1
|
Wang JL, Chou CT, Liang WZ, Yeh JH, Kuo CC, Lee CY, Shieh P, Kuo DH, Chen FA, Jan CR. Effect of 2,5-dimethylphenol on Ca(2+) movement and viability in PC3 human prostate cancer cells. Toxicol Mech Methods 2016; 26:327-33. [PMID: 27310574 DOI: 10.3109/15376516.2016.1158893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The phenolic compound 2,5-dimethylphenol is a natural product. 2,5-Dimethylphenol has been shown to affect rat hepatic and pulmonary microsomal metabolism. However, the effect of 2,5-dimethylphenol on Ca(2+ )signaling and cyotoxicity has never been explored in any culture cells. This study explored the effect of 2,5-dimethylphenol on cytosolic free Ca(2+ )levels ([Ca(2+)]i) and cell viability in PC3 human prostate cancer cells. 2,5-Dimethylphenol at concentrations between 500 μM and 1000 μM evoked [Ca(2+)]i rises in a concentration-dependent manner. This Ca(2+ )signal was inhibited by approximately half by the removal of extracellular Ca(2+). 2,5-Dimethylphenol-induced Ca(2+ )influx was confirmed by Mn(2+)-induced quench of fura-2 fluorescence. Pretreatment with the protein kinase C (PKC) inhibitor GF109203X, nifedipine or the store-operated Ca(2+ )entry inhibitors (econazole or SKF96365) inhibited 2,5-dimethylphenol-induced Ca(2+ )signal in Ca(2+)-containing medium by ∼30%. Treatment with the endoplasmic reticulum Ca(2+ )pump inhibitor thapsigargin in Ca(2+)-free medium abolished 2,5-dimethylphenol-induced [Ca(2+)]i rises. Conversely, treatment with 2,5-dimethylphenol abolished thapsigargin-induced [Ca(2+)]i rises. Inhibition of phospholipase C (PLC) with U73122 reduced 2,5-dimethylphenol-evoked [Ca(2+)]i rises by ∼80%. 2,5-Dimethylphenol killed cells at concentrations of 350-1000 μM in a concentration-dependent fashion. Chelation of cytosolic Ca(2+ )with 1,2-bis(2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid/AM (BAPTA/AM) did not prevent 2,5-dimethylphenol's cytotoxicity. Together, in PC3 cells, 2,5-dimethylphenol induced [Ca(2+)]i rises that involved Ca(2+ )entry through PKC-regulated store-operated Ca(2+ )channels and PLC-dependent Ca(2+ )release from the endoplasmic reticulum. 2,5-Dimethylphenol induced cytotoxicity in a Ca(2+)-independent manner.
Collapse
Affiliation(s)
- Jue-Long Wang
- a Department of Rehabilitation , Kaohsiung Veterans General Hospital Tainan Branch , Tainan , Taiwan , ROC
| | - Chiang-Ting Chou
- b Department of Nursing , Division of Basic Medical Sciences, Chang Gung Institute of Technology , Chia-Yi, Taiwan , ROC .,c Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology , Chia-Yi, Taiwan , ROC
| | - Wei-Zhe Liang
- d Department of Medical Education and Research , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan , ROC
| | - Jeng-Hsien Yeh
- e Department of Pathology and Laboratory Medicine , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan , ROC
| | - Chun-Chi Kuo
- f Department of Nursing , Tzu Hui Institute of Technology , Pingtung , Taiwan , ROC
| | - Chao-Ying Lee
- g School of Pharmacy, China Medical University , Taichung , Taiwan , ROC
| | - Pochuen Shieh
- h Department of Pharmacy , Tajen University , Pingtung , Taiwan , ROC
| | - Daih-Huang Kuo
- h Department of Pharmacy , Tajen University , Pingtung , Taiwan , ROC
| | - Fu-An Chen
- h Department of Pharmacy , Tajen University , Pingtung , Taiwan , ROC
| | - Chung-Ren Jan
- d Department of Medical Education and Research , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan , ROC
| |
Collapse
|
2
|
Guzmán-Silva A, Vázquez de Lara LG, Torres-Jácome J, Vargaz-Guadarrama A, Flores-Flores M, Pezzat Said E, Lagunas-Martínez A, Mendoza-Milla C, Tanzi F, Moccia F, Berra-Romani R. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts. PLoS One 2015; 10:e0134564. [PMID: 26230503 PMCID: PMC4521834 DOI: 10.1371/journal.pone.0134564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/11/2015] [Indexed: 12/12/2022] Open
Abstract
Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF.
Collapse
Affiliation(s)
- Alejandro Guzmán-Silva
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Luis G. Vázquez de Lara
- Experimental Medicine Laboratory, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Julián Torres-Jácome
- Physiology Institute, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Ajelet Vargaz-Guadarrama
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Marycruz Flores-Flores
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Elias Pezzat Said
- Experimental Medicine Laboratory, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Alfredo Lagunas-Martínez
- Instituto Nacional de Salud Pública, Centro de Investigación sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, México
| | - Franco Tanzi
- Laboratory of General Physiology, Department of Biology and Biotechnology ‘‘Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology ‘‘Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| |
Collapse
|
3
|
Guisoni N, Ferrero P, Layana C, Diambra L. Abortive and propagating intracellular calcium waves: analysis from a hybrid model. PLoS One 2015; 10:e0115187. [PMID: 25602295 PMCID: PMC4300085 DOI: 10.1371/journal.pone.0115187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
The functional properties of inositol(1,4,5)-triphosphate (IP3) receptors allow a variety of intracellular Ca(2+) phenomena. In this way, global phenomena, such as propagating and abortive Ca(2+) waves, as well as local events such as puffs, have been observed. Several experimental studies suggest that many features of global phenomena (e.g., frequency, amplitude, speed wave) depend on the interplay of biophysical processes such as diffusion, buffering, efflux and influx rates, which in turn depend on parameters such as buffer concentration, Ca(2+) pump density, cytosolic IP3 level, and intercluster distance. Besides, it is known that cells are able to modify some of these parameters in order to regulate the Ca(2+) signaling. By using a hybrid model, we analyzed different features of the hierarchy of calcium events as a function of two relevant parameters for the calcium signaling, the intercluster distance and the pump strength or intensity. In the space spanned by these two parameters, we found two modes of calcium dynamics, one dominated by abortive calcium waves and the other by propagating waves. Smaller distances between the release sites promote propagating calcium waves, while the increase of the efflux rate makes the transition from propagating to abortive waves occur at lower values of intercluster distance. We determined the frontier between these two modes, in the parameter space defined by the intercluster distance and the pump strength. Furthermore, we found that the velocity of simulated calcium waves accomplishes Luther's law, and that an effective rate constant for autocatalytic calcium production decays linearly with both the intercluster distance and the pump strength.
Collapse
Affiliation(s)
- Nara Guisoni
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), Universidad Nacional de La Plata, CONICET CCT-La Plata; Calle 59–789 (1900) La Plata, Argentina
- * E-mail: (NG); (LD)
| | - Paola Ferrero
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas; 60 y 120 (1900) La Plata, Argentina
| | - Carla Layana
- Centro Regional de Estudios Genómicos (CREG), Universidad Nacional de La Plata; Blvd 120 N 1461 (1900) La Plata, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genómicos (CREG), Universidad Nacional de La Plata; Blvd 120 N 1461 (1900) La Plata, Argentina
- * E-mail: (NG); (LD)
| |
Collapse
|
4
|
Vervloessem T, Yule DI, Bultynck G, Parys JB. The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca²⁺-release channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1992-2005. [PMID: 25499268 DOI: 10.1016/j.bbamcr.2014.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) type 2 (IP3R2) is an intracellular Ca²⁺-release channel located on the endoplasmic reticulum (ER). IP3R2 is characterized by a high sensitivity to both IP3 and ATP and is biphasically regulated by Ca²⁺. Furthermore, IP3R2 is modulated by various protein kinases. In addition to its regulation by protein kinase A, IP3R2 forms a complex with adenylate cyclase 6 and is directly regulated by cAMP. Finally, in the ER, IP3R2 is less mobile than the other IP3R isoforms, while its functional properties appear dominant in heterotetramers. These properties make the IP3R2 a Ca²⁺ channel with exquisite properties for setting up intracellular Ca²⁺ signals with unique characteristics. IP3R2 plays a crucial role in the function of secretory cell types (e.g. pancreatic acinar cells, hepatocytes, salivary gland, eccrine sweat gland). In cardiac myocytes, the role of IP3R2 appears more complex, because, together with IP3R1, it is needed for normal cardiogenesis, while its aberrant activity is implicated in cardiac hypertrophy and arrhythmias. Most importantly, its high sensitivity to IP3 makes IP3R2 a target for anti-apoptotic proteins (e.g. Bcl-2) in B-cell cancers. Disrupting IP3R/Bcl-2 interaction therefore leads in those cells to increased Ca²⁺ release and apoptosis. Intriguingly, IP3R2 is not only implicated in apoptosis but also in the induction of senescence, another tumour-suppressive mechanism. These results were the first to unravel the physiological and pathophysiological role of IP3R2 and we anticipate that further progress will soon be made in understanding the function of IP3R2 in various tissues and organs.
Collapse
Affiliation(s)
- Tamara Vervloessem
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY, USA
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium.
| |
Collapse
|
5
|
Piegari E, Lopez L, Perez Ipiña E, Ponce Dawson S. Fluorescence fluctuations and equivalence classes of Ca²⁺ imaging experiments. PLoS One 2014; 9:e95860. [PMID: 24776736 PMCID: PMC4002475 DOI: 10.1371/journal.pone.0095860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/01/2014] [Indexed: 11/29/2022] Open
Abstract
release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated signals involve -induced -release (CICR) whereby release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., puffs) if CICR is limited to one cluster or become waves that propagate between clusters. puffs are the building blocks of waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. puffs are observed using visible single-wavelength dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-to-noise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting.
Collapse
Affiliation(s)
- Estefanía Piegari
- Departamento de Física and IFIBA (CONICET), FCEyN-UBA, Ciudad Universitaria, Pabellón I, Buenos Aires, Argentina
- * E-mail:
| | - Lucía Lopez
- Departamento de Física and IFIBA (CONICET), FCEyN-UBA, Ciudad Universitaria, Pabellón I, Buenos Aires, Argentina
| | - Emiliano Perez Ipiña
- Departamento de Física and IFIBA (CONICET), FCEyN-UBA, Ciudad Universitaria, Pabellón I, Buenos Aires, Argentina
| | - Silvina Ponce Dawson
- Departamento de Física and IFIBA (CONICET), FCEyN-UBA, Ciudad Universitaria, Pabellón I, Buenos Aires, Argentina
| |
Collapse
|
6
|
Nagaraja S, Kapela A, Tran CH, Welsh DG, Tsoukias NM. Role of microprojections in myoendothelial feedback--a theoretical study. J Physiol 2013; 591:2795-812. [PMID: 23529128 DOI: 10.1113/jphysiol.2012.248948] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We investigated the role of myoendothelial projections (MPs) in endothelial cell (EC) feedback response to smooth muscle cell (SMC) stimulation using mathematical modelling. A previously developed compartmental EC-SMC model is modified to include MPs as subcellular compartments in the EC. The model is further extended into a 2D continuum model using a finite element method (FEM) approach and electron microscopy images to account for MP geometry. The EC and SMC are coupled via non-selective myoendothelial gap junctions (MEGJs) which are located on MPs and allow exchange of Ca(2+), K(+), Na(+) and Cl(-) ions and inositol 1,4,5-triphosphate (IP3). Models take into consideration recent evidence for co-localization of intermediate-conductance calcium-activated potassium channels (IKCa) and IP3 receptors (IP3Rs) in the MPs. SMC stimulation causes an IP3-mediated Ca(2+) transient in the MPs with limited global spread in the bulk EC. A hyperpolarizing feedback generated by the localized IKCa channels is transmitted to the SMC via MEGJs. MEGJ resistance (Rgj) and the density of IKCa and IP3R in the projection influence the extent of EC response to SMC stimulation. The predicted Ca(2+) transients depend also on the volume and geometry of the MP. We conclude that in the myoendothelial feedback response to SMC stimulation, MPs are required to amplify the SMC initiated signal. Simulations suggest that the signal is mediated by IP3 rather than Ca(2+) diffusion and that a localized rather than a global EC Ca(2+) mobilization is more likely following SMC stimulation.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Biomedical Engineering, Florida International University, 10555 W. Flagler Street, EC 2674, Miami, FL 33174. USA
| | | | | | | | | |
Collapse
|
7
|
Marchant JS, Lin-Moshier Y, Walseth TF, Patel S. The Molecular Basis for Ca 2+ Signalling by NAADP: Two-Pore Channels in a Complex? ACTA ACUST UNITED AC 2012; 1:63-76. [PMID: 25309835 DOI: 10.1166/msr.2012.1003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NAADP is a potent Ca2+ mobilizing messenger in a variety of cells but its molecular mechanism of action is incompletely understood. Accumulating evidence indicates that the poorly characterized two-pore channels (TPCs) in animals are NAADP sensitive Ca2+-permeable channels. TPCs localize to the endo-lysosomal system but are functionally coupled to the better characterized endoplasmic reticulum Ca2+ channels to generate physiologically relevant complex Ca2+ signals. Whether TPCs directly bind NAADP is not clear. Here we discuss the idea based on recent studies that TPCs are the pore-forming subunits of a protein complex that includes tightly associated, low molecular weight NAADP-binding proteins.
Collapse
Affiliation(s)
- Jonathan S Marchant
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Yaping Lin-Moshier
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK
| |
Collapse
|
8
|
Parys JB, De Smedt H. Inositol 1,4,5-trisphosphate and its receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:255-79. [PMID: 22453946 DOI: 10.1007/978-94-007-2888-2_11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activation of cells by many extracellular agonists leads to the production of inositol 1,4,5-trisphosphate (IP₃). IP₃ is a global messenger that easily diffuses in the cytosol. Its receptor (IP₃R) is a Ca(2+)-release channel located on intracellular membranes, especially the endoplasmic reticulum (ER). The IP₃R has an affinity for IP(3) in the low nanomolar range. A prime regulator of the IP₃R is the Ca(2+) ion itself. Cytosolic Ca(2+) is considered as a co-agonist of the IP₃R, as it strongly increases IP(3)R activity at concentrations up to about 300 nM. In contrast, at higher concentrations, cytosolic Ca(2+) inhibits the IP₃R. Also the luminal Ca(2+) sensitizes the IP₃R. In higher organisms three genes encode for an IP₃R and additional diversity exists as a result of alternative splicing mechanisms and the formation of homo- and heterotetramers. The various IP₃R isoforms have a similar structure and a similar function, but due to differences in their affinity for IP₃, their variable sensitivity to regulatory parameters, their differential interaction with associated proteins, and the variation in their subcellular localization, they participate differently in the formation of intracellular Ca(2+) signals and this affects therefore the physiological consequences of these signals.
Collapse
Affiliation(s)
- Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N1 - Bus 802, Herestraat 49, Belgium.
| | | |
Collapse
|
9
|
Rossi AM, Tovey SC, Rahman T, Prole DL, Taylor CW. Analysis of IP3 receptors in and out of cells. Biochim Biophys Acta Gen Subj 2011; 1820:1214-27. [PMID: 22033379 DOI: 10.1016/j.bbagen.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/07/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3R) are expressed in almost all animal cells. Three mammalian genes encode closely related IP3R subunits, which assemble into homo- or hetero-tetramers to form intracellular Ca2+ channels. SCOPE OF THE REVIEW In this brief review, we first consider a variety of complementary methods that allow the links between IP3 binding and channel gating to be defined. How does IP3 binding to the IP3-binding core in each IP3R subunit cause opening of a cation-selective pore formed by residues towards the C-terminal? We then describe methods that allow IP3, Ca2+ signals and IP3R mobility to be examined in intact cells. A final section briefly considers genetic analyses of IP3R signalling. MAJOR CONCLUSIONS All IP3R are regulated by both IP3 and Ca2+. This allows them to initiate and regeneratively propagate intracellular Ca2+ signals. The elementary Ca2+ release events evoked by IP3 in intact cells are mediated by very small numbers of active IP3R and the Ca2+-mediated interactions between them. The spatial organization of these Ca2+ signals and their stochastic dependence on so few IP3Rs highlight the need for methods that allow the spatial organization of IP3R signalling to be addressed with single-molecule resolution. GENERAL SIGNIFICANCE A variety of complementary methods provide insight into the structural basis of IP3R activation and the contributions of IP3-evoked Ca2+ signals to cellular physiology. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
10
|
Fanelli A, Titapiccolo JI, Esposti F, Ripamonti M, Malgaroli A, Signorini MG. Novel image processing methods for the analysis of calcium dynamics in glial cells. IEEE Trans Biomed Eng 2011; 58:2640-7. [PMID: 21708493 DOI: 10.1109/tbme.2011.2160344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Calcium (Ca(2+)) waves and Ca(2+) oscillations within cells initiate a wide range of physiological processes including control of cell signaling, gene expression, secretion, and cell migration. A thorough analysis of Ca(2+) waves in glial cells provides information not only about the subcellular location of signaling processing events but also about nonneuronal or intercellular signaling pathways, their timing, routes, spatial domains, and coordination. In this study, three novel image processing methods have been applied to the study of Ca(2+) dynamics in cells. These bring additional information to the methods already available in the literature, providing insight into the analysis of calcium dynamics in fluorescence recordings and defining bidimensional maps that give a complete and detailed description of calcium intracellular behavior. The application of these processing methods to glial cells highlighted the complex 2-D Ca(2+) dynamics phenomena, the location of calcium uptake and release microdomains on the endoplasmic reticulum, and the correlation between different calcium signals inside the cell. A perinuclear zone acting as a filter and regulator of intracellular calcium waves was detected: it acts as a controller of calcium fluxes between the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Andrea Fanelli
- Department of Bioengineering, Politecnico di Milano, Milano 20133, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Diambra L, Marchant JS. Inositol (1,4,5)-trisphosphate receptor microarchitecture shapes Ca2+ puff kinetics. Biophys J 2011; 100:822-31. [PMID: 21320425 DOI: 10.1016/j.bpj.2011.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022] Open
Abstract
Inositol (1,4,5)-trisphosphate receptors (IP(3)Rs) release intracellular Ca(2+) as localized Ca(2+) signals (Ca(2+) puffs) that represent the activity of small numbers of clustered IP(3)Rs spaced throughout the endoplasmic reticulum. Although much emphasis has been placed on estimating the number of active Ca(2+) release channels supporting Ca(2+) puffs, less attention has been placed on understanding the role of cluster microarchitecture. This is important as recent data underscores the dynamic nature of IP(3)R transitions between heterogeneous cellular architectures and the differential behavior of IP(3)Rs socialized into clusters. Here, we applied a high-resolution model incorporating stochastically gating IP(3)Rs within a three-dimensional cytoplasmic space to demonstrate: 1), Ca(2+) puffs are supported by a broad range of clustered IP(3)R microarchitectures; 2), cluster ultrastructure shapes Ca(2+) puff characteristics; and 3), loosely corralled IP(3)R clusters (>200 nm interchannel separation) fail to coordinate Ca(2+) puffs, owing to inefficient triggering and impaired coupling due to reduced Ca(2+)-induced Ca(2+) release microwave velocity (<10 nm/s) throughout the channel array. Dynamic microarchitectural considerations may therefore influence Ca(2+) puff occurrence/properties in intact cells, contrasting with a more minimal role for channel number over the same simulated conditions in shaping local Ca(2+) dynamics.
Collapse
Affiliation(s)
- Luis Diambra
- Laboratorio de Biología de Sistemas, Centro Regional de Estudios Genómicos, Florencio Varela, Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Falcke M. Introduction to focus issue: intracellular Ca2+ dynamics--a change of modeling paradigm? CHAOS (WOODBURY, N.Y.) 2009; 19:037101. [PMID: 19792027 DOI: 10.1063/1.3234259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Intracellular Ca(2+) concentration dynamics have been perceived as a prototypical deterministic intracellular reaction-diffusion system in biophysics for many years. Recent experimental findings challenge that view and suggest them to be fluctuation driven. That renders this system interesting for nonlinear physics, in general, since we can study the emergence of macroscopic behavior from mesoscopic dynamics. In particular, we can observe the random elemental events, called puffs, and the macroscopic pattern with the same experimental means. Here, we give a short introduction to the current discussion on theoretical and modeling concepts, and this Focus Issue reflecting it.
Collapse
Affiliation(s)
- Martin Falcke
- Mathematical Cell Physiology, Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| |
Collapse
|