1
|
Fu J, Li M, Rong C, Zhao D, Liu S. Information-theoretic quantities as effective descriptors of electrophilicity and nucleophilicity in density functional theory. J Mol Model 2024; 30:341. [PMID: 39289254 DOI: 10.1007/s00894-024-06116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
CONTEXT Electrophilicity and nucleophilicity are two vastly important chemical concepts gauging the capability of atoms in molecules to accept and donate the maximal number of electrons. In our earlier studies, we proposed to simultaneously quantify them using the Kullback-Leibler divergence from the information-theoretic approach in density functional theory. However, several issues with this scheme remain to be clarified such as its general validity, predictability, and relationship with other information-theoretic quantities. In this work, we revisit the matter with bigger datasets and deeper theoretical insights. Five information-theoretic quantities including Kullback-Leibler divergence, Hirshfeld charge, Ghost-Berkowitz-Parr entropy, and second and third orders of relative Onicescu information energy are found to be reliable and robust descriptors of electrophilicity and nucleophilicity propensities. Employing these five descriptors, we design a list of new compounds and predict their electrophilicity and nucleophilicity scales. This work should markedly improve our confidence and capability in applying information-theoretic quantities to evaluate electrophilicity and nucleophilicity propensities and henceforth pave the route for more applications of these quantities from information-theoretic approach in density functional theory in the future. METHODS All structures were fully optimized at the M06-2X/6-311 + G(d) level of DFT functional using the Gaussian 16 package (version C01) with integration grids and tight self-consistent-field convergence. The solvent effect was taken into account by using the implicit solvent model (CPCM) in the CH2Cl2 solvent, and all 3D contour surfaces of Fukui function, local temperature, and ITA (information-theoretic approach) quantities were generated by GaussView. The Multiwfn 3.8 program was used to calculate the ITA indexes and atomic charges.
Collapse
Affiliation(s)
- Jia Fu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Meng Li
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Chunying Rong
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, People's Republic of China.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC, 27599-3420, USA.
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3290, USA.
| |
Collapse
|
2
|
Liu S. Harvesting Chemical Understanding with Machine Learning and Quantum Computers. ACS PHYSICAL CHEMISTRY AU 2024; 4:135-142. [PMID: 38560751 PMCID: PMC10979482 DOI: 10.1021/acsphyschemau.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024]
Abstract
It is tenable to argue that nobody can predict the future with certainty, yet one can learn from the past and make informed projections for the years ahead. In this Perspective, we overview the status of how theory and computation can be exploited to obtain chemical understanding from wave function theory and density functional theory, and then outlook the likely impact of machine learning (ML) and quantum computers (QC) to appreciate traditional chemical concepts in decades to come. It is maintained that the development and maturation of ML and QC methods in theoretical and computational chemistry represent two paradigm shifts about how the Schrödinger equation can be solved. New chemical understanding can be harnessed in these two new paradigms by making respective use of ML features and QC qubits. Before that happens, however, we still have hurdles to face and obstacles to overcome in both ML and QC arenas. Possible pathways to tackle these challenges are proposed. We anticipate that hierarchical modeling, in contrast to multiscale modeling, will emerge and thrive, becoming the workhorse of in silico simulations in the next few decades.
Collapse
|
3
|
He X, Li M, Rong C, Zhao D, Liu W, Ayers PW, Liu S. Some Recent Advances in Density-Based Reactivity Theory. J Phys Chem A 2024; 128:1183-1196. [PMID: 38329898 DOI: 10.1021/acs.jpca.3c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Establishing a chemical reactivity theory in density functional theory (DFT) language has been our intense research interest in the past two decades, exemplified by the determination of steric effect and stereoselectivity, evaluation of electrophilicity and nucleophilicity, identification of strong and weak interactions, and formulation of cooperativity, frustration, and principle of chirality hierarchy. In this Featured Article, we first overview the four density-based frameworks in DFT to appreciate chemical understanding, including conceptual DFT, use of density associated quantities, information-theoretic approach, and orbital-free DFT, and then present a few recent advances of these frameworks as well as new applications from our studies. To that end, we will introduce the relationship among these frameworks, determining the entire spectrum of interactions with Pauli energy derivatives, performing topological analyses with information-theoretic quantities, and extending the density-based frameworks to excited states. Applications to examine physiochemical properties in external electric fields and to evaluate polarizability for proteins and crystals are discussed. A few possible directions for future development are followed, with the special emphasis on its merger with machine learning.
Collapse
Affiliation(s)
- Xin He
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Meng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, China
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ONL8S, Canada
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
4
|
Li M, Wan X, Rong C, Zhao D, Liu S. Directionality and additivity effects of molecular acidity and aromaticity for substituted benzoic acids under external electric fields. Phys Chem Chem Phys 2023; 25:27805-27816. [PMID: 37814823 DOI: 10.1039/d3cp02982d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Our recent study [M. Li et al.Phys. Chem. Chem. Phys., 2023, 25, 2595-2605] unveiled that the impact of an external electric field on molecular acidity and aromaticity for benzoic acid is directional, which can be understood using changes in frontier orbitals and partial charges. However, it is unclear if the effect will disappear when substituting groups are present and whether new patterns of changes will show up. In this work, as a continuation of our efforts to appreciate the impact of external electric fields on physiochemical properties, we find that the directionality effect is still in place for substituted benzoic acid derivatives and that there exists the additivity effect with respect to the number of substituent groups, regardless of the direction of the applied field and the type of substituting groups. We confirm the findings using electron-donating and electron-accepting groups with the electric field applied either parallelly or perpendicularly to the carboxyl group along the benzene ring. The directionality and additivity effects uncovered from this work should enrich the body of our knowledge about the impact of external electric fields on physiochemical properties and could be applicable to other systems and properties as well.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Xinjie Wan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, P. R. China.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA.
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
5
|
He X, Lu T, Rong C, Liu S, Ayers PW, Liu W. Topological analysis of information-theoretic quantities in density functional theory. J Chem Phys 2023; 159:054112. [PMID: 37548307 DOI: 10.1063/5.0159941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
We have witnessed considerable research interest in the recent literature about the development and applications of quantities from the information-theoretic approach (ITA) in density functional theory. These ITA quantities are explicit density functionals, whose local distributions in real space are continuous and well-behaved. In this work, we further develop ITA by systematically analyzing the topological behavior of its four representative quantities, Shannon entropy, two forms of Fisher information, and relative Shannon entropy (also called information gain or Kullback-Leibler divergence). Our results from their topological analyses for 103 molecular systems provide new insights into bonding interactions and physiochemical properties, such as electrophilicity, nucleophilicity, acidity, and aromaticity. We also compare our results with those from the electron density, electron localization function, localized orbital locator, and Laplacian functions. Our results offer a new methodological approach and practical tool for applications that are especially promising for elucidating chemical bonding and reactivity propensity.
Collapse
Affiliation(s)
- Xin He
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100022, China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, China
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
6
|
Ong HW, Truong A, Kwarcinski F, de Silva C, Avalani K, Havener TM, Chirgwin M, Galal KA, Willis C, Krämer A, Liu S, Knapp S, Derbyshire ER, Zutshi R, Drewry DH. Discovery of potent Plasmodium falciparum protein kinase 6 (PfPK6) inhibitors with a type II inhibitor pharmacophore. Eur J Med Chem 2023; 249:115043. [PMID: 36736152 PMCID: PMC10052868 DOI: 10.1016/j.ejmech.2022.115043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Malaria is a devastating disease that causes significant global morbidity and mortality. The rise of drug resistance against artemisinin-based combination therapy demonstrates the necessity to develop alternative antimalarials with novel mechanisms of action. We report the discovery of Ki8751 as an inhibitor of essential kinase PfPK6. 79 derivatives were designed, synthesized and evaluated for PfPK6 inhibition and antiplasmodial activity. Using group efficiency analyses, we established the importance of key groups on the scaffold consistent with a type II inhibitor pharmacophore. We highlight modifications on the tail group that contribute to antiplasmodial activity, cumulating in the discovery of compound 67, a PfPK6 inhibitor (IC50 = 13 nM) active against the P. falciparum blood stage (EC50 = 160 nM), and compound 79, a PfPK6 inhibitor (IC50 < 5 nM) with dual-stage antiplasmodial activity against P. falciparum blood stage (EC50 = 39 nM) and against P. berghei liver stage (EC50 = 220 nM).
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anna Truong
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Frank Kwarcinski
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Chandi de Silva
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Krisha Avalani
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael Chirgwin
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Kareem A Galal
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caleb Willis
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Andreas Krämer
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC, 27599-3420, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3420, USA
| | - Stefan Knapp
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC, 27710, USA.
| | - Reena Zutshi
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA.
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Li M, Wan X, He X, Rong C, Liu S. Impacts of external fields on aromaticity and acidity of benzoic acid: a density functional theory, conceptual density functional theory and information-theoretic approach study. Phys Chem Chem Phys 2023; 25:2595-2605. [PMID: 36602177 DOI: 10.1039/d2cp04557e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The impact of external fields on the molecular structure and reactivity properties has been of considerable interest in the recent literature. Benzoic acid as one of the most widely used compounds in medicinal and materials sciences is known for its dual propensity in aromaticity and acidity. In this work, we systematically investigate the impact of a uniform external electric field on these properties. We apply density functional theory, conceptual density functional theory, and an information-theoretic approach to appreciate the change pattern of aromaticity and acidity properties in external fields with different strengths. Our results show that they possess different change patterns under external fields, which can be satisfactorily rationalized by variations in reactivity descriptors and partial charges. The surprising yet novel results from this study should enrich the body of our knowledge about the impact of external fields for different kinds of electronic properties and provide guidance and foundation for future studies of this phenomenon in other molecular systems.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Xinjie Wan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Xin He
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
8
|
Rong C, Zhao D, He X, Liu S. Development and Applications of the Density-Based Theory of Chemical Reactivity. J Phys Chem Lett 2022; 13:11191-11200. [PMID: 36445239 DOI: 10.1021/acs.jpclett.2c03165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Density functional theory, which is well-recognized for its accuracy and efficiency, has become the workhorse for modeling the electronic structure of molecules and extended materials in recent decades. Nevertheless, establishing a density-based conceptual framework to appreciate bonding, stability, function, reactivity, and other physicochemical properties is still an unaccomplished task. In this Perspective, we at first provide an overview of the four pathways currently available in the literature to tackle the matter, including orbital-free density functional theory, conceptual density functional theory, direct use of density-associated quantities, and the information-theoretic approach. Then, we highlight several recent advances of employing these approaches to realize new understandings for chemical concepts such as covalent bonding, noncovalent interactions, cooperation, frustration, homochirality, chirality hierarchy, electrophilicity, nucleophilicity, regioselectivity, and stereoselectivity. Finally, we provide a few possibilities for the future development of this relatively uncharted territory. Opportunities are abundant, and they are all ours for the taking.
Collapse
Affiliation(s)
- Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan410081, China
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming650500, Yunnan, China
| | - Xin He
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong266237, China
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel HillNorth Carolina27599-3420, United States
- Department of Chemistry, University of North Carolina, Chapel HillNorth Carolina27599-3290, United States
| |
Collapse
|
9
|
Wu J, Kang Y, Pan P, Hou T. Machine learning methods for pK a prediction of small molecules: Advances and challenges. Drug Discov Today 2022; 27:103372. [PMID: 36167281 DOI: 10.1016/j.drudis.2022.103372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/15/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
The acid-base dissociation constant (pKa) is a fundamental property influencing many ADMET properties of small molecules. However, rapid and accurate pKa prediction remains a great challenge. In this review, we outline the current advances in machine-learning-based QSAR models for pKa prediction, including descriptor-based and graph-based approaches, and summarize their pros and cons. Moreover, we highlight the current challenges and future directions regarding experimental data, crucial factors influencing pKa and in silico prediction tools. We hope that this review can provide a practical guidance for the follow-up studies.
Collapse
Affiliation(s)
- Jialu Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
10
|
Tariq S, Mutahir S, Khan MA, Mutahir Z, Hussain S, Ashraf M, Bao X, Zhou B, Stark CB, Khan IU. Synthesis, in vitro cholinesterase inhibition, molecular docking, DFT and ADME studies of novel 1,3,4-oxadiazole 2-thiol derivatives. Chem Biodivers 2022; 19:e202200157. [PMID: 35767725 DOI: 10.1002/cbdv.202200157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/29/2022] [Indexed: 11/11/2022]
Abstract
A sequence of 1,3,4-oxadiazole 2-thiol derivatives bearing various alkyl or aryl moieties was designed, synthesized, and characterized by modern spectroscopic methods to yield 17 compounds ( 6a - 6q ) which were screened for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes in search of 'lead' compounds for the treatment of Alzheimer disease (AD). The compounds 6q, 6p, 6k, 6o, and 6l showed inhibitory capability against AChE and BChE, with IC 50 values ranging from 11.730.49 to 27.360.29 µM for AChE and 21.830.39 to 39.430.44 µM for BChE, inhibiting both enzymes within a limited range. The SAR ascertained that the substitution of the aromatic moiety had a profound effect on the AChE and BChE inhibitory potential as compared to the aliphatic substitutions which were supported by the molecular docking studies. In silico ADME studies reinforced the drug-likeness of most of the synthesized molecules. These results were additionally supplemented by the molecular orbital analysis (HOMO-LUMO) and electrostatic potential maps got from DFT calculations. ESP maps expose that on all structures, there are two potential binding sites conquered by the most positive and most negative districts.
Collapse
Affiliation(s)
- Sidrah Tariq
- Government College University Lahore, Department of Chemitry, Anarkaly Lahore, 54000, Lahore, PAKISTAN
| | - Sadaf Mutahir
- University of Sialkot, Department of Chemitry, Daska Road Sialkot, Sialkot, PAKISTAN
| | - Muhammad Asim Khan
- Nanjing University of Science and Technology, School of Chemical Engineering, Xiaolingwei 200, Nanjing 210094, 210000, China, 210000, Nanjing, CHINA
| | - Zeeshan Mutahir
- University of the Punjab Quaid-i-Azam Campus: University of the Punjab, Institute of Biochemistry and Biotechnology, University of the Punjab, 54590 Lahore, Pakistan, Lahore, PAKISTAN
| | - Safdar Hussain
- Islamia University: The Islamia University of Bahawalpur Pakistan, Department of Chemitry, Bahwalpur, Bahwalpur, PAKISTAN
| | - Muhammad Ashraf
- Islamia University: The Islamia University of Bahawalpur Pakistan, Department of Chemitry, Bahwalpur, Government College University Lahore, 54000, Bahwalpur, PAKISTAN
| | - Xiaofang Bao
- Nanjing University of Science and Technology, School of Chemical Engineering, Room No. 104. 2nd Old Chemical Building, School of Chemical Engineering, 210094, 210094, Nanjing, CHINA
| | - Baojing Zhou
- Nanjing University of Science and Technology, School of Chemical Engineering, Room No. 104. 2nd Old Chemical Building, School of Chemical Engineering, 210094, 210094, Nanjing, CHINA
| | - Christian Bw Stark
- Universitat Hamburg Zentralbibliothek Recht: Universitat Hamburg, Fachbereich Chemie, Institut für Organische Chemie, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany, Hamburg, GERMANY
| | - Islam Ullah Khan
- University of Mianwali, Department of Chemistry/VC Office, VC Office, Department of Chemistry, University of Mianwali, Pakistan, Mianwali, PAKISTAN
| |
Collapse
|
11
|
Benomrane B, Hamza Reguig F, Krallafa AM. Effectiveness electronic density‐based descriptor to index hard–hard interaction. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brahim Benomrane
- LCPM Laboratory, Faculty of Sciences, Chemistry Department University of Oran 1 Ahmed BenBella Oran Algeria
| | - Farouk Hamza Reguig
- LCPM Laboratory, Faculty of Sciences, Chemistry Department University of Oran 1 Ahmed BenBella Oran Algeria
| | - Abdelghani Mohamed Krallafa
- LCPM Laboratory, Faculty of Sciences, Chemistry Department University of Oran 1 Ahmed BenBella Oran Algeria
- SirMa CNRS UMR 7369, MEDyC University of Reims Champagne‐Ardenne Reims France
| |
Collapse
|
12
|
Li Z, Zhang H, Tan T, Lei M. The mechanism of direct reductive amination of aldehyde and amine with formic acid catalyzed by boron trifluoride complexes: insights from a DFT study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A volcano diagram of BF3 catalytic species and their activities was proposed for the DRA of aldehyde and amine with formic acid.
Collapse
Affiliation(s)
- Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huili Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Tukumova NV, Belova NV, Usacheva TR, Thuan TTD. Structural–Thermodynamic Characteristics of Maleic Acid in Water–Organic Solvents. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421070268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Wang B, Zhao D, Lu T, Liu S, Rong C. Quantifications and Applications of Relative Fisher Information in Density Functional Theory. J Phys Chem A 2021; 125:3802-3811. [PMID: 33891419 DOI: 10.1021/acs.jpca.1c02099] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Though density functional theory is widely accepted as one of the most successful developments in theoretical chemistry in the past few decades, the knowledge of how to apply this new electronic structure theory, to help us better understand chemical processes and transformations, is still an unaccomplished task. The information-theoretic approach is emerging as a viable option for that purpose in the recent literature, providing new insights about steric effect, cooperativity, electrophilicity, nucleophilicity, stereoselectivity, homochirality, etc. In this work, based on the result from a recent paper by one of us [ J. Chem. Phys, 2019, 151, 141103], we present two quantifications of the relative Fisher information and discuss their physiochemical properties and possible applications. To that end, their analytical properties have been elucidated. They have also been applied to six categories of systems to illustrate their applicability. A better descriptor to quantify the single bond rotation barrier has been obtained. The relative Fisher information can also simultaneously determine electrophilicity and nucleophilicity, and effectively describe helical structures with different homochiral and heterochiral propensities. As integral parts of the information-theoretic approach, these newly introduced quantities will provide us with more analytical tools toward the long-term goal of crafting a chemical reactivity theory in the density-based language.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Chenggong District, Kunming 650500, Yunnan P.R. China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100022, P.R. China
| | - Shubin Liu
- Research Computing Center, University of North Carolina Chapel Hill, North Carolina 27599-3420, United States
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
15
|
Zhang L, Wang B, Zhao Y, Pu M, Liu S, Lei M. Using Bases as Initiators to Isomerize Allylic Alcohols: Insights from Density Functional Theory Studies. J Phys Chem A 2021; 125:2316-2323. [PMID: 33724037 DOI: 10.1021/acs.jpca.1c00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allylic alcohols, as common and readily available building blocks, could be converted into many widely used carbonyl compounds through isomerization reactions. However, these processes often involve expensive transition metal (TM) complexes as the catalyst. What is the bottleneck in the mechanism when no TM is used? In this study, density functional theory (DFT) was employed to explore the mechanistic patterns of allylic alcohols catalyzed using bases, such as KOH, NaOH, LiOH, tBuOK, tBuONa, tBuOLi, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido[1,2-a]pyrimidine, and 1,8-diazabicyclo[5.4.0]undec-7-ene. Our results show that bases containing metal cations follow the metal cation-assisted (MCA) mechanism, whereas organic bases without metal cations follow the ion pair-assisted (IPA) mechanism. The catalytic efficiency of bases containing metal cations is higher than that of bases without metal cations, indicating that metal cations play an important role in the reaction. Additionally, the modulation of substituents R1 and R2 in the substrate reveals that electron-withdrawing groups are favorable for C-H bond cleavage, and electron-donating groups are favorable for hydrogen transfer. To better understand these patterns, we applied the DFT and information-theoretic approach (ITA) to examine the impact of bases and substrate substituents on the reactivity of allylic alcohol isomerization. This work should provide a much-needed theoretical guidance to design better non-TM catalysts for the isomerization of allylic alcohols and their derivatives.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Kaddouri Y, Abrigach F, Ouahhoud S, Benabbes R, El Kodadi M, Alsalme A, Al-Zaqri N, Warad I, Touzani R. Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies. Bioorg Chem 2021; 110:104696. [PMID: 33652343 DOI: 10.1016/j.bioorg.2021.104696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022]
Abstract
Twelve heterocyclic compounds were prepared using the condensation of hydroxymethanol pyrazole derivatives with different primary aminesas example 2-aminothiazole and 1-aminobenzotriazole to have a diverse productin good yield up to 97%. Those ligands were tested against Fusarium oxysporum f. sp. Albedinis fungi (BAYOUD Disease) with IC50 = 25.6-33.2 µg/ml. After experiments, theoretical investigations were done as DFT study to know the ligands molecular reactivity and the-ligandprotein- docking study to know the possible binding between the prepared ligands with two biological targets: FGB1 (Fusarium oxysporum Guanine nucleotide-binding protein beta subunitprimary amino acid sequence) and Fophy (Fusarium oxysporum phytase domain enzyme). Of all the obtained results, the experimental ones were well correlated with the theoretical with the most common thing between those compounds is (Nδ--Nδ+) which is the antifungal pharmacophore as proposed pincers for Foa inhibition. From docking studies over FGB1 and Fophy, the ligand 9 has the best binding energy of -6.4872 kcal/mol in FGB1 active site and -5.5282 kcal/mol in Fophy active site, but better correlation with Fophy than FGB1 which is followed by PLIF graph to get that Arg116, Arg120 and Lys336 are the vital amino acids of fophy protein based the study over the chosen active site.
Collapse
Affiliation(s)
- Yassine Kaddouri
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.
| | - Farid Abrigach
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Sabir Ouahhoud
- Laboratory of Biochemistry (LB), Department of Biology, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Redouane Benabbes
- Laboratory of Biochemistry (LB), Department of Biology, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Mohamed El Kodadi
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco; Laboratoire d'Innovation en Sciences, Technologie et Education (LISTE), CRMEF Oriental, Oujda, Morocco
| | - Ali Alsalme
- Department of chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nabil Al-Zaqri
- Department of chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, College of Science, Ibb University, P. O. Box 70270, Ibb, Yemen
| | - Ismail Warad
- Department of Chemistry, Science College, An-Najah National University, PB 7, Nablus, Palestine
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| |
Collapse
|
17
|
Zhu L, Zhang L, Yang Z, Pu M, Lei M. A theoretical study of the hydroboration of α,β-unsaturated carbonyl compounds catalyzed by a metal-free complex and subsequent C–C coupling with acetonitrile. NEW J CHEM 2021. [DOI: 10.1039/d1nj02218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the density functional theory (DFT) method was employed to investigate the reaction mechanism of the selective hydroboration of α,β-unsaturated carbonyl compounds catalyzed by the metal-free complex 1,3,2-diazaphospholene (DAP).
Collapse
Affiliation(s)
- Ling Zhu
- State Key Laboratory of Chemical Resource Engineering
- Institute of Computational Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering
- Institute of Computational Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing
| | - Zuoyin Yang
- State Key Laboratory of Chemical Resource Engineering
- Institute of Computational Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering
- Institute of Computational Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering
- Institute of Computational Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing
| |
Collapse
|
18
|
Giricheva NI, Ivanov SN, Ignatova AV, Fedorov MS, Girichev GV. The Effect of Intramolecular Hydrogen Bond Type on the Gas-Phase Deprotonation of ortho-Substituted Benzenesulfonic Acids. A Density Functional Theory Study. Molecules 2020; 25:E5806. [PMID: 33316963 PMCID: PMC7764180 DOI: 10.3390/molecules25245806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/01/2022] Open
Abstract
Structural factors have been identified that determine the gas-phase acidity of ortho-substituted benzenesulfonic acid, 2-XC6H4-SO3H, (X = -SO3H, -COOH, -NO2, -SO2F, -C≡N, -NH2, -CH3, -OCH3, -N(CH3)2, -OH). The DFT/B3LYP/cc-pVTZ method was used to perform conformational analysis and study the structural features of the molecular and deprotonated forms of these compounds. It has been shown that many of the conformers may contain anintramolecular hydrogen bond (IHB) between the sulfonic group and the substituent, and the sulfonic group can be an IHB donor or an acceptor. The Gibbs energies of gas-phase deprotonation ΔrG0298 (kJ mol-1) were calculated for all compounds. It has been set that in ortho-substituted benzenesulfonic acids, the formation of various types of IHB is possible, having a significant effect on the ΔrG0298 values of gas-phase deprotonation. If the -SO3H group is the IHB donor, then an ion without an IHB is formed upon deprotonation, and the deprotonation energy increases. If this group is an IHB acceptor, then a significant decrease in ΔrG0298 of gas-phase deprotonation is observed due to an increase in IHB strength and the A- anion additional stabilization. A proton donor ability comparative characteristic of the -SO3H group in the studied ortho-substituted benzenesulfonic acids is given, and the ΔrG0298 energies are compared with the corresponding values of ortho-substituted benzoic acids.
Collapse
Affiliation(s)
- Nina I. Giricheva
- Department of Fundamental and Applied Chemistry, Ivanovo State University, 153025 Ivanovo, Russia; (S.N.I.); (A.V.I.); (M.S.F.)
| | - Sergey N. Ivanov
- Department of Fundamental and Applied Chemistry, Ivanovo State University, 153025 Ivanovo, Russia; (S.N.I.); (A.V.I.); (M.S.F.)
| | - Anastasiya V. Ignatova
- Department of Fundamental and Applied Chemistry, Ivanovo State University, 153025 Ivanovo, Russia; (S.N.I.); (A.V.I.); (M.S.F.)
| | - Mikhail S. Fedorov
- Department of Fundamental and Applied Chemistry, Ivanovo State University, 153025 Ivanovo, Russia; (S.N.I.); (A.V.I.); (M.S.F.)
| | - Georgiy V. Girichev
- Department of Physics, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia;
| |
Collapse
|
19
|
Stuyver T, Shaik S. Unifying Conceptual Density Functional and Valence Bond Theory: The Hardness-Softness Conundrum Associated with Protonation Reactions and Uncovering Complementary Reactivity Modes. J Am Chem Soc 2020; 142:20002-20013. [PMID: 33180491 PMCID: PMC7735708 DOI: 10.1021/jacs.0c09041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we address the long-standing issue-arising prominently from conceptual density functional theory (CDFT)-of the relative importance of electrostatic, i.e., "hard-hard", versus spin-pairing, i.e., "soft-soft", interactions in determining regiochemical preferences. We do so from a valence bond (VB) perspective and demonstrate that VB theory readily enables a clear-cut resolution of both of these contributions to the bond formation/breaking process. Our calculations indicate that appropriate local reactivity descriptors can be used to gauge the magnitude of both interactions individually, e.g., Fukui functions or HOMO/LUMO orbitals for the spin-pairing/(frontier) orbital interactions and molecular electrostatic potentials (and/or partial charges) for the electrostatic interactions. In contrast to previous reports, we find that protonation reactions cannot generally be classified as either charge- or frontier orbital-controlled; instead, our results indicate that these two bonding contributions generally interplay in more subtle patterns, only giving the impression of a clear-cut dichotomy. Finally, we demonstrate that important covalent, i.e., spin pairing, reactivity modes can be missed when only a single spin-pairing/orbital interaction descriptor is considered. This study constitutes an important step in the unification of CDFT and VB theory.
Collapse
Affiliation(s)
- Thijs Stuyver
- Institute of Chemistry, Edmond J. Safara Campus at Givat Ram, The Hebrew University, Jerusalem 9190401, Israel
| | - Sason Shaik
- Institute of Chemistry, Edmond J. Safara Campus at Givat Ram, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
20
|
Xiang YQ, Yao X, Lin JH, Ou XJ, Li R, Zhou YS, Yu DH, Xiao JC. Extraction Behavior of Acidic Phosphorus-Containing Compounds to Some Metal Ions: A Combination Research of Experimental and Theoretical Investigations. J Phys Chem A 2020; 124:5033-5041. [PMID: 32436382 DOI: 10.1021/acs.jpca.0c01594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To provide feasible methods for the extraction of valuable metals from spent batteries or low-grade primary ores, the extraction behavior of some representative acidic phosphorus-containing compounds (APCCs) as extractants is evaluated from the perspective of experimental and theoretical investigations in this work. Aqueous solutions containing five metal ions, Ca(II), Co(II), Mg(II), Mn(II), and Ni(II), were made to simulate leaching liquids, and the extraction of these metals was investigated. A simplified calculated model was used to evaluate the interaction between each extractant and metal ions. The calculation results agree well with the experimental tests in trend. This work not only provides potential extractants for the extraction of valuable metals from spent batteries or low-grade primary ores but also demonstrates the practicability of the simplified calculation model.
Collapse
Affiliation(s)
- Ya-Qing Xiang
- The Second Affiliated Hospital of University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xu Yao
- The Second Affiliated Hospital of University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Jian Ou
- Ltd. Laterite Leaching Project Team, Jinchuan Group, 98 Jinchuan Road, Jinchang, Gansu 737104, China
| | - Rong Li
- The Second Affiliated Hospital of University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, China
| | - Yu-Sheng Zhou
- The Second Affiliated Hospital of University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, China
| | - Dong-Hai Yu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
21
|
Rong C, Wang B, Zhao D, Liu S. Information‐theoretic approach in density functional theory and its recent applications to chemical problems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1461] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) Hunan Normal University Changsha P.R. China
- Department of Chemistry, College of Chemistry and Chemical Engineering Hunan Normal University Changsha P.R. China
| | - Bin Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering Hunan Normal University Changsha P.R. China
| | - Dongbo Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing P.R. China
| | - Shubin Liu
- Research Computing Centre University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
22
|
Wu J, Yu D, Liu S, Rong C, Zhong A, Chattaraj PK, Liu S. Is It Possible To Determine Oxidation States for Atoms in Molecules Using Density-Based Quantities? An Information-Theoretic Approach and Conceptual Density Functional Theory Study. J Phys Chem A 2019; 123:6751-6760. [PMID: 31305075 DOI: 10.1021/acs.jpca.9b05054] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation state, also called oxidation number, of atoms in molecules is a fundamental chemical concept. It is defined as the charge of an atom in a molecule after the ionic approximation of its heteronuclear bonds is applied. Even though for simple molecules the assignment of oxidation states is straightforward, redundancy and ambiguity do exist for others. In this work, we present a density-based framework to determine the oxidation state using the quantities from the information-theoretic approach. As a proof of concept, we examined six elements for a total of 49 molecules. Strong linear correlations were obtained with Shannon entropy, Ghosh-Berkowitz-Parr entropy, information gain, relative Rényi entropy of orders 2 and 3, and Hirshfeld charge. We also discovered that the crystal radius of elements plays the key role in rationalizing the system dependent nature of these strong linear correlations. The validity and effectiveness of our results were demonstrated by the examples of molecules containing elements with two or more oxidation states. Our results should be applicable to more complicated systems in assigning different oxidation states.
Collapse
Affiliation(s)
- Jingyi Wu
- College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , P.R. China
| | - Donghai Yu
- College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , P.R. China
| | - Siyuan Liu
- College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , P.R. China
| | - Chunying Rong
- College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , P.R. China
| | - Aiguo Zhong
- School of Pharmaceutical and Chemical Engineering , Taizhou University , 1139 Shifu Road , Linhai , Zhejiang 318000 , P.R. China
| | - Pratim K Chattaraj
- Department of Chemistry and Center for Theoretical Studies , Indian Institute of Technology , Kharagpur 721302 , India
| | - Shubin Liu
- Research Computing Center , University of North Carolina , Chapel Hill , North Carolina 27599-3420 , United States
| |
Collapse
|
23
|
Yu D, Du R, Xiao JC, Xu S, Rong C, Liu S. Theoretical Study of pKa Values for Trivalent Rare-Earth Metal Cations in Aqueous Solution. J Phys Chem A 2018; 122:700-707. [DOI: 10.1021/acs.jpca.7b12074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Donghai Yu
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education of China), College of Chemistry and Chemical
Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ruobing Du
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shengming Xu
- Institute
of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chunying Rong
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shubin Liu
- Research
Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| |
Collapse
|
24
|
|
25
|
Deng Y, Yu D, Cao X, Liu L, Rong C, Lu T, Liu S. Structure, aromaticity and reactivity of corannulene and its analogues: a conceptual density functional theory and density functional reactivity theory study. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1403657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Youer Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, P.R. China
| | - Donghai Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, P.R. China
| | - Xiaofang Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, P.R. China
| | - Lianghong Liu
- Department of Pharmacy, Hunan University of Medicine, Huaihua, P.R. China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, P.R. China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, P.R. China
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Cao X, Rong C, Zhong A, Lu T, Liu S. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory. J Comput Chem 2017; 39:117-129. [PMID: 29076175 DOI: 10.1002/jcc.25090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/14/2017] [Accepted: 10/06/2017] [Indexed: 11/10/2022]
Abstract
Molecular acidity is one of the important physiochemical properties of a molecular system, yet its accurate calculation and prediction are still an unresolved problem in the literature. In this work, we propose to make use of the quantities from the information-theoretic (IT) approach in density functional reactivity theory and provide an accurate description of molecular acidity from a completely new perspective. To illustrate our point, five different categories of acidic series, singly and doubly substituted benzoic acids, singly substituted benzenesulfinic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, have been thoroughly examined. We show that using IT quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, one is able to simultaneously predict experimental pKa values of these different categories of compounds. Because of the universality of the quantities employed in this work, which are all density dependent, our approach should be general and be applicable to other systems as well. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaofang Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Aiguo Zhong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Road, Linhai, Zhejiang, 318000, People's Republic of China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, 100022, People's Republic of China
| | - Shubin Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Research Computing Center, University of North Carolina, Chapel Hill, North Carolina, 27599-3420
| |
Collapse
|
27
|
Charry J, Pedraza-González L, Reyes A. On the physical interpretation of the nuclear molecular orbital energy. J Chem Phys 2017; 146:214103. [PMID: 28576090 PMCID: PMC5453789 DOI: 10.1063/1.4984098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 11/14/2022] Open
Abstract
Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.
Collapse
Affiliation(s)
- Jorge Charry
- Department of Chemistry, Universidad Nacional de Colombia, Ave. Cra. 30 #45-03, Bogotá, Colombia
| | - Laura Pedraza-González
- Department of Chemistry, Universidad Nacional de Colombia, Ave. Cra. 30 #45-03, Bogotá, Colombia
| | - Andrés Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Ave. Cra. 30 #45-03, Bogotá, Colombia
| |
Collapse
|
28
|
Gunawardana CA, Desper J, Sinha AS, Ðaković M, Aakeröy CB. Competition and selectivity in supramolecular synthesis: structural landscape around 1-(pyridylmethyl)-2,2′-biimidazoles. Faraday Discuss 2017; 203:371-388. [DOI: 10.1039/c7fd00080d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three isomeric forms of 1-(pyridylmethyl)-2,2′-biimidazole, A1–A3, have been synthesized and subjected to systematic co-crystallizations with selected hydrogen- and halogen-bond donors in order to explore the impact of electrostatics and geometry on the resulting supramolecular architectures. The solid-state supramolecular behavior of A1–A3 is largely consistent in halogen-bonded co-crystals. Only two types of primary interactions, the N–H⋯N/N⋯H–N homomeric hydrogen-bond interactions responsible for the pairing of biimidazole moieties and the I⋯N(pyridine) halogen bonds responsible for the co-crystal formation and structure extension, are present in these systems. The co-crystallizations with hydrogen-bond donors (carboxylic acids), however, lead to multiple possible structural outcomes because of the presence of the biimidazole–acid N–H⋯OC/N⋯H–O heterosynthon that can compete with biimidazole–biimidazole N–H⋯N/N⋯H–N homosynthon. In addition, the somewhat unpredictable nature of proton transfer makes the hydrogen-bonded co-crystals structurally less consistent than their halogen-bonded counterparts.
Collapse
Affiliation(s)
| | - J. Desper
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| | - A. S. Sinha
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| | - M. Ðaković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - C. B. Aakeröy
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| |
Collapse
|
29
|
Yu D, Rong C, Lu T, Chattaraj PK, De Proft F, Liu S. Aromaticity and antiaromaticity of substituted fulvene derivatives: perspectives from the information-theoretic approach in density functional reactivity theory. Phys Chem Chem Phys 2017; 19:18635-18645. [DOI: 10.1039/c7cp03544f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong correlations among aromaticity descriptors and information-theoretic quantities are unveiled, providing novel insights about aromaticity and antiaromaticity from different perspectives.
Collapse
Affiliation(s)
- Donghai Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- P. R. China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- P. R. China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences
- Beijing 100022
- P. R. China
| | - Pratim K. Chattaraj
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Frank De Proft
- Research Group of General Chemistry (ALGC)
- Vrije Universiteit Brussel (VUB)
- 1050 Brussels
- Belgium
| | - Shubin Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- P. R. China
| |
Collapse
|
30
|
Miranda-Quintana RA, Martínez González M, Ayers PW. Electronegativity and redox reactions. Phys Chem Chem Phys 2016; 18:22235-43. [DOI: 10.1039/c6cp03213c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the maximum hardness principle, we show that the oxidation potential of a molecule increases as its electronegativity increases and also increases as its electronegativity in its oxidized state increases.
Collapse
Affiliation(s)
| | - Marco Martínez González
- Laboratory of Computational and Theoretical Chemistry
- Faculty of Chemistry
- University of Havana
- Havana
- Cuba
| | - Paul W. Ayers
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
31
|
Rong C, Lu T, Ayers PW, Chattaraj PK, Liu S. Scaling properties of information-theoretic quantities in density functional reactivity theory. Phys Chem Chem Phys 2015; 17:4977-88. [DOI: 10.1039/c4cp05609d] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of strong linear correlations between information-theoretic quantities and electron populations for atoms, molecules, and atoms-in-molecules have been disclosed.
Collapse
Affiliation(s)
- Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha Hunan 410081
- China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences
- Beijing 100022
- P. R. China
| | - Paul W. Ayers
- Department of Chemistry
- McMaster University
- Hamilton
- Canada
| | - Pratim K. Chattaraj
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Shubin Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha Hunan 410081
- China
| |
Collapse
|
32
|
Wu Z, Rong C, Lu T, Ayers PW, Liu S. Density functional reactivity theory study of SN2 reactions from the information-theoretic perspective. Phys Chem Chem Phys 2015; 17:27052-61. [DOI: 10.1039/c5cp04442a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong linear correlations were unveiled between barrier heights of bimolecular nucleophilic substitution (SN2) reactions and quantities from the information-theoretic approach.
Collapse
Affiliation(s)
- Zemin Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha Hunan 410081
- China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha Hunan 410081
- China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences
- Beijing 100022
- P. R. China
| | - Paul W. Ayers
- Department of Chemistry
- McMaster University
- Hamilton
- Canada L8S 4M1
| | - Shubin Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha Hunan 410081
- China
| |
Collapse
|
33
|
Ivanov SN, Giricheva NI, Nurkevich TV, Fedorov MS. Energies of the gas-phase deprotonation of nitro-substituted benzenesulfonic and benzoic acids: The role of the conformation isomerism of sulfonic acids. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414040104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
ZHAO DONGBO, RONG CHUNYING, YIN DULIN, LIU SHUBIN. MOLECULAR ACIDITY OF BUILDING BLOCKS OF BIOLOGICAL SYSTEMS: A DENSITY FUNCTIONAL REACTIVITY THEORY STUDY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s021963361350034x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An accurate prediction of the molecular acidity by employing ab initio or density functional approaches for typical molecular systems is still challenging. Recently, we proposed to utilize two quantum descriptors, molecular electrostatic potential (MEP) and the sum of valence natural atomic orbital (NAO) energies on the nucleus of both the acidic atom and leaving proton, to quantitatively evaluate the pKa values. This new approach has been validated by a number of organic and inorganic systems and justified within the framework of density functional reactivity theory (DFRT). In this work, we apply the approach to building blocks of biological systems, namely, 20 natural α-amino acids and 5 DNA/RNA bases, together with a few other biologically relevant species. Our results show that there exists a strong linear correlation between MEP on the nucleus of the N atom and the sum of N 2p NAO energies, with the correlation coefficient R2 = 0.99. Also, we observe that both MEP on the nitrogen nucleus and the sum of N 2p NAO energies correlate well with experimental pKa values, with the correlation coefficient equal to 0.91. Using this established model, we predicted the trend of pKa changes of amino acids in proteins with different dielectric constants. We also applied the model to predict pKa values for dipeptides. Implications of these linear relationships to understand functions and reactivity of biological systems are discussed as well.
Collapse
Affiliation(s)
- DONGBO ZHAO
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - CHUNYING RONG
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - DULIN YIN
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - SHUBIN LIU
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, USA
| |
Collapse
|
35
|
A theoretical study on the gas-phase protonation of pyridine and phosphinine derivatives. J Mol Model 2013; 19:4049-58. [PMID: 23892566 DOI: 10.1007/s00894-013-1925-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
In this paper, we study the protonation of pyridine and phosphinine derivatives. In particular, the geometries, the amount of charge transfer, and the nature of the created N-H and P-H bonds are discussed, underlying the fundamental differences between the phosphorus and the nitrogen atoms as proton acceptors. Conceptual density functional theory and Bader's quantum theory of atoms-in-molecules are notably used to rationalize these trends and to predict the overall energies of these prototype gas-phase acid-base reactions.
Collapse
|
36
|
Méndez F, Alonso JA, Richaud A. Protophilicity index and protofelicity equalization principle: new measures of Brønsted-Lowry-Lewis acid-base interactions. J Mol Model 2013; 19:3961-7. [PMID: 23832651 DOI: 10.1007/s00894-013-1881-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/05/2013] [Indexed: 11/26/2022]
Abstract
The simultaneous contributions of proton and electron transfer to the Brønsted-Lowry and Lewis acid-base properties of a set of p-substituted phenols are reported in this work. As a result of the analysis, a novel protophilicity index considered as the second-order energy change of a Brønsted-Lowry base as it is saturated with protons, a combined Brønsted-Lowry-Lewis acidity index (with a corresponding basicity index), and a protofelicity equalization principle (a parallel of the electronegativity equalization principle) are presented.
Collapse
Affiliation(s)
- Francisco Méndez
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, México, DF, 09340, Mexico.
| | | | | |
Collapse
|
37
|
Lesiuk M, Zachara J. Molecular electrostatic potential at the atomic sites in the effective core potential approximation. J Chem Phys 2013; 138:074107. [PMID: 23444997 DOI: 10.1063/1.4792198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Considering calculations of the molecular electrostatic potential at the atomic sites (MEP@AS) in the presence of effective core potentials (ECP), we found that the consequent use of the definition of MEP@AS based on the energy derivative with respect to nuclear charge leads to a formula that differs by one term from the result of simple application of Coulomb's law. We have developed a general method to analytically treat derivatives of ECP with respect to nuclear charge. Benchmarking calculations performed on a set of simple molecules show that our formula leads to a systematic decrease in the error connected with the introduction of ECP when compared to all-electron results. Because of a straightforward implementation and relatively low costs of the developed procedure we suggest to use it by default.
Collapse
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | | |
Collapse
|
38
|
Contreras R, Aizman A, Tapia RA, Cerda-Monje A. Lewis molecular acidity of ionic liquids from empirical energy-density models. J Phys Chem B 2013; 117:1911-20. [PMID: 23323706 DOI: 10.1021/jp3114946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two complementary models of Lewis molecular acidity are introduced and tested in a wide series of 45 room temperature ionic liquids (RTIL). They are defined in the context of the conceptual density functional theory. The first one, which we tentatively call the excess electronic chemical potential, assesses the electron accepting power of the RTIL by relating the H-bond donor acidity with the charge transfer associated to the acidic H-atom migration at the cation of the RTIL considered as a HB-donor species. This global index accounts for the molecular acidity of the cation moiety of the ionic liquid that takes into account the perturbation of the anionic partner. The second index is defined in terms of the local charge capacity modeled through the maximum electronic charge that the cation, in its valence state, may accept from an unspecified environment. Each model is compared with the experimental HB-donor acidity parameter of the Kamlet Taft model. The best comparison is obtained for a combination of both the excess electronic chemical potential and the local charge capacity. As expected, the correlations with the Kamlet Taft α parameter do not lead to a universal model of HB-donor acidity. Reduced correlations for limited series of structurally related RTIL are obtained instead. Finally, we illustrate the reliability and usefulness of the proposed model of RTIL molecular acidity to explain the cation-dependent solvent effects on the reactivity trends for cycloaddition, Kemp elimination, and Menschutkin reactions, for which experimental rate coefficients are available from literature.
Collapse
Affiliation(s)
- Renato Contreras
- Departamento de Química, Laboratorio de Química Teórica, Universidad de Chile, Facultad de Ciencias, Casilla 653, Santiago, Chile
| | | | | | | |
Collapse
|
39
|
Alipour M, Mohajeri A. From density functional steric analysis and molecular electrostatic potential to the estimation of etherification rate constant. J PHYS ORG CHEM 2012. [DOI: 10.1002/poc.2921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences; Shiraz University; Shiraz; 71454; Iran
| | - Afshan Mohajeri
- Department of Chemistry, College of Sciences; Shiraz University; Shiraz; 71454; Iran
| |
Collapse
|
40
|
Huang Y, Liu L, Liu S. Towards understanding proton affinity and gas-phase basicity with density functional reactivity theory. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Huang Y, Liu L, Liu W, Liu S, Liu S. Modeling Molecular Acidity with Electronic Properties and Hammett Constants for Substituted Benzoic Acids. J Phys Chem A 2011; 115:14697-707. [DOI: 10.1021/jp209540p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ying Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha Hunan 410208, People's Republic of China
| | - Lianghong Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha Hunan 410208, People's Republic of China
| | - Wanhui Liu
- Pharmaceutical School, Yantai University, Qingquan Road 30, Laishan, Yantai Shandong 264003, People's Republic of China
| | - Shaogang Liu
- Modern Analytical Testing Center, Central South University, Changsha Hunan 410078, People's Republic of China
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| |
Collapse
|
42
|
Chen S, Rousseau R, Raugei S, Dupuis M, DuBois DL, Bullock RM. Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations. Organometallics 2011. [DOI: 10.1021/om200645x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shentan Chen
- Center
for Molecular Electrocatalysis, Chemical and
Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Roger Rousseau
- Center
for Molecular Electrocatalysis, Chemical and
Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simone Raugei
- Center
for Molecular Electrocatalysis, Chemical and
Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Michel Dupuis
- Center
for Molecular Electrocatalysis, Chemical and
Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Daniel L. DuBois
- Center
for Molecular Electrocatalysis, Chemical and
Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R. Morris Bullock
- Center
for Molecular Electrocatalysis, Chemical and
Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
43
|
Estimating the acidity of singly and multiply substituted benzoic acids via electrostatic potential at the nucleus. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Burger SK, Ayers PW. Empirical prediction of protein pKa values with residue mutation. J Comput Chem 2011; 32:2140-8. [PMID: 21523791 DOI: 10.1002/jcc.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/20/2011] [Accepted: 02/27/2011] [Indexed: 11/10/2022]
Abstract
A fast, empirical method, Mut-pKa, is presented for predicting the pKa values of ionizable residues in proteins based on mutation. The method compares the effect of mutating each residue that may act as a hydrogen bond donor or acceptor for the ionizable residue. The energetic effect of each type of mutation, along with a desolvation measure and the overall background charge, is fit against pKa data for histidine and carboxyl residues. A total of 214 residues from 35 different proteins were used in the dataset. Using 11 parameters for each type of ionizable residue, a root mean squared error (RMSE) of 0.78 and 1.12 pH units were obtained for carboxyl and histidines residues, respectively, using leave one out cross validation (LOOCV). The results were particularly promising for buried residues, which had RMSE values of 0.99 and 1.13 for carboxyl and histidine residues, respectively. A number of desolvation measures were tested. The simplest measure, the number of atoms surrounding the residue, was found to work best. The effect of using dynamics was also studied using short molecular dynamics runs, followed by minimization of the structures. Mut-pKa has significantly fewer parameters than, but similar performance to, other empirical methods. Because of this and the LOOCV results, we believe the model is robust and that overfitting is not a problem.
Collapse
Affiliation(s)
- Steven K Burger
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, West, Hamilton, Ontario L8S4L8, Canada
| | | |
Collapse
|
45
|
Shiota Y, Herrera JM, Juhász G, Abe T, Ohzu S, Ishizuka T, Kojima T, Yoshizawa K. Theoretical Study of Oxidation of Cyclohexane Diol to Adipic Anhydride by [RuIV(O)(tpa)(H2O)]2+ Complex (tpa ═ Tris(2-pyridylmethyl)amine). Inorg Chem 2011; 50:6200-9. [DOI: 10.1021/ic200481n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, Fukuoka 819-0395, Japan
| | - Jorge M. Herrera
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, Fukuoka 819-0395, Japan
| | - Gergely Juhász
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, Fukuoka 819-0395, Japan
| | - Takafumi Abe
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, Fukuoka 819-0395, Japan
| | - Shingo Ohzu
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
46
|
Liu S, Ess DH, Schauer CK. Density Functional Reactivity Theory Characterizes Charge Separation Propensity in Proton-Coupled Electron Transfer Reactions. J Phys Chem A 2011; 115:4738-42. [DOI: 10.1021/jp112319d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Cynthia K. Schauer
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
47
|
Pedersen LG. Lee Pedersen’s work in theoretical and computational chemistry and biochemistry. World J Biol Chem 2011; 2:35-8. [PMID: 21537488 PMCID: PMC3083993 DOI: 10.4331/wjbc.v2.i2.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 02/05/2023] Open
Abstract
Nature at the lab level in biology and chemistry can be described by the application of quantum mechanics. In many cases, a reasonable approximation to quantum mechanics is classical mechanics realized through Newton’s equations of motion. Dr. Pedersen began his career using quantum mechanics to describe the properties of small molecular complexes that could serve as models for biochemical systems. To describe large molecular systems required a drop-back to classical means and this led surprisingly to a major improvement in the classical treatment of electrostatics for all molecules, not just biological molecules. Recent work has involved the application of quantum mechanics for the putative active sites of enzymes to gain greater insight into the key steps in enzyme catalysis.
Collapse
Affiliation(s)
- Lee G Pedersen
- Lee G Pedersen, Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC 27599, United States
| |
Collapse
|
48
|
Burger SK, Liu S, Ayers PW. Practical Calculation of Molecular Acidity with the Aid of a Reference Molecule. J Phys Chem A 2011; 115:1293-304. [DOI: 10.1021/jp111148q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven K. Burger
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| | - Paul W. Ayers
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
| |
Collapse
|
49
|
Alipour M, Mohajeri A. Molecular Electrostatic Potential as a tool for Evaluating the Etherification Rate Constant. J Phys Chem A 2010; 114:7417-22. [DOI: 10.1021/jp104000c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Afshan Mohajeri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| |
Collapse
|
50
|
Liu S, Hu H, Pedersen LG. Steric, quantum, and electrostatic effects on S(N)2 reaction barriers in gas phase. J Phys Chem A 2010; 114:5913-8. [PMID: 20377265 PMCID: PMC2865848 DOI: 10.1021/jp101329f] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biomolecular nucleophilic substitution reactions, S(N)2, are fundamental and commonplace in chemistry. It is the well-documented experimental finding in the literature that vicinal substitution with bulkier groups near the reaction center significantly slows the reaction due to steric hindrance, but theoretical understanding in the quantitative manner about factors dictating the S(N)2 reaction barrier height is still controversial. In this work, employing the new quantification approach that we recently proposed for the steric effect from the density functional theory framework, we investigate the relative contribution of three independent effects-steric, electrostatic, and quantum-to the S(N)2 barrier heights in gas phase for substituted methyl halide systems, R(1)R(2)R(3)CX, reacting with the fluorine anion, where R(1), R(2), and R(3) denote substituting groups and X = F or Cl. We found that in accordance with the experimental finding, for these systems, the steric effect dominates the transition state barrier, contributing positively to barrier heights, but this contribution is largely compensated by the negative, stabilizing contribution from the quantum effect due to the exchange-correlation interactions. Moreover, we find that it is the component from the electrostatic effect that is linearly correlated with the S(N)2 barrier height for the systems investigated in the present study. In addition, we compared our approach with the conventional method of energy decomposition in density functional theory as well as examined the steric effect from the wave function theory for these systems via natural bond orbital analysis.
Collapse
Affiliation(s)
- Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina, 27599-3420, USA.
| | | | | |
Collapse
|