1
|
Labrador-Páez L, Casasnovas-Melián A, Junquera E, Guerrero-Martínez A, Ahijado-Guzmán R. Optical dark-field spectroscopy of single plasmonic nanoparticles for molecular biosciences. NANOSCALE 2024; 16:19192-19206. [PMID: 39351920 DOI: 10.1039/d4nr03055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
An ideal sensor capable of quantifying analytes in minuscule sample volumes represents a significant technological advancement. Plasmonic nanoparticles integrated with optical dark-field spectroscopy have reached this capability, demonstrating versatility and expanding applicability across in vitro and in vivo subjects. This review underscores the applicability of optical dark-field spectroscopy with single plasmonic nanoparticles to elucidate a wide range of biomolecular characteristics, including binding constants, molecular dynamics, distances, and forces, as well as recording cell communication signals. Perspectives highlight the potential for the development of implantable nanosensors for metabolite detection in animal models, illustrating the technique's efficacy without the need for labeling molecules. In summary, this review aims to consolidate knowledge of this adaptable and robust technique for decoding molecular biological phenomena within the nano- and bio-scientific community.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Alfredo Casasnovas-Melián
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Rubén Ahijado-Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Gritti F, Wyndham K. Retention mechanism in combined hydrodynamic and slalom chromatography for analyzing large nucleic acid biopolymers relevant to cell and gene therapies. J Chromatogr A 2024; 1730:465075. [PMID: 38909519 DOI: 10.1016/j.chroma.2024.465075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Slalom chromatography (SC) was discovered in 1988 for analyzing double-stranded (ds) DNA. However, its progress was impeded by practical issues such as low-purity particles, sample loss, and lack of a clear retention mechanism. With the rise of cell and gene therapies and the availability today of bio-inert ultra-high-pressure liquid chromatography (UHPLC) columns and systems, SC has regained interest. In SC, the elution order is opposite to that observed in hydrodynamic chromatography (HDC): larger DNA molecules are more retained than small ones. Yet, the underlying SC retention mechanism remains elusive. We provide the physicochemical background necessary to explain, at a microscopic scale, the full transition from a HDC to a SC retention mechanism. This includes the persistence length of the DNA macromolecule (representing DNA stiffness), their relaxation time (τR) from the non-equilibrium contour length to the equilibrium entropic configuration, and the relationship between the mobile phase shear rate (〈γ̇〉) in packed columns and the DNA extended length. We propose a relevant retention model to account for the simultaneous impact of hydrodynamic chromatography (HDC) and SC on the retention factors of a series of large and linear dsDNAs (ranging from 2 to 48 kbp). SC data were acquired using bio-inert MaxPeakTM Columns packed with 1.7μm BEHTM 45 Å, 1.8μm BEH 125 Å, 2.4μm BEH 125 Å, 5.3μm BEH 125 Å, and 11.3μm BEH 125 Å Particles, an ACQUITYTM UPLCTM I-class PLUS System, and either 1 × PBS (pH 7.4) or 100 mM phosphate buffer (pH 8) as the mobile phase. SC is a non-equilibrium retention mode that is dominant when the Weissenberg number (Wi=〈γ̇〉τR) is much larger than 10 and the average extended length of DNA exceeds the particle diameter. HDC, on the other hand, is an equilibrium retention mode that dominates when Wi<1 (DNA chains remaining in their non-extended configuration). Maximum dsDNA resolution is observed in a mixed HDC-SC retention mode when the extended length of the DNA is approximately half the particle diameter. This work facilitates the development of methods for characterizing various plasmid DNA mixtures, containing linear, supercoiled, and relaxed circular dsDNAs which all have different degree of molecular stiffness.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA.
| | - Kevin Wyndham
- Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA
| |
Collapse
|
3
|
Chou YC, Lin CY, Castan A, Chen J, Keneipp R, Yasini P, Monos D, Drndić M. Coupled nanopores for single-molecule detection. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01746-7. [PMID: 39143316 DOI: 10.1038/s41565-024-01746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Rapid sensing of molecules is increasingly important in many studies and applications, such as DNA sequencing and protein identification. Here, beyond atomically thin 2D nanopores, we conceptualize, simulate and experimentally demonstrate coupled, guiding and reusable bilayer nanopore platforms, enabling advanced ultrafast detection of unmodified molecules. The bottom layer can collimate and decelerate the molecule before it enters the sensing zone, and the top 2D pore (~2 nm) enables position sensing. We varied the number of pores in the bottom layer from one to nine while fixing one 2D pore in the top layer. When the number of pores in the bottom layer is reduced to one, sensing is performed by both layers, and distinct T- and W-shaped translocation signals indicate the precise position of molecules and are sensitive to fragment lengths. This is uniquely enabled by microsecond resolution capabilities and precision nanofabrication. Coupled nanopores represent configurable multifunctional systems with inter- and intralayer structures for improved electromechanical control and prolonged dwell times in a 2D sensing zone.
Collapse
Affiliation(s)
- Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Castan
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Chen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachael Keneipp
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisa Yasini
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitri Monos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Shapturenka P, Barnes BK, Mansfield E, Noor MM, Fagan JA. Universalized and robust length separation of carbon and boron nitride nanotubes with improved polymer depletion-based fractionation. RSC Adv 2024; 14:25490-25506. [PMID: 39206342 PMCID: PMC11353058 DOI: 10.1039/d4ra01883d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Partitioning nanoparticles by shape and dimension is paramount for advancing nanomaterial standardization, fundamental colloidal investigations, and technologies such as biosensing and digital electronics. Length-separation methods for single-walled carbon nanotubes (SWCNTs) have historically incurred trade-offs in precision and mass throughput, and boron nitride nanotubes (BNNTs) are a rapidly emerging material analogue. We extend and detail a polymer precipitation-based method to fractionate populations of either nanotube type at significant mass scale for four distinct nanotube sources of increasing average diameter (0.7 nm to >2 nm). Such separations result in a supernant phase containing shorter nanotubes and a pellet phase containing the longer nanotubes, with the threshold length for depletion decreasing with increasing polymer concentration. Cross-comparison through analytical ultracentrifugation, spectroscopy, and microscopy versus applied polymer concentration show tailorable and precise length fractionation for 100 nm through >1 μm rod lengths, with fractionation also designable to remove non-nanotube impurities. The threshold length of depletion is further found to increase for decreasing nanotube diameter at fixed polymer concentration, a finding consistent with scaling attributable to nanotube radial excluded volume. The capabilities demonstrated herein promise to significantly advance nanotube implementation within the scientific community.
Collapse
Affiliation(s)
- Pavel Shapturenka
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Benjamin K Barnes
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology Boulder CO 80305 USA
| | - Matthew M Noor
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale IL 62901 USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| |
Collapse
|
5
|
Yu H, Kumar S, Frederiksen JW, Kolyadko VN, Pitoc G, Layzer J, Yan A, Rempel R, Francis S, Krishnaswamy S, Sullenger BA. Aptameric hirudins as selective and reversible EXosite-ACTive site (EXACT) inhibitors. Nat Commun 2024; 15:3977. [PMID: 38730234 PMCID: PMC11087511 DOI: 10.1038/s41467-024-48211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Surgery, Duke University, Durham, NC, USA
| | - Shekhar Kumar
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Vladimir N Kolyadko
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Pitoc
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Amy Yan
- Department of Surgery, Duke University, Durham, NC, USA
| | - Rachel Rempel
- Department of Surgery, Duke University, Durham, NC, USA
| | - Samuel Francis
- Department of Emergency Medicine, Duke University Hospital, Durham, NC, USA
| | - Sriram Krishnaswamy
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, NC, USA.
- Departments of Pharmacology & Cancer Biology and Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Wang H, Yin F, Li L, Li M, Fang Z, Sun C, Li B, Shi J, Li J, Wang L, Song S, Zuo X, Liu X, Fan C. Twisted DNA Origami-Based Chiral Monolayers for Spin Filtering. J Am Chem Soc 2024; 146:5883-5893. [PMID: 38408317 DOI: 10.1021/jacs.3c11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
DNA monolayers with inherent chirality play a pivotal role across various domains including biosensors, DNA chips, and bioelectronics. Nonetheless, conventional DNA chiral monolayers, typically constructed from single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), often lack structural orderliness and design flexibility at the interface. Structural DNA nanotechnology has emerged as a promising solution to tackle these challenges. In this study, we present a strategy for crafting highly adaptable twisted DNA origami-based chiral monolayers. These structures exhibit distinct interfacial assembly characteristics and effectively mitigate the structural disorder of dsDNA monolayers, which is constrained by a limited persistence length of ∼50 nm of dsDNA. We highlight the spin-filtering capabilities of seven representative DNA origami-based chiral monolayers, demonstrating a maximal one-order-of-magnitude increase in spin-filtering efficiency per unit area compared with conventional dsDNA chiral monolayers. Intriguingly, our findings reveal that the higher-order tertiary chiral structure of twisted DNA origami further enhances the spin-filtering efficiency. This work paves the way for the rational design of DNA chiral monolayers.
Collapse
Affiliation(s)
- Haozhi Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyun Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Fang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenyun Sun
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bochen Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shiping Song
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
DeLuca M, Sensale S, Lin PA, Arya G. Prediction and Control in DNA Nanotechnology. ACS APPLIED BIO MATERIALS 2024; 7:626-645. [PMID: 36880799 DOI: 10.1021/acsabm.2c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
8
|
Feng C, Liu X, Sun YF, Ren CL. Double-Stranded DNA Immobilized in Lying-Flat and Upright Orientation on a PNIPAm-Coated Surface: A Theoretical Study. ACS Macro Lett 2024:105-111. [PMID: 38190547 DOI: 10.1021/acsmacrolett.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Surface-immobilized double-stranded DNA (dsDNA) in upright orientation plays an important role in optimizing and understanding DNA-based nanosensors and nanodevices. However, it is difficult to regulate the surface density of upright DNA due to the fact that DNA usually stands vertically at a high packing density but may lie down at a low packing density. We herein report dsDNA immobilized in upright orientation on a poly(N-isopropylacrylamide) (PNIPAm)-coated surface in theory. The theoretical results reveal that the angle of upright DNA relative to the surface is larger than that of DNA immobilized on the bare surface caused by the lying-flat DNA under proper PNIPAm surface coverage at 45 °C. The surface density of upright DNA is significantly influenced by DNA concentration and DNA length. It is envisioned that the density-regulated DNA molecules immobilized in upright orientation in the present work are well suited to bottom-up construction of complex DNA-based nanostructures and nanodevices.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiao Liu
- State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yang-Feng Sun
- Industrial Technology Center, Chengde Petroleum College, Chengde 067000, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
Chen M, Sahoo B, Mou Z, Song X, Tsai T, Dai X. Genome organization in double-stranded DNA viruses observed by cryoET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571939. [PMID: 38168199 PMCID: PMC10760162 DOI: 10.1101/2023.12.15.571939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Double-stranded DNA (dsDNA) viruses package their genetic material into protein cages with diameters usually a few hundred times smaller than the length of their genome. Compressing the relatively stiff and highly negatively charged dsDNA into a small volume is energetically costly and mechanistically enigmatic. Multiple models of dsDNA packaging have been proposed based on various experimental evidence and simulation methods, but direct observation of any viral genome organization is lacking. Here, using cryoET and an improved data processing scheme that utilizes information from the encaging protein shell, we present 3D views of dsDNA genome inside individual viral particles at resolution that densities of neighboring DNA duplexes are readily separable. These cryoET observations reveal a "rod-and-coil" fold of the dsDNA that is conserved among herpes simplex virus type 1 (HSV-1) with a spherical capsid, bacteriophage T4 with a prolate capsid, and bacteriophage T7 with a proteinaceous core inside the capsid. Finally, inspired by the genome arrangement in partially packaged T4 particles, we propose a mechanism for the genome packaging process in dsDNA viruses.
Collapse
Affiliation(s)
- Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Bibekananda Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiyong Song
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tiffany Tsai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
- Lead contact
| |
Collapse
|
10
|
Hebbar A, Dey P, Vatti AK. Lysozyme stability in various deep eutectic solvents using molecular dynamics simulations. J Biomol Struct Dyn 2023:1-9. [PMID: 37909488 DOI: 10.1080/07391102.2023.2275178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The ability of neat deep eutectic solvents (DESs) to influence protein structure and function has gained considerable interest due to the unstable nature of enzymes or therapeutic proteins, which are often exposed to thermal, chemical, or mechanical stresses when handled at an industrial scale. In this study, we simulated a model globular protein, lysozyme, in water and six choline chloride-based DES using molecular dynamics simulations, to investigate the structural changes in various solvent environments, giving insights into the overall stability of lysozyme. Root mean square deviation (RMSD) and root mean square fluctuations (RMSF) of the C-α backbone indicated that most DESs induced a less flexible and rigid lysozyme structure compared to water. The radius of gyration and end-to-end distance calculations pointed towards higher structural compactness in reline and levuline, while the structure of lysozyme considerably expanded in oxaline. Protein-solvent interactions were further analysed by hydrogen bonding interactions and radial distribution functions (RDF), which indicated a higher degree of lysozyme-hydrogen bond donor (HBD) interactions compared to lysozyme-choline hydrogen bonding. Surface area analysis revealed an overall % increase in total positive, negative, donor, and acceptor surface areas in malicine and oxaline compared to water and other DESs, indicating the exposure of a larger number of residues to interactions with the solvent. Reline, levuline, and polyol-based DESs comparatively stabilized lysozyme, even though changes in the secondary/tertiary structures were observed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Poulumi Dey
- Department of Materials Science and Engineering, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, Netherlands
| | - Anoop Kishore Vatti
- Department of Chemical Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
11
|
Wassermann LM, Scheckenbach M, Baptist AV, Glembockyte V, Heuer-Jungemann A. Full Site-Specific Addressability in DNA Origami-Templated Silica Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212024. [PMID: 36932052 DOI: 10.1002/adma.202212024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
DNA nanotechnology allows for the fabrication of nanometer-sized objects with high precision and selective addressability as a result of the programmable hybridization of complementary DNA strands. Such structures can template the formation of other materials, including metals and complex silica nanostructures, where the silica shell simultaneously acts to protect the DNA from external detrimental factors. However, the formation of silica nanostructures with site-specific addressability has thus far not been explored. Here, it is shown that silica nanostructures templated by DNA origami remain addressable for post silicification modification with guest molecules even if the silica shell measures several nm in thickness. The conjugation of fluorescently labeled oligonucleotides is used to different silicified DNA origami structures carrying a complementary ssDNA handle as well as DNA-PAINT super-resolution imaging to show that ssDNA handles remain unsilicified and thus ensure retained addressability. It is also demonstrated that not only handles, but also ssDNA scaffold segments within a DNA origami nanostructure remain accessible, allowing for the formation of dynamic silica nanostructures. Finally, the power of this approach is demonstrated by forming 3D DNA origami crystals from silicified monomers. These results thus present a fully site-specifically addressable silica nanostructure with complete control over size and shape.
Collapse
Affiliation(s)
- Lea M Wassermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Michael Scheckenbach
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Anna V Baptist
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Amelie Heuer-Jungemann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 81377, Munich, Germany
| |
Collapse
|
12
|
Aswath S, Dey P, Vatti AK. Probing the Effect of Aliphatic Ionic Liquids on Asphaltene Aggregation Using Classical Molecular Dynamics Simulations. ACS OMEGA 2023; 8:16186-16193. [PMID: 37179616 PMCID: PMC10173317 DOI: 10.1021/acsomega.3c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
One of the major constituents of heavy oil is asphaltenes. They are responsible for numerous problems in petroleum downstream and upstream processes, such as catalyst deactivation in heavy oil processing and blocking pipes while transporting crude oil. Probing the efficiency of new nonhazardous solvents in separating asphaltenes from crude oil is key to avoid conventional volatile and hazardous solvents by replacing these conventional solvents with new ones. In this work, we have investigated the efficiency of ionic liquids to separate asphaltenes from organic solvents (such as toluene and hexane) using molecular dynamics simulations. Triethylammonium-dihydrogen-phosphate and triethylammonium acetate ionic liquids are considered in this work. Various structural and dynamical properties are calculated, such as radial distribution function, end-to-end distance, trajectory density contour, and diffusivity of asphaltene in the ionic liquid-organic solvent mixture. Our results explain the role of anions, i.e., dihydrogen-phosphate and acetate ions, in separating asphaltene from toluene and hexane. Our study provides an important revelation about the dominant role played by the IL anion in intermolecular interactions which depends on the type of solvent (i.e., toluene or hexane) in which the asphaltene is present. The anion induces enhanced aggregation in the asphaltene-hexane mixture compared to the asphaltene-toluene mixture. The molecular insights obtained within this study on the role played by ionic liquid anion in asphaltene separation are key for the preparation of new ionic liquids for asphaltene precipitation applications.
Collapse
Affiliation(s)
- Surabhi Aswath
- Department
of Chemical Engineering, Manipal Institute
of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering (3mE), Delft University
of Technology, 2628 CD Delft, The Netherlands
- E-mail:
| | - Anoop Kishore Vatti
- Department
of Chemical Engineering, Manipal Institute
of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- E-mail:
| |
Collapse
|
13
|
Mills A, Aissaoui N, Finkel J, Elezgaray J, Bellot G. Mechanical DNA Origami to Investigate Biological Systems. Adv Biol (Weinh) 2023; 7:e2200224. [PMID: 36509679 DOI: 10.1002/adbi.202200224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/25/2022] [Indexed: 12/15/2022]
Abstract
The ability to self-assemble DNA nanodevices with programmed structural dynamics that can sense and respond to the local environment can enable transformative applications in fields including mechanobiology and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. In this review, the current state-of-the-art in constructing complex DNA geometries with dynamic and mechanical properties to enable a molecular scale force measurement is first summarized. Next, an overview of engineering modular DNA devices that interact with cell surfaces is highlighted detailing examples of mechanosensitive proteins and the force-induced dynamic molecular interaction on the downstream biochemical signaling. Finally, the challenges and an outlook on this promising class of DNA devices acting as nanomachines to operate at a low piconewton range suitable for a majority of biological effects or as hybrid materials to achieve higher tension exertion required for other biological investigations, are discussed.
Collapse
Affiliation(s)
- Allan Mills
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Nesrine Aissaoui
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, Paris, 75006, France
| | - Julie Finkel
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Juan Elezgaray
- CRPP, CNRS, UMR 5031, Université de Bordeaux, Pessac, 33600, France
| | - Gaëtan Bellot
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| |
Collapse
|
14
|
Fuladi S, McGuinness S, Shen L, Weber CR, Khalili-Araghi F. Molecular mechanism of claudin-15 strand flexibility: A computational study. J Gen Physiol 2022; 154:213632. [PMID: 36318156 PMCID: PMC9629798 DOI: 10.1085/jgp.202213116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Claudins are one of the major components of tight junctions that play a key role in the formation and maintenance of the epithelial barrier function. Tight junction strands are dynamic and capable of adapting their structure in response to large-scale tissue rearrangement and cellular movement. Here, we present molecular dynamics simulations of claudin-15 strands of up to 225 nm in length in two parallel lipid membranes and characterize their mechanical properties. The persistence length of claudin-15 strands is comparable with those obtained from analyses of freeze-fracture electron microscopy. Our results indicate that lateral flexibility of claudin strands is due to an interplay of three sets of interfacial interaction networks between two antiparallel double rows of claudins in the membranes. In this model, claudins are assembled into interlocking tetrameric ion channels along the strand that slide with respect to each other as the strands curve over submicrometer-length scales. These results suggest a novel molecular mechanism underlying claudin-15 strand flexibility. It also sheds light on intermolecular interactions and their role in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois, Chicago, IL
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois, Chicago, IL
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL
| | | | - Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois, Chicago, IL,Correspondence to Fatemeh Khalili-Araghi:
| |
Collapse
|
15
|
Tail proteins of phage SU10 reorganize into the nozzle for genome delivery. Nat Commun 2022; 13:5622. [PMID: 36153309 PMCID: PMC9509320 DOI: 10.1038/s41467-022-33305-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli phage SU10 belongs to the genus Kuravirus from the class Caudoviricetes of phages with short non-contractile tails. In contrast to other short-tailed phages, the tails of Kuraviruses elongate upon cell attachment. Here we show that the virion of SU10 has a prolate head, containing genome and ejection proteins, and a tail, which is formed of portal, adaptor, nozzle, and tail needle proteins and decorated with long and short fibers. The binding of the long tail fibers to the receptors in the outer bacterial membrane induces the straightening of nozzle proteins and rotation of short tail fibers. After the re-arrangement, the nozzle proteins and short tail fibers alternate to form a nozzle that extends the tail by 28 nm. Subsequently, the tail needle detaches from the nozzle proteins and five types of ejection proteins are released from the SU10 head. The nozzle with the putative extension formed by the ejection proteins enables the delivery of the SU10 genome into the bacterial cytoplasm. It is likely that this mechanism of genome delivery, involving the formation of the tail nozzle, is employed by all Kuraviruses. E. coli phage SU10 has a short non-contractile tail. Here, the authors show that after cell binding, nozzle proteins and tail fibers of SU10 change conformation to form a nozzle that enables the delivery of the phage DNA into the bacterial cytoplasm.
Collapse
|
16
|
A modular spring-loaded actuator for mechanical activation of membrane proteins. Nat Commun 2022; 13:3182. [PMID: 35902570 PMCID: PMC9334261 DOI: 10.1038/s41467-022-30745-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator. The Nano-winch is designed to manipulate multiple mechanoreceptors in parallel by exerting fine-tuned, low- piconewton forces in autonomous and remotely activated modes via adjustable single- and double-stranded DNA linkages, respectively. Nano-winches in autonomous mode can land and operate on the cell surface. Targeting the device to integrin stimulated detectable downstream phosphorylation of focal adhesion kinase, an indication that Nano-winches can be applied to study cellular mechanical processes. Remote activation mode allowed finer extension control and greater force exertion. We united remotely activated Nano-winches with single-channel bilayer experiments to directly observe the opening of a channel by mechanical force in the force responsive gated channel protein, BtuB. This customizable origami provides an instrument-free approach that can be applied to control and explore a diversity of mechanotransduction circuits on living cells. Studies on mechanotransduction are limited by our ability to apply low range forces to specific mechanoreceptors on cell membranes. Here the authors report the Nano-winch, a programmable DNA origami-based molecular actuator, to manipulate multiple mechanoreceptors in parallel by exerting piconewton forces.
Collapse
|
17
|
Hamblin RL, Nguyen NQ, DuBay KH. Selective solvent conditions influence sequence development and supramolecular assembly in step-growth copolymerization. SOFT MATTER 2022; 18:943-955. [PMID: 34855930 DOI: 10.1039/d1sm01571k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sequence control in synthetic copolymers remains a tantalizing objective in polymer science due to the influence of sequence on material properties and self-organization. A greater understanding of sequence development throughout the polymerization process will aid the design of simple, generalizable methods to control sequence and tune supramolecular assembly. In previous simulations of solution-based step-growth copolymerizations, we have shown that weak, non-bonding attractions between monomers of the same type can produce a microphase separation among the lengthening nascent oligomers and thereby alter sequence. This work explores the phenomenon further, examining how effective attractive interactions, mediated by a solvent selective for one of the reacting species, impact the development of sequence and the supramolecular assembly in a simple A-B copolymerization. We find that as the effective attractions between monomers increase, an emergent self-organization of the reactants causes a shift in reaction kinetics and sequence development. When the solvent-mediated interactions are selective enough, the simple mixture of A and B monomers oligomerize and self-assemble into structures characteristic of amphiphilic copolymers. The composition and morphology of these structures and the sequences of their chains are sensitive to the relative balance of affinities between the comonomer species. Our results demonstrate the impact of differing A-B monomer-solvent affinities on sequence development in solution-based copolymerizations and are of consequence to the informed design of synthetic methods for sequence controlled amphiphilic copolymers and their aggregates.
Collapse
Affiliation(s)
- Ryan L Hamblin
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA 22903-4319, USA.
| | - Nhu Q Nguyen
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA 22903-4319, USA.
| | - Kateri H DuBay
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA 22903-4319, USA.
| |
Collapse
|
18
|
Kamath A, Laha A, Pandiyan S, Aswath S, Vatti AK, Dey P. Atomistic investigations of polymer-doxorubicin-CNT compatibility for targeted cancer treatment: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Yeou S, Lee NK. Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability. Mol Cells 2022; 45:33-40. [PMID: 34470919 PMCID: PMC8819492 DOI: 10.14348/molcells.2021.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.
Collapse
Affiliation(s)
- Sanghun Yeou
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
van Dongen JE, Spoelstra LR, Berendsen JTW, Loessberg-Zahl JT, Eijkel JCT, Segerink LI. A Multiplexable Plasmonic Hairpin-DNA Sensor Based On Target-specific Tether Dynamics. ACS Sens 2021; 6:4297-4303. [PMID: 34851614 PMCID: PMC8715532 DOI: 10.1021/acssensors.1c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The need for measurements
of multiple biomarkers simultaneously
at subnanomolar concentrations asks for the development of new sensors
with high sensitivity, specificity, precision, and accuracy. Currently,
multiplexed sensing in single molecule sensors increases the complexity
of the system in terms of reagents and sample read-out. In this letter,
we propose a novel approach to multiplex hairpin-based single-DNA
molecule sensors, which overcomes the limitations of the present approaches
for multiplexing. By target-dependent ssDNA hairpin design, we can
create DNA tethers that have distinct tether dynamics upon target
binding. Our numerical model shows that by changing the stem length
of the ssDNA hairpin, significantly different dynamic tether behavior
will be observed. By exploiting the distance-dependent coupling of
AuNPs to gold films, we can probe this dynamic behavior along the z-axis using a simple laser equipped microscope.
Collapse
Affiliation(s)
- Jeanne Elisabeth van Dongen
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Laurens Rudi Spoelstra
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Johanna Theodora Wilhelmina Berendsen
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Joshua Taylor Loessberg-Zahl
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Jan Cornelis Titus Eijkel
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Loes Irene Segerink
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| |
Collapse
|
21
|
Kundarapu LK, Choudhury S, Acharya S, Vatti AK, Pandiyan S, Gadag S, Nayak UY, Dey P. Combined experimental and molecular dynamics investigation of 1D rod-like asphaltene aggregation in toluene-hexane mixture. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Dale J, Howe CP, Toncrova H, Fritzsch R, Greetham GM, Clark IP, Towrie M, Parker AW, McLeish TC, Hunt NT. Combining steady state and temperature jump IR spectroscopy to investigate the allosteric effects of ligand binding to dsDNA. Phys Chem Chem Phys 2021; 23:15352-15363. [PMID: 34254612 DOI: 10.1039/d1cp02233d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Changes in the structural dynamics of double stranded (ds)DNA upon ligand binding have been linked to the mechanism of allostery without conformational change, but direct experimental evidence remains elusive. To address this, a combination of steady state infrared (IR) absorption spectroscopy and ultrafast temperature jump IR absorption measurements has been used to quantify the extent of fast (∼100 ns) fluctuations in (ds)DNA·Hoechst 33258 complexes at a range of temperatures. Exploiting the direct link between vibrational band intensities and base stacking shows that the absolute magnitude of the change in absorbance caused by fast structural fluctuations following the temperature jump is only weakly dependent on the starting temperature of the sample. The observed fast dynamics are some two orders of magnitude faster than strand separation and associated with all points along the 10-base pair duplex d(GCATATATCC). Binding the Hoechst 33258 ligand causes a small but consistent reduction in the extent of these fast fluctuations of base pairs located outside of the ligand binding region. These observations point to a ligand-induced reduction in the flexibility of the dsDNA near the binding site, consistent with an estimated allosteric propagation length of 15 Å, about 5 base pairs, which agrees well with both molecular simulation and coarse-grained statistical mechanics models of allostery leading to cooperative ligand binding.
Collapse
Affiliation(s)
- Jessica Dale
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| | - C Peter Howe
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| | - Hedvika Toncrova
- Department of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Robby Fritzsch
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Ian P Clark
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Thomas C McLeish
- Department of Physics, University of York, Heslington, York YO10 5DD, UK.
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
23
|
Meng X, Kukura P, Faez S. Sensing force and charge at the nanoscale with a single-molecule tether. NANOSCALE 2021; 13:12687-12696. [PMID: 34477619 PMCID: PMC8319944 DOI: 10.1039/d1nr01970h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Measuring the electrophoretic mobility of molecules is a powerful experimental approach for investigating biomolecular processes. A frequent challenge in the context of single-particle measurements is throughput, limiting the obtainable statistics. Here, we present a molecular force sensor and charge detector based on parallelised imaging and tracking of tethered double-stranded DNA functionalised with charged nanoparticles interacting with an externally applied electric field. Tracking the position of the tethered particle with simultaneous nanometre precision and microsecond temporal resolution allows us to detect and quantify the electrophoretic force down to the sub-piconewton scale. Furthermore, we demonstrate that this approach is suitable for detecting changes to the particle charge state, as induced by the addition of charged biomolecules or changes to pH. Our approach provides an alternative route to studying structural and charge dynamics at the single molecule level.
Collapse
Affiliation(s)
- Xuanhui Meng
- Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks RoadOX1 3QZ OxfordUK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks RoadOX1 3QZ OxfordUK
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Research, Utrecht UniversityNLThe Netherlands
| |
Collapse
|
24
|
Gilbert BR, Thornburg ZR, Lam V, Rashid FZM, Glass JI, Villa E, Dame RT, Luthey-Schulten Z. Generating Chromosome Geometries in a Minimal Cell From Cryo-Electron Tomograms and Chromosome Conformation Capture Maps. Front Mol Biosci 2021; 8:644133. [PMID: 34368224 PMCID: PMC8339304 DOI: 10.3389/fmolb.2021.644133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single 543 kbp circular chromosome. Syn3A’s genome and physical size are approximately one-tenth those of the model bacterial organism Escherichia coli’s, and the corresponding reduction in complexity and scale provides a unique opportunity for whole-cell modeling. Previous work established genome-scale gene essentiality and proteomics data along with its essential metabolic network and a kinetic model of genetic information processing. In addition to that information, whole-cell, spatially-resolved kinetic models require cellular architecture, including spatial distributions of ribosomes and the circular chromosome’s configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level directly from cryo-electron tomograms, including the ribosome distributions. We present a method of generating self-avoiding circular chromosome configurations in a lattice model with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the chromosome configurations are constrained by the ribosomes and geometry reconstructed from the tomograms and include DNA loops suggested by experimental chromosome conformation capture (3C) maps. Using ensembles of simulated chromosome configurations we predict chromosome contact maps for Syn3A cells at resolutions of 250 bp and greater and compare them to the experimental maps. Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting from the individual chromosome configurations can be used to identify macromolecular structures formed from ribosomes and DNA, such as polysomes and expressomes.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vinson Lam
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Fatema-Zahra M Rashid
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - John I Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
25
|
Zhang Z, DuBay KH. The Sequence of a Step-Growth Copolymer Can Be Influenced by Its Own Persistence Length. J Phys Chem B 2021; 125:3426-3437. [PMID: 33779176 DOI: 10.1021/acs.jpcb.1c00873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic copolymer sequences remain challenging to control, and there are features of even simple one-pot, solution-based copolymerizations that are not yet fully understood. In previous simulations on step-growth copolymerizations in solution, we demonstrated that modest variations in the attractions between type A and B monomers could significantly influence copolymer sequence through an emergent aggregation and phase separation initiated by the lengthening of nascent oligomers. Here we investigate how one aspect of a copolymer's geometry-its flexibility-can modulate those effects. Our simulations show the onset of strand alignment within the polymerization-induced aggregates as chain stiffness increases and demonstrate that this alignment can influence the resulting copolymer sequences. For less flexible copolymers, with persistence lengths ≥10 monomers, modest nonbonded attractions of ∼kBT between monomers of the same type yield A and B blocks of a characteristic length and result in a polydispersity index that grows rapidly, peaks, and then diminishes as the reaction proceeds. These results demonstrate that for copolymer systems with modest variations in intermonomer attractions and physically realistic flexibilities a nascent copolymer's persistence length can influence its own sequence.
Collapse
Affiliation(s)
- Zhongmin Zhang
- Department of Chemistry, The University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kateri H DuBay
- Department of Chemistry, The University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
26
|
Pastor M, Czapinska H, Helbrecht I, Krakowska K, Lutz T, Xu SY, Bochtler M. Crystal structures of the EVE-HNH endonuclease VcaM4I in the presence and absence of DNA. Nucleic Acids Res 2021; 49:1708-1723. [PMID: 33450012 PMCID: PMC7897488 DOI: 10.1093/nar/gkaa1218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022] Open
Abstract
Many modification-dependent restriction endonucleases (MDREs) are fusions of a PUA superfamily modification sensor domain and a nuclease catalytic domain. EVE domains belong to the PUA superfamily, and are present in MDREs in combination with HNH nuclease domains. Here, we present a biochemical characterization of the EVE-HNH endonuclease VcaM4I and crystal structures of the protein alone, with EVE domain bound to either 5mC modified dsDNA or to 5mC/5hmC containing ssDNA. The EVE domain is moderately specific for 5mC/5hmC containing DNA according to EMSA experiments. It flips the modified nucleotide, to accommodate it in a hydrophobic pocket of the enzyme, primarily formed by P24, W82 and Y130 residues. In the crystallized conformation, the EVE domain and linker helix between the two domains block DNA binding to the catalytic domain. Removal of the EVE domain and inter-domain linker, but not of the EVE domain alone converts VcaM4I into a non-specific toxic nuclease. The role of the key residues in the EVE and HNH domains of VcaM4I is confirmed by digestion and restriction assays with the enzyme variants that differ from the wild-type by changes to the base binding pocket or to the catalytic residues.
Collapse
Affiliation(s)
- Michal Pastor
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Igor Helbrecht
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Katarzyna Krakowska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Thomas Lutz
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
27
|
Ma J, Wang X, Feng J, Huang C, Fan Z. Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004287. [PMID: 33522074 DOI: 10.1002/smll.202004287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
With the advent of nanofabrication techniques, plasmonic nanoparticles (PNPs) have been widely applied in various research fields ranging from photocatalysis to chemical and bio-sensing. PNPs efficiently convert chemical or physical stimuli in their local environment into optical signals. PNPs also have excellent properties, including good biocompatibility, large surfaces for the attachment of biomolecules, tunable optical properties, strong and stable scattering light, and good conductivity. Thus, single optical biosensors with plasmonic properties enable a broad range of uses of optical imaging techniques in biological sensing and imaging with high spatial and temporal resolution. This work provides a comprehensive overview on the optical properties of single PNPs, the description of five types of commonly used optical imaging techniques, including surface plasmon resonance (SPR) microscopy, surface-enhanced Raman scattering (SERS) technique, differential interference contrast (DIC) microscopy, total internal reflection scattering (TIRS) microscopy, and dark-field microscopy (DFM) technique, with an emphasis on their single plasmonic nanoprobes and mechanisms for applications in biological imaging and sensing, as well as the challenges and future trends of these fields.
Collapse
Affiliation(s)
- Jun Ma
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jian Feng
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongcai Fan
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
28
|
Saran R, Wang Y, Li ITS. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7019. [PMID: 33302459 PMCID: PMC7764255 DOI: 10.3390/s20247019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The mechanical properties of DNA have enabled it to be a structural and sensory element in many nanotechnology applications. While specific base-pairing interactions and secondary structure formation have been the most widely utilized mechanism in designing DNA nanodevices and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how environmental and intrinsic factors such as salt, temperature, sequence, and small molecules influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. First, we will discuss how DNA's bending rigidity has been utilized to create molecular springs that regulate the activities of biomolecules and cellular processes. Second, we will discuss how the nanomechanical response induced by DNA rigidity has been used to create conformational changes as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we will discuss how DNA's rigidity enabled its application in creating DNA-based nanostructures from DNA origami to nanomachines.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| | - Yong Wang
- Department of Physics, Materials Science and Engineering Program, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Isaac T. S. Li
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| |
Collapse
|
29
|
Jung WH, Chen E, Veneziano R, Gaitanaros S, Chen Y. Stretching DNA origami: effect of nicks and Holliday junctions on the axial stiffness. Nucleic Acids Res 2020; 48:12407-12414. [PMID: 33152066 PMCID: PMC7708044 DOI: 10.1093/nar/gkaa985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022] Open
Abstract
The axial stiffness of DNA origami is determined as a function of key nanostructural characteristics. Different constructs of two-helix nanobeams with specified densities of nicks and Holliday junctions are synthesized and stretched by fluid flow. Implementing single particle tracking to extract force–displacement curves enables the measurement of DNA origami stiffness values at the enthalpic elasticity regime, i.e. for forces larger than 15 pN. Comparisons between ligated and nicked helices show that the latter exhibit nearly a two-fold decrease in axial stiffness. Numerical models that treat the DNA helices as elastic rods are used to evaluate the local loss of stiffness at the locations of nicks and Holliday junctions. It is shown that the models reproduce the experimental data accurately, indicating that both of these design characteristics yield a local stiffness two orders of magnitude smaller than the corresponding value of the intact double-helix. This local degradation in turn leads to a macroscopic loss of stiffness that is evaluated numerically for multi-helix DNA bundles.
Collapse
Affiliation(s)
- Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, USA.,Institute for NanoBioTechnology, Johns Hopkins University, USA.,Center for Cell Dynamics, Johns Hopkins University, USA
| | - Enze Chen
- Department of Civil and Systems Engineering, Johns Hopkins University, USA
| | - Remi Veneziano
- Department of Bioengineering, George Mason University, USA.,Institute for Advanced Biomedical Research, George Mason University, USA
| | - Stavros Gaitanaros
- Department of Civil and Systems Engineering, Johns Hopkins University, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, USA.,Institute for NanoBioTechnology, Johns Hopkins University, USA.,Center for Cell Dynamics, Johns Hopkins University, USA
| |
Collapse
|
30
|
Armstrong RE, Horáček M, Zijlstra P. Plasmonic Assemblies for Real-Time Single-Molecule Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003934. [PMID: 33258287 DOI: 10.1002/smll.202003934] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/09/2020] [Indexed: 05/11/2023]
Abstract
Their tunable optical properties and versatile surface functionalization have sparked applications of plasmonic assemblies in the fields of biosensing, nonlinear optics, and photonics. Particularly, in the field of biosensing, rapid advances have occurred in the use of plasmonic assemblies for real-time single-molecule sensing. Compared to individual particles, the use of assemblies as sensors provides stronger signals, more control over the optical properties, and access to a broader range of timescales. In the past years, they have been used to directly reveal single-molecule interactions, mechanical properties, and conformational dynamics. This review summarizes the development of real-time single-molecule sensors built around plasmonic assemblies. First, a brief overview of their optical properties is given, and then recent applications are described. The current challenges in the field and suggestions to overcome those challenges are discussed in detail. Their stability, specificity, and sensitivity as sensors provide a complementary approach to other single-molecule techniques like force spectroscopy and single-molecule fluorescence. In future applications, the impact in real-time sensing on ultralong timescales (hours) and ultrashort timescales (sub-millisecond), time windows that are difficult to access using other techniques, is particularly foreseen.
Collapse
Affiliation(s)
- Rachel E Armstrong
- Department of Applied Physics & Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, Eindhoven, MB, 5600, the Netherlands
| | - Matěj Horáček
- Department of Applied Physics & Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, Eindhoven, MB, 5600, the Netherlands
| | - Peter Zijlstra
- Department of Applied Physics & Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, Eindhoven, MB, 5600, the Netherlands
| |
Collapse
|
31
|
Klinov DV, Protopopova AD, Andrianov DS, Litvinov RI, Weisel JW. An Improved Substrate for Superior Imaging of Individual Biomacromolecules with Atomic Force Microscopy. Colloids Surf B Biointerfaces 2020; 196:111321. [DOI: 10.1016/j.colsurfb.2020.111321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
|
32
|
Ukogu OA, Smith AD, Devenica LM, Bediako H, McMillan RB, Ma Y, Balaji A, Schwab RD, Anwar S, Dasgupta M, Carter AR. Protamine loops DNA in multiple steps. Nucleic Acids Res 2020; 48:6108-6119. [PMID: 32392345 PMCID: PMC7293030 DOI: 10.1093/nar/gkaa365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Protamine proteins dramatically condense DNA in sperm to almost crystalline packing levels. Here, we measure the first step in the in vitro pathway, the folding of DNA into a single loop. Current models for DNA loop formation are one-step, all-or-nothing models with a looped state and an unlooped state. However, when we use a Tethered Particle Motion (TPM) assay to measure the dynamic, real-time looping of DNA by protamine, we observe the presence of multiple folded states that are long-lived (∼100 s) and reversible. In addition, we measure folding on DNA molecules that are too short to form loops. This suggests that protamine is using a multi-step process to loop the DNA rather than a one-step process. To visualize the DNA structures, we used an Atomic Force Microscopy (AFM) assay. We see that some folded DNA molecules are loops with a ∼10-nm radius and some of the folded molecules are partial loops—c-shapes or s-shapes—that have a radius of curvature of ∼10 nm. Further analysis of these structures suggest that protamine is bending the DNA to achieve this curvature rather than increasing the flexibility of the DNA. We therefore conclude that protamine loops DNA in multiple steps, bending it into a loop.
Collapse
Affiliation(s)
- Obinna A Ukogu
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Adam D Smith
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Ryan B McMillan
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Yuxing Ma
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Ashwin Balaji
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Robert D Schwab
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Shahzad Anwar
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | | | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| |
Collapse
|
33
|
Vatti AK, Caratsch A, Sarkar S, Kundarapu LK, Gadag S, Nayak UY, Dey P. Asphaltene Aggregation in Aqueous Solution Using Different Water Models: A Classical Molecular Dynamics Study. ACS OMEGA 2020; 5:16530-16536. [PMID: 32685817 PMCID: PMC7364592 DOI: 10.1021/acsomega.0c01154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/19/2020] [Indexed: 05/27/2023]
Abstract
The aggregation behavior of asphaltene in aqueous solution is systematically investigated based on a classical molecular dynamics study. In this work, a novel approach is adopted in order to investigate the structural and dynamical properties of the asphaltene nanoaggregates using different water models. The end-to-end distance of the asphaltene molecule is probed in order to understand the aggregation behavior in aqueous solution. The accuracy of different water models, that is, simple point charge, TIP4P-D, and TIP5P, is thoroughly investigated. In order to probe the dynamical properties of the asphaltene nanoaggregates, the transport coefficients, namely, diffusion coefficient and shear viscosity, are computed. The obtained results highlight the importance of using the appropriate water model in order to accurately study the aggregation behavior of asphaltene in aqueous solution.
Collapse
Affiliation(s)
- Anoop Kishore Vatti
- Department
of Chemical Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Andrina Caratsch
- Department
of Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Shuvadeep Sarkar
- Department
of Chemical Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Laxman Kumar Kundarapu
- Department
of Chemical Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shivaprasad Gadag
- Manipal
College of Pharmaceutical Sciences, Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Manipal
College of Pharmaceutical Sciences, Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Delft
University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
34
|
Ji H, Johnson NP, von Hippel PH, Marcus AH. Local DNA Base Conformations and Ligand Intercalation in DNA Constructs Containing Optical Probes. Biophys J 2019; 117:1101-1115. [PMID: 31474304 PMCID: PMC6818173 DOI: 10.1016/j.bpj.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 01/18/2023] Open
Abstract
Understanding local conformations of DNA at the level of individual nucleic acid bases and base pairs is important for elucidating molecular processes that depend on DNA sequence. Here, we apply linear absorption and circular dichroism measurements to the study of local DNA conformations, using the guanine base analog 6-methyl isoxanthopterin (6-MI) as a structural probe. We show that the spectroscopic properties of this probe can provide detailed information about the average local base and basepair conformations as a function of the surrounding DNA sequence. Based on these results we apply a simple theoretical model to calculate the circular dichroism spectra of 6-MI-substituted DNA constructs and show that our model can be used to extract information about how the local conformations of the 6-MI probe are influenced by the local base or basepair environment. We also use this probe to examine the pathway for the insertion (intercalation) of a tethered acridine ligand (9-amino-6-chloro methoxyacridine) into duplex DNA. We show that this model intercalator interacts with duplex DNA by a "displacement insertion intercalation" mechanism, whereby the acridine moiety is inserted into the DNA structure and displaces the base located opposite its attachment site. These findings suggest that site-specifically positioned base analog probes can be used to characterize the molecular and structural details of binding ligand effects on local base stacking and unstacking reactions in single- and double-stranded DNA and thus may help to define the molecular mechanisms of DNA-protein interactions that involve the site-specific intercalation of aromatic amino acid side chains into genomic DNA.
Collapse
Affiliation(s)
- Huiying Ji
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon
| | - Neil P Johnson
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Peter H von Hippel
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon; Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
35
|
Design, assembly, characterization, and operation of double-stranded interlocked DNA nanostructures. Nat Protoc 2019; 14:2818-2855. [DOI: 10.1038/s41596-019-0198-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/16/2019] [Indexed: 01/03/2023]
|
36
|
Chung S, Lerner E, Jin Y, Kim S, Alhadid Y, Grimaud LW, Zhang IX, Knobler CM, Gelbart WM, Weiss S. The effect of macromolecular crowding on single-round transcription by Escherichia coli RNA polymerase. Nucleic Acids Res 2019; 47:1440-1450. [PMID: 30590739 PMCID: PMC6379708 DOI: 10.1093/nar/gky1277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 12/01/2018] [Accepted: 12/13/2018] [Indexed: 01/09/2023] Open
Abstract
Previous works have reported significant effects of macromolecular crowding on the structure and behavior of biomolecules. The crowded intracellular environment, in contrast to in vitro buffer solutions, likely imparts similar effects on biomolecules. The enzyme serving as the gatekeeper for the genome, RNA polymerase (RNAP), is among the most regulated enzymes. Although it was previously demonstrated that macromolecular crowding affects association of RNAP to DNA, not much is known about how crowding acts on late initiation and promoter clearance steps, which are considered to be the rate-determining steps for many promoters. Here, we demonstrate that macromolecular crowding enhances the rate of late initiation and promoter clearance using in vitro quenching-based single-molecule kinetics assays. Moreover, the enhancement's dependence on crowder size notably deviates from predictions by the scaled-particle theory, commonly used for description of crowding effects. Our findings shed new light on how enzymatic reactions could be affected by crowded conditions in the cellular milieu.
Collapse
Affiliation(s)
- SangYoon Chung
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - Eitan Lerner
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yan Jin
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - Soohong Kim
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yazan Alhadid
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA 90095, USA
| | - Logan Wilson Grimaud
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - Irina X Zhang
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Present address: Irina X. Zhang, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute (MBI), University of California Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Correspondence may also be addressed to William M. Gelbart. Tel: +1 310 825 2005; Fax: +1 310 206 4038;
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute (MBI), University of California Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Department of Physiology, University of California Los Angeles, CA 90095, USA
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
- To whom correspondence should be addressed. Tel: +1 310 794 0093; Fax: +1 310 267 4672;
| |
Collapse
|
37
|
Probing Mitotic CENP-E Kinesin with the Tethered Cargo Motion Assay and Laser Tweezers. Biophys J 2019; 114:2640-2652. [PMID: 29874614 DOI: 10.1016/j.bpj.2018.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
Coiled-coil stalks of various kinesins differ significantly in predicted length and structure; this is an adaption that helps these motors carry out their specialized functions. However, little is known about the dynamic stalk configuration in moving motors. To gain insight into the conformational properties of the transporting motors, we developed a theoretical model to predict Brownian motion of a microbead tethered to the tail of a single, freely walking molecule. This approach, which we call the tethered cargo motion (TCM) assay, provides an accurate measure of the mechanical properties of motor-cargo tethering, verified using kinesin-1 conjugated to a microbead via DNA links in vitro. Applying the TCM assay to the mitotic kinesin CENP-E unexpectedly revealed that when walking along a microtubule track, this highly elongated molecule with a contour length of 230 nm formed a 20-nm-long tether. The stalk of a walking CENP-E could not be extended fully by application of sideways force with optical tweezers (up to 4 pN), implying that CENP-E carries its cargo in a compact configuration. Assisting force applied along the microtubule track accelerates CENP-E walking, but this increase does not depend on the presence of the CENP-E stalk. Our results suggest that the unusually large stalk of CENP-E has little role in regulating its function as a transporter. The adjustable stalk configuration may represent a regulatory mechanism for controlling the physical reach between kinetochore-bound CENP-E and spindle microtubules, or it may assist localizing various kinetochore regulators in the immediate vicinity of the kinetochore-embedded microtubule ends. The TCM assay and underlying theoretical framework will provide a general guide for determining the dynamic configurations of various molecular motors moving along their tracks, freely or under force.
Collapse
|
38
|
Shahmuradyan A, Moazami-Goudarzi M, Kitazume F, Espie GS, Krull UJ. Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots. Analyst 2018; 144:1223-1229. [PMID: 30534674 DOI: 10.1039/c8an01431k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A paper-based platform was investigated in which the selective detection of oligonucleotide targets by hybridization was accomplished via the enhancement of fluorescence emission from intrinsically labeled DNA probes that were immobilized on the surface of quantum dots (QDs). Multiple copies of a derivative of thiazole orange, an intercalating dye known to form non-emissive dimers, were conjugated to single-stranded oligonucleotide probes. Dimerization resulted in the formation of H-aggregates where excitonic interactions led to the suppression of fluorescence. The hybridization of the oligonucleotide probe with a complementary target resulted in the enhancement of fluorescence emission as the dimers dissociated and the dyes preferentially intercalated with the duplex. The detection of oligonucleotide targets using this configuration eliminated the need for labeling the target strands, and fluorescence intensity was proportional to the extent of hybridization. In addition, the dye molecules were excited using Foerster Resonance Energy Transfer (FRET) from QD donors, which resulted in improved selectivity and allowed for ratiometric detection. A solution-phase hybridization assay based on similar operational principles has been previously reported, and this new work investigated the advantages offered for this transduction scheme using paper-based solid-phase substrates. QD-probe conjugates were immobilized in sufficient density on the paper matrix to provide for multiple-donor-multiple-acceptor interactions that resulted in a 20-fold enhancement of acceptor emission compared to the solution-based assay, providing a limit of detection of 0.1 pmol. The paper-based assay provided for the reduction of the time needed for sample preparation and data acquisition, demonstrated that transduction was possible in a complex matrix (goat serum) without compromising on the performance observed in buffer solution, and that oligonucleotides generated from standard PCR amplification could be detected.
Collapse
Affiliation(s)
- Anna Shahmuradyan
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| | - Maryam Moazami-Goudarzi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada
| | - Fasika Kitazume
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| | - George S Espie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| |
Collapse
|
39
|
Loh AYY, Burgess CH, Tanase DA, Ferrari G, McLachlan MA, Cass AEG, Albrecht T. Electric Single-Molecule Hybridization Detector for Short DNA Fragments. Anal Chem 2018; 90:14063-14071. [PMID: 30398852 DOI: 10.1021/acs.analchem.8b04357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By combining DNA nanotechnology and high-bandwidth single-molecule detection in nanopipets, we demonstrate an electric, label-free hybridization sensor for short DNA sequences (<100 nucleotides). Such short fragments are known to occur as circulating cell-free DNA in various bodily fluids, such as blood plasma and saliva, and have been identified as disease markers for cancer and infectious diseases. To this end, we use as a model system an 88-mer target from the RV1910c gene in Mycobacterium tuberculosis, which is associated with antibiotic (isoniazid) resistance in TB. Upon binding to short probes attached to long carrier DNA, we show that resistive-pulse sensing in nanopipets is capable of identifying rather subtle structural differences, such as the hybridization state of the probes, in a statistically robust manner. With significant potential toward multiplexing and high-throughput analysis, our study points toward a new, single-molecule DNA-assay technology that is fast, easy to use, and compatible with point-of-care environments.
Collapse
Affiliation(s)
- A Y Y Loh
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - C H Burgess
- Department of Materials and Centre for Plastic Electronics , Imperial College London , London SW7 2AZ , United Kingdom
| | - D A Tanase
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - G Ferrari
- Dipartimento di Elettronica, Informazione e Bioingegneria , Politecnico di Milano , Piazza Leonardo da Vinci 32 , Milano 20133 , Italy
| | - M A McLachlan
- Department of Materials and Centre for Plastic Electronics , Imperial College London , London SW7 2AZ , United Kingdom
| | - A E G Cass
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - T Albrecht
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom.,School of Chemistry , University of Birmingham , Edgbaston Campus, Birmingham B15 2TT , United Kingdom
| |
Collapse
|
40
|
Harding SE, Channell G, Phillips-Jones MK. The discovery of hydrogen bonds in DNA and a re-evaluation of the 1948 Creeth two-chain model for its structure. Biochem Soc Trans 2018; 46:1171-1182. [PMID: 30190332 PMCID: PMC6195643 DOI: 10.1042/bst20180158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/25/2022]
Abstract
We recall the experimental approaches involved in the discovery of hydrogen bonds in deoxyribonucleic acid (DNA) made 70 years ago by a team of scientists at University College Nottingham led by J.M. Gulland, and in relation to previous studies. This discovery proved an important step in the elucidation of the correct structure for DNA made by J.D. Watson and F.H.C. Crick, as acknowledged in 'The Double Helix'. At that time of the discovery, however, it was impossible to delineate between inter- and intra-chain hydrogen bonds. We also consider in the light of more recent hydrodynamic theory a tentative model for DNA proposed by Gulland's and D.O. Jordan's PhD student J.M. Creeth in his PhD thesis of 1948, with the correct prediction of two chains with a sugar-phosphate backbone on the exterior and hydrogen-bonded bases between the nucleotide bases of opposite chains in the interior. Our analysis shows that his incorporation of alternating breaks in the two-chain structure was not necessary to explain the viscosity data on scission of hydrogen bonds after titrating to high or low pH. Although Creeth's model is a depiction of DNA structure alone, he could not know whether the hydrogen bonding was intermolecular, although this was subsequently proved correct by others. The mechanisms by which replicative processes occurred were of course unknown at that time, and so, he could not have realised how closely his tentative model resembled steps in some viral replicative mechanisms involving the molecule of life that he was working on.
Collapse
Affiliation(s)
- Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, U.K.
- Kulturhistorisk Museum, Universitetet i Oslo, Postboks 6762, St. Olavs plass, 0130 Oslo, Norway
| | - Guy Channell
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, U.K
| | - Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, U.K
| |
Collapse
|
41
|
Fraccari RL, Carminati M, Piantanida G, Leontidou T, Ferrari G, Albrecht T. High-bandwidth detection of short DNA in nanopipettes. Faraday Discuss 2018; 193:459-470. [PMID: 27711887 DOI: 10.1039/c6fd00109b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glass or quartz nanopipettes have found increasing use as tools for studying the biophysical properties of DNA and proteins, and as sensor devices. The ease of fabrication, favourable wetting properties and low capacitance are some of the inherent advantages, for example compared to more conventional, silicon-based nanopore chips. Recently, we have demonstrated high-bandwidth detection of double-stranded (ds) DNA with microsecond time resolution in nanopipettes, using custom-designed electronics. The electronics design has now been refined to include more sophisticated control features, such as integrated bias reversal and other features. Here, we exploit these capabilities and probe the translocation of short dsDNA in the 100 bp range, in different electrolytes. Single-stranded (ss) DNA of similar length are in use as capture probes, so label-free detection of their ds counterparts could therefore be of relevance in disease diagnostics.
Collapse
Affiliation(s)
- Raquel L Fraccari
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| | - Marco Carminati
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Giacomo Piantanida
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Tina Leontidou
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| | - Giorgio Ferrari
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Tim Albrecht
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| |
Collapse
|
42
|
Protein-sheathed SWNT as a versatile scaffold for nanoparticle assembly and superstructured nanowires. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9307-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Tethered multifluorophore motion reveals equilibrium transition kinetics of single DNA double helices. Proc Natl Acad Sci U S A 2018; 115:E7512-E7521. [PMID: 30037988 PMCID: PMC6094131 DOI: 10.1073/pnas.1800585115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding cellular functions and dysfunctions often begins with quantifying the interactions between the binding partners involved in the processes. Learning about the kinetics of the interactions is of particular importance to understand the dynamics of cellular processes. We created a tethered multifluorophore motion assay using DNA origami that enables over 1-hour-long recordings of the statistical binding and unbinding of single pairs of biomolecules directly in equilibrium. The experimental concept is simple and the data interpretation is very direct, which makes the system easy to use for a wide variety of researchers. Due to the modularity and addressability of the DNA origami-based assay, our system may be readily adapted to study various other molecular interactions. We describe a tethered multifluorophore motion assay based on DNA origami for revealing bimolecular reaction kinetics on the single-molecule level. Molecular binding partners may be placed at user-defined positions and in user-defined stoichiometry; and binding states are read out by tracking the motion of quickly diffusing fluorescent reporter units. Multiple dyes per reporter unit enable singe-particle observation for more than 1 hour. We applied the system to study in equilibrium reversible hybridization and dissociation of complementary DNA single strands as a function of tether length, cation concentration, and sequence. We observed up to hundreds of hybridization and dissociation events per single reactant pair and could produce cumulative statistics with tens of thousands of binding and unbinding events. Because the binding partners per particle do not exchange, we could also detect subtle heterogeneity from molecule to molecule, which enabled separating data reflecting the actual target strand pair binding kinetics from falsifying influences stemming from chemically truncated oligonucleotides. Our data reflected that mainly DNA strand hybridization, but not strand dissociation, is affected by cation concentration, in agreement with previous results from different assays. We studied 8-bp-long DNA duplexes with virtually identical thermodynamic stability, but different sequences, and observed strongly differing hybridization kinetics. Complementary full-atom molecular-dynamics simulations indicated two opposing sequence-dependent phenomena: helical templating in purine-rich single strands and secondary structures. These two effects can increase or decrease, respectively, the fraction of strand collisions leading to successful nucleation events for duplex formation.
Collapse
|
44
|
Storm IM, Stuart MAC, de Vries R, Leermakers FAM. Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes. Phys Rev E 2018; 97:032501. [PMID: 29776063 DOI: 10.1103/physreve.97.032501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 11/07/2022]
Abstract
A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.
Collapse
Affiliation(s)
- Ingeborg M Storm
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Frans A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
45
|
de Ruiter MV, Overeem NJ, Singhai G, Cornelissen JJLM. Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:184002. [PMID: 29512513 PMCID: PMC7104908 DOI: 10.1088/1361-648x/aab4a9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/16/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.
Collapse
Affiliation(s)
- Mark V de Ruiter
- Laboratory of Biomolecular Nanotechnology, MESA + Institute of Nanotechnology, University of Twente, P O Box 217, 7500 AE, Enschede, Netherlands
| | - Nico J Overeem
- Laboratory of Biomolecular Nanotechnology, MESA + Institute of Nanotechnology, University of Twente, P O Box 217, 7500 AE, Enschede, Netherlands
| | - Gaurav Singhai
- Laboratory of Biomolecular Nanotechnology, MESA + Institute of Nanotechnology, University of Twente, P O Box 217, 7500 AE, Enschede, Netherlands
- Flinders Centre for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Jeroen J L M Cornelissen
- Laboratory of Biomolecular Nanotechnology, MESA + Institute of Nanotechnology, University of Twente, P O Box 217, 7500 AE, Enschede, Netherlands
| |
Collapse
|
46
|
Morgan AM, LeGresley SE, Briggs K, Al-Ani G, Fischer CJ. Effects of nucleosome stability on remodeler-catalyzed repositioning. Phys Rev E 2018; 97:032422. [PMID: 29776169 DOI: 10.1103/physreve.97.032422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 06/08/2023]
Abstract
Chromatin remodelers are molecular motors that play essential roles in the regulation of nucleosome positioning and chromatin accessibility. These machines couple the energy obtained from the binding and hydrolysis of ATP to the mechanical work of manipulating chromatin structure through processes that are not completely understood. Here we present a quantitative analysis of nucleosome repositioning by the imitation switch (ISWI) chromatin remodeler and demonstrate that nucleosome stability significantly impacts the observed activity. We show how DNA damage induced changes in the affinity of DNA wrapping within the nucleosome can affect ISWI repositioning activity and demonstrate how assay-dependent limitations can bias studies of nucleosome repositioning. Together, these results also suggest that some of the diversity seen in chromatin remodeler activity can be attributed to the variations in the thermodynamics of interactions between the remodeler, the histones, and the DNA, rather than reflect inherent properties of the remodeler itself.
Collapse
Affiliation(s)
- Aaron M Morgan
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Sarah E LeGresley
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Koan Briggs
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Gada Al-Ani
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Christopher J Fischer
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| |
Collapse
|
47
|
Rollie C, Graham S, Rouillon C, White MF. Prespacer processing and specific integration in a Type I-A CRISPR system. Nucleic Acids Res 2018; 46:1007-1020. [PMID: 29228332 PMCID: PMC5815122 DOI: 10.1093/nar/gkx1232] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
The CRISPR-Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3' ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3' ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR-Cas elements and host proteins across CRISPR types.
Collapse
Affiliation(s)
- Clare Rollie
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Christophe Rouillon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
48
|
Kovari DT, Yan Y, Finzi L, Dunlap D. Tethered Particle Motion: An Easy Technique for Probing DNA Topology and Interactions with Transcription Factors. Methods Mol Biol 2018; 1665:317-340. [PMID: 28940077 DOI: 10.1007/978-1-4939-7271-5_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tethered Particle Motion (TPM) is a versatile in vitro technique for monitoring the conformations a linear macromolecule, such as DNA, can exhibit. The technique involves monitoring the diffusive motion of a particle anchored to a fixed point via the macromolecule of interest, which acts as a tether. In this chapter, we provide an overview of TPM, review the fundamental principles that determine the accuracy with which effective tether lengths can be used to distinguish different tether conformations, present software tools that assist in capturing and analyzing TPM data, and provide a protocol which uses TPM to characterize lac repressor-induced DNA looping. Critical to any TPM assay is the understanding of the timescale over which the diffusive motion of the particle must be observed to accurately distinguish tether conformations. Approximating the tether as a Hookean spring, we show how to estimate the diffusion timescale and discuss how it relates to the confidence with which tether conformations can be distinguished. Applying those estimates to a lac repressor titration assay, we describe how to perform a TPM experiment. We also provide graphically driven software which can be used to speed up data collection and analysis. Lastly, we detail how TPM data from the titration assay can be used to calculate relevant molecular descriptors such as the J factor for DNA looping and lac repressor-operator dissociation constants. While the included protocol is geared toward studying DNA looping, the technique, fundamental principles, and analytical methods are more general and can be adapted to a wide variety of molecular systems.
Collapse
Affiliation(s)
- Daniel T Kovari
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
49
|
Woodcock CB, Yakubov AB, Reich NO. Caulobacter crescentus Cell Cycle-Regulated DNA Methyltransferase Uses a Novel Mechanism for Substrate Recognition. Biochemistry 2017; 56:3913-3922. [PMID: 28661661 DOI: 10.1021/acs.biochem.7b00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caulobacter crescentus relies on DNA methylation by the cell cycle-regulated methyltransferase (CcrM) in addition to key transcription factors to control the cell cycle and direct cellular differentiation. CcrM is shown here to efficiently methylate its cognate recognition site 5'-GANTC-3' in single-stranded and hemimethylated double-stranded DNA. We report the Km, kcat, kmethylation, and Kd for single-stranded and hemimethylated substrates, revealing discrimination of 107-fold for noncognate sequences. The enzyme also shows a similar discrimination against single-stranded RNA. Two independent assays clearly show that CcrM is highly processive with single-stranded and hemimethylated DNA. Collectively, the data provide evidence that CcrM and other DNA-modifying enzymes may use a new mechanism to recognize DNA in a key epigenetic process.
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Aziz B Yakubov
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
50
|
Sjollema J, van der Mei HC, Hall CL, Peterson BW, de Vries J, Song L, Jong EDD, Busscher HJ, Swartjes JJTM. Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces. Sci Rep 2017; 7:4369. [PMID: 28663565 PMCID: PMC5491521 DOI: 10.1038/s41598-017-04703-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/08/2017] [Indexed: 01/15/2023] Open
Abstract
Bacterial adhesion to surfaces occurs ubiquitously and is initially reversible, though becoming more irreversible within minutes after first contact with a surface. We here demonstrate for eight bacterial strains comprising four species, that bacteria adhere irreversibly to surfaces through multiple, reversibly-binding tethers that detach and successively re-attach, but not collectively detach to cause detachment of an entire bacterium. Arguments build on combining analyses of confined Brownian-motion of bacteria adhering to glass and their AFM force-distance curves and include the following observations: (1) force-distance curves showed detachment events indicative of multiple binding tethers, (2) vibration amplitudes of adhering bacteria parallel to a surface decreased with increasing adhesion-forces acting perpendicular to the surface, (3) nanoscopic displacements of bacteria with relatively long autocorrelation times up to several seconds, in absence of microscopic displacement, (4) increases in Mean-Squared-Displacement over prolonged time periods according to tα with 0 < α ≪ 1, indicative of confined displacement. Analysis of simulated position-maps of adhering particles using a new, in silico model confirmed that adhesion to surfaces is irreversible through detachment and successive re-attachment of reversibly-binding tethers. This makes bacterial adhesion mechanistically comparable with the irreversible adsorption of high-molecular-weight proteins to surfaces, mediated by multiple, reversibly-binding molecular segments.
Collapse
Affiliation(s)
- Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Connie L Hall
- Department of Biomedical Engineering, The College of New Jersey, Armstong Hall, Room 181, P. O. Box 7718, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Joop de Vries
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lei Song
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ed D de Jong
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Jan J T M Swartjes
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|