cancer model, the PC3 cell line, we verified our prototype, identifying three different sub-phenotypes and correlating their clonal drug responsiveness to cell phenotype.
Collapse
Affiliation(s)
- Jaehoon Chung
- Department of Electrical Engineering and Computer Science, University of Michigan , 1301 Beal Avenue, Ann Arbor, Michigan 48109, USA
| | - Patrick N Ingram
- Department of Biomedical Engineering, University of Michigan , 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
6
|
Parameter screening in microfluidics based hydrodynamic single-cell trapping. ScientificWorldJournal 2014; 2014:929163. [PMID: 25013872 PMCID: PMC4070438 DOI: 10.1155/2014/929163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/04/2014] [Indexed: 01/09/2023] Open
Abstract
Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.
Collapse
|
7
|
Luo Y, Cao X, Huang P, Yobas L. Microcapillary-assisted dielectrophoresis for single-particle positioning. LAB ON A CHIP 2012; 12:4085-4092. [PMID: 22892643 DOI: 10.1039/c2lc40150a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here, we demonstrate microcapillary-assisted dielectrophoresis (μC-DEP), a new capability for precise positioning of particles or biological cells in applications such as dynamic assays. The method largely derives from a need to evade the challenges faced with hydrodynamic trapping of particles or cells at microcapillaries typically realized through brief application of suction. Microcapillaries here serve a dual purpose by firstly squeezing field lines to define localized positive DEP traps and then establishing an exclusive access to the trapped cell for probing. Strength of the traps is presented through numerical results at various excitation frequencies. Their effectiveness is shown experimentally against relevant solution conductivities using 10 μm polystyrene microspheres. Usefulness of the method for positioning individual cells is demonstrated via experimental results on cell viability and single-cell impedance spectroscopy.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | |
Collapse
|
8
|
Zhu Z, Frey O, Ottoz DS, Rudolf F, Hierlemann A. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells. LAB ON A CHIP 2012; 12:906-15. [PMID: 22193373 DOI: 10.1039/c2lc20911j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a microfluidic cell-culture chip that enables trapping, cultivation and release of selected individual cells. The chip is fabricated by a simple hybrid glass-SU-8-PDMS approach, which produces a completely transparent microfluidic system amenable to optical inspection. Single cells are trapped in a microfluidic channel using mild suction at defined cell immobilization orifices, where they are cultivated under controlled environmental conditions. Cells of interest can be individually and independently released for further downstream analysis by applying a negative dielectrophoretic force via the respective electrodes located at each immobilization site. The combination of hydrodynamic cell-trapping and dielectrophoretic methods for cell releasing enables highly versatile single-cell manipulation in an array-based format. Computational fluid dynamics simulations were performed to estimate the properties of the system during cell trapping and releasing. Polystyrene beads and yeast cells have been used to investigate and characterize the different functions and to demonstrate biological compatibility and viability of the platform for single-cell applications in research areas such as systems biology.
Collapse
Affiliation(s)
- Zhen Zhu
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), Bio Engineering Laboratory (BEL), Basel, Switzerland.
| | | | | | | | | |
Collapse
|
9
|
Chung J, Kim YJ, Yoon E. Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. APPLIED PHYSICS LETTERS 2011; 98:123701. [PMID: 21673831 PMCID: PMC3112185 DOI: 10.1063/1.3565236] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/15/2011] [Indexed: 05/03/2023]
Abstract
This paper presents a highly efficient single cell capture scheme using hydrodynamic guiding structures in a microwell array. The implemented structure has a capturing efficiency of >80%, and has a capacity to place individual cells into separated microwells, allowing for the time-lapse monitoring on single cell behavior. Feasibility was tested by injecting microbeads (15 μm in diameter) and prostate cancer PC3 cells in an 8×8 microwell array chip and >80% of the microwells were occupied by single ones. Using the chips, the number of cells required for cell assays can be dramatically reduced and this will facilitate overcoming a huddle of assays with scarce supply of cells.
Collapse
|