1
|
Unge M, Aspåker H, Nilsson F, Pierre M, Hedenqvist MS. Coarse-Grained Model for Prediction of Hole Mobility in Polyethylene. J Chem Theory Comput 2023; 19:7882-7894. [PMID: 37842881 PMCID: PMC10653082 DOI: 10.1021/acs.jctc.3c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Indexed: 10/17/2023]
Abstract
Electrical conductivity measurements of polyethylene indicate that the semicrystalline structure and morphology influence the conductivity. To include this effect in atomistic charge transport simulations, models that explicitly or implicitly take morphology into account are required. In the literature, charge transport simulations of amorphous polyethylene have been successfully performed using short oligomers to represent the polymer. However, a more realistic representation of the polymer structure is desired, requiring the development of fast and efficient charge transport algorithms that can handle large molecular systems through coarse-graining. Here, such a model for charge transport simulations in polyethylene is presented. Quantum chemistry calculations were used to define six segmentation rules on how to divide a polymer chain into shorter segments representing localized molecular orbitals. Applying the rules to amorphous systems yields distributions of segments with mode and median segment lengths relatively close to the persistence length of polyethylene. In an initial test, the segments of an amorphous polyethylene were used as hopping sites in kinetic Monte Carlo (KMC) simulations, which yielded simulated hole mobilities that were within the experimental range. The activation energy of the simulated system was lower compared to the experimental values reported in the literature. A conclusion may be that the experimental result can only be explained by a model containing chemical defects that generate deep traps.
Collapse
Affiliation(s)
- Mikael Unge
- NKT
HV Cables, Technology Consulting, SE-721 78 Västerås, Sweden
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Hannes Aspåker
- NKT
HV Cables, Technology Consulting, SE-721 78 Västerås, Sweden
| | - Fritjof Nilsson
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- FSCN
Research Centre, Mid Sweden University, 85170 Sundsvall, Sweden
| | - Max Pierre
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mikael S. Hedenqvist
- Department
of Fibre and Polymer Technology, Polymeric Materials Division, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
2
|
Zahabi N, Baryshnikov G, Linares M, Zozoulenko I. Charge carrier dynamics in conducting polymer PEDOT using ab initio molecular dynamics simulations. J Chem Phys 2023; 159:154801. [PMID: 37843059 DOI: 10.1063/5.0169363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
As conducting polymers become increasingly important in electronic devices, understanding their charge transport is essential for material and device development. Various semi-empirical approaches have been used to describe temporal charge carrier dynamics in these materials, but there have yet to be any theoretical approaches utilizing ab initio molecular dynamics. In this work, we develop a computational technique based on ab initio Car-Parrinello molecular dynamics to trace charge carrier temporal motion in archetypical conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Particularly, we analyze charge dynamics in a single PEDOT chain and in two coupled chains with different degrees of coupling and study the effect of temperature. In our model we first initiate a positively charged polaron (compensated by a negative counterion) at one end of the chain, and subsequently displace the counterion to the other end of the chain and trace polaron dynamics in the system by monitoring bond length alternation in the PEDOT backbone and charge density distribution. We find that at low temperature (T = 1 K) the polaron distortion gradually disappears from its initial location and reappears near the new position of the counterion. At the room temperature (T = 300 K), we find that the distortions induced by polaron, and atomic vibrations are of the same magnitude, which makes tracking the polaron distortion challenging because it is hidden behind the temperature-induced vibrations. The novel approach developed in this work can be used to study polaron mobility along and between the chains, investigate charge transport in highly doped polymers, and explore other flexible polymers, including n-doped ones.
Collapse
Affiliation(s)
- Najmeh Zahabi
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Glib Baryshnikov
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Mathieu Linares
- Group of Scientific Visualization, Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
- Swedish e-Science Center (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
3
|
Makki H, Burke CA, Troisi A. Microstructural Model of Indacenodithiophene- co-benzothiadiazole Polymer: π-Crossing Interactions and Their Potential Impact on Charge Transport. J Phys Chem Lett 2023; 14:8867-8873. [PMID: 37756473 PMCID: PMC10561260 DOI: 10.1021/acs.jpclett.3c02305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Morphological and electronic properties of indacenodithiophene-co-benzothiadiazole (IDTBT) copolymer with varying molecular weights are calculated through combined molecular dynamics (MD) and quantum chemical (QC) methods. Our study focuses on the polymer chain arrangements, interchain connectivity pathways, and interplay between morphological and electronic structure properties of IDTBT. Our models, which are verified against GIWAXS measurements, show a considerable number of BT-BT π-π interactions with a (preferential) perpendicular local orientation of polymer chains due to the steric hindrance of bulky side chains around IDT. Although our models predict a noncrystalline structure for IDTBT, the BT-BT (interchain) crossing points show a considerable degree of short-range order in spatial arrangement which most likely result in a mesh-like structure for the polymer and provide efficient pathways for interchain charge transport.
Collapse
Affiliation(s)
- Hesam Makki
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Colm A. Burke
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Alessandro Troisi
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
4
|
Roosta S, Galami F, Elstner M, Xie W. Efficient Surface Hopping Approach for Modeling Charge Transport in Organic Semiconductors. J Chem Theory Comput 2022; 18:1264-1274. [PMID: 35179894 DOI: 10.1021/acs.jctc.1c00944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trajectory surface hopping (TSH) method is nowadays widely applied to study the charge/exciton transport process in organic semiconductors (OSCs). In the present study, we systematically examine the performance of two approximations in the fewest switched surface hopping (FSSH) simulations for charge transport (CT) in several representative OSCs. These approximations include (i) the substitution of the nuclear velocity scaling along the nonadiabatic coupling vector (NCV) by rescaling the hopping probability with the Boltzmann factor (Boltzmann correction (BC)) and (ii) a phenomenological approach to treat the quantum feedback from the electronic system to the nuclear system (implicit charge relaxation (IR)) in the OSCs. We find that charge mobilities computed by FSSH-BC-IR are in very good agreement with the mobilities obtained by standard FSSH simulations with explicit charge relaxation (FSSH-ER), however, at reduced computational cost. A key parameter determining the charge carrier mobility is the reorganization energy, which is sensitively dependent on DFT functionals applied. By employing the IR approximation, the FSSH method allows systematic investigation of the effect of the reorganization energies obtained by different DFT functionals like B3LYP or ωB97XD on CT in OSCs. In comparison to the experiments, FSSH-BC-IR using ωB97XD reorganization energy underestimates mobilities in the low-coupling regime, which may indicate the lack of nuclear quantum effects (e.g., zero point energy (ZPE)) in the simulations. The mobilities obtained by FSSH-BC-IR using the B3LYP reorganization energy agree well with experimental values in 3 orders of magnitude. The accidental agreement may be the consequence of the underestimation of the reorganization energy by the B3LYP functional, which compensates for the neglect of nuclear ZPE in the simulations.
Collapse
Affiliation(s)
- Sara Roosta
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Farhad Galami
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Weiwei Xie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Modarresi M, Zozoulenko IV. Why does solvent treatment increase conductivity of PEDOT:PSS? Insight from molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:22073-22082. [DOI: 10.1039/d2cp02655d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) is one of the most important conducting polymers. In its pristine form its electrical conductivity is low, but it can be enhanced by several orders of magnitude by...
Collapse
|
6
|
Khot A, Savoie BM. How
side‐chain
hydrophilicity modulates morphology and charge transport in mixed conducting polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aditi Khot
- Davidson School of Chemical Engineering Purdue University West Lafayette Indiana USA
| | - Brett M. Savoie
- Davidson School of Chemical Engineering Purdue University West Lafayette Indiana USA
| |
Collapse
|
7
|
Khot A, Savoie BM. Top–Down Coarse-Grained Framework for Characterizing Mixed Conducting Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aditi Khot
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M. Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
8
|
Koch T, Bachmann J, Lettmann T, Doltsinis NL. Multiscale modelling of charge transport in P3HT:DIPBI bulk heterojunction organic solar cells. Phys Chem Chem Phys 2021; 23:12233-12250. [PMID: 34009221 DOI: 10.1039/d1cp00674f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transport properties of a P3HT:DIPBI bulk heterojunction solar cell are modelled by kinetic Monte Carlo simulations based on a morphology obtained from coarse-grained molecular dynamics. Different methods for calculating the hopping integrals entering the charge transfer rates are compared and calibrated for hole transport in amorphous P3HT. The influence of intermolecular and intramolecular charge transfer on the total charge carrier mobility and hence the power conversion efficiency is investigated in detail. An analysis of the most probable pathways with low resistance for hole transport is performed, establishing a connection between charge mobility and morphology.
Collapse
Affiliation(s)
- Tobias Koch
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany.
| | - Jim Bachmann
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany.
| | - Tobias Lettmann
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany.
| | - Nikos L Doltsinis
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany.
| |
Collapse
|
9
|
Xie W, Holub D, Kubař T, Elstner M. Performance of Mixed Quantum-Classical Approaches on Modeling the Crossover from Hopping to Bandlike Charge Transport in Organic Semiconductors. J Chem Theory Comput 2020; 16:2071-2084. [PMID: 32176844 DOI: 10.1021/acs.jctc.9b01271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the present study, several mixed quantum-classical (MQC) methods are applied to on-the-fly nonadiabatic molecular dynamics simulations of hole transport in molecular organic semiconductors (OSCs). The tested MQC methods contain the mean-field Ehrenfest (MFE), trajectory surface hopping (TSH) approaches based on Tully's fewest switches surface hopping (FSSH) and the global flux surface hopping (GFSH), the latter in the diabatic/adiabatic representation, and a Landau-Zener type trajectory surface hopping (LZSH). We also tested several correction schemes which were proposed to identify trivial crossings and to remove unphysical long-range charge transfers due to decoherence corrections. In addition, several cost-effective approaches for the nuclear velocity adjustment after an energy-allowed/energy-forbidden hop are investigated with respect to detailed balance and internal consistency conditions. To model a broad spectrum of OSCs with different charge transport characteristics, we derived from the anthracene structural model the construction of two additional models by uniformly scaling down the electronic couplings by the factors of 0.1 and 0.5. Anthracene shows a bandlike charge transport mechanism, characterized by slightly delocalized charge carriers 'diffusing' through the crystal. For smaller couplings, the mechanism changes to a hopping type, characteristically differing in the charge delocalization and temperature dependence. The MFE and corrected adiabatic TSH approaches are able to quantitatively reproduce the expected behavior, while the diabatic LZSH method fails for large couplings, as do approaches which are based on the hopping of localized charge between neighboring sites. Moreover, we find that while the hole mobility of the anthracene crystal simulated using the celebrated Marcus theory is in good agreement with the experimental value, its agreement has to be regarded as an accident due to the overestimation of the prefactor in the Marcus rate equation.
Collapse
Affiliation(s)
- Weiwei Xie
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Daniel Holub
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
10
|
Navamani K, Pati SK, Senthilkumar K. Effect of site energy fluctuation on charge transport in disordered organic molecules. J Chem Phys 2019; 151:224301. [PMID: 31837669 DOI: 10.1063/1.5122695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Effect of dynamics of site energy disorder on charge transport in organic molecular semiconductors is not yet well-established. In order to study the relationship between the dynamics of site energy disorder and charge transport, we have performed a multiscale study on dialkyl substituted thienothiophene capped benzobisthiazole (BDHTT-BBT) and methyl-substituted dicyanovinyl-capped quinquethiophene (DCV5T-Me) molecular solids. In this study, we explore the structural dynamics and correlated charge transport by electronic structure calculations, molecular dynamics, and kinetic Monte-Carlo simulations. We have also proposed the differential entropy dependent diffusion and charge density equations to study the electric field drifted diffusion property and carrier density. In this investigation, we have addressed the transformation mechanism from dynamic to static disorder in the extended stacked molecular units. Here, the decrease in the charge transfer rate due to site energy fluctuations reveals the dispersion transport along the extended π-stacked molecules. Furthermore, the calculated current density for a different set of site energy difference values shows the validity and the limitations of the Einstein relation. Based on the calculated ideality factor, we have classified the charge transport in these molecules as either the Langevin or the Shockley-Read-Hall type mechanism. Through the calculated mobility, current density, and ideality factor analysis, we categorize the applicability of molecules of interest for photovoltaic or light emitting diode applications.
Collapse
Affiliation(s)
- K Navamani
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - K Senthilkumar
- Department of Physics, Bharathiar University, Coimbatore 641046, India
| |
Collapse
|
11
|
Sato M, Kumada A, Hidaka K. Multiscale modeling of charge transfer in polymers with flexible backbones. Phys Chem Chem Phys 2019; 21:1812-1819. [DOI: 10.1039/c8cp05558k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In order to evaluate carrier transfer properties in polymers with flexible backbones, we have proposed a simplified multi-scale modeling approach combining molecular dynamics simulations, first-principles calculations and kinetic Monte Carlo simulations.
Collapse
Affiliation(s)
- Masahiro Sato
- Research Center for Advanced Science and Technology
- The University of Tokyo
- Tokyo 153-0032
- Japan
| | - Akiko Kumada
- Department of Electrical Engineering and Information Systems
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kunihiko Hidaka
- Department of Electrical Engineering and Information Systems
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
12
|
Noriega R. Efficient Charge Transport in Disordered Conjugated Polymer Microstructures. Macromol Rapid Commun 2018; 39:e1800096. [DOI: 10.1002/marc.201800096] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Rodrigo Noriega
- Chemistry Department; University of Utah; 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|
13
|
Electric field dependence of charge mobility in linear conjugated polymers. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0448-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Acocella A, Höfinger S, Haunschmid E, Pop SC, Narumi T, Yasuoka K, Yasui M, Zerbetto F. Structural determinants in the bulk heterojunction. Phys Chem Chem Phys 2018; 20:5708-5720. [PMID: 29410990 DOI: 10.1039/c7cp08435h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.
Collapse
Affiliation(s)
- Angela Acocella
- Department of Chemistry "G. Ciamician", University of Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bagheri B, Baumeier B, Karttunen M. Getting excited: challenges in quantum-classical studies of excitons in polymeric systems. Phys Chem Chem Phys 2018; 18:30297-30304. [PMID: 27453482 DOI: 10.1039/c6cp02944b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of classical molecular dynamics (MM/MD) and quantum chemical calculations based on the density functional theory (DFT) was performed to describe the conformational properties of diphenylethyne (DPE), methylated-DPE and poly para phenylene ethynylene (PPE). DFT calculations were employed to improve and develop force field parameters for MM/MD simulations. Many-body Green's function theory within the GW approximation and the Bethe-Salpeter (GW-BSE) equation were utilized to describe the excited states of the systems. The reliability of the excitation energies based on the MM/MD conformations was examined and compared to the excitation energies from DFT conformations. The results show an overall agreement between the optical excitations based on MM/MD conformations and DFT conformations. This allows for the calculation of excitation energies based on MM/MD conformations.
Collapse
Affiliation(s)
- Behnaz Bagheri
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Björn Baumeier
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Mikko Karttunen
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
16
|
Navamani K, Samanta PK, Pati SK. Theoretical modeling of charge transport in triphenylamine–benzimidazole based organic solids for their application as host-materials in phosphorescent OLEDs. RSC Adv 2018; 8:30021-30039. [PMID: 35547290 PMCID: PMC9085285 DOI: 10.1039/c8ra03281e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/18/2018] [Indexed: 11/21/2022] Open
Abstract
The dynamic disorder and electric field effects on charge transport in triphenylamine–benzimidazole based molecular solids have been investigated using electronic structure calculations, molecular dynamics and Monte-Carlo simulations. During the charge propagation, the energy loss of the carrier in each hopping step is monitored by Monte-Carlo simulation. We derive a survival probability correlated momentum–energy distribution for drift-diffusion analysis and we demonstrate the dispersion initiated charge trapping mechanism which is indeed ideal for light emission efficiency via recombination. In the present model, the proposed carrier drift energy–current density expression and Shockley diode current density equation are used to study the current density–voltage characteristics; accordingly the ideality factor (∼1.8–2.0) dictates the deviation of Einstein's classical diffusion–mobility relation (where the ideality factor is unity). The dual mechanism of electric field assisted site energy gap on coherent-like transport and the electric field stretched dispersion on recombination are observed in tris(3′-(1-phenyl-1H-benzimidazole-2-yl)biphenyl-4-yl)amine (TBBI) and tris(4′-(1-phenyl-1H-benzimidazole-2-yl)biphenyl-4-yl)amine (TIBN) molecular systems, which can be used as host materials in organic light emitting diodes (OLEDs). We find the transport going from coherent to incoherent, due to the conversion mechanism of dynamic to static disorder. This can also be a controlled by applied electric field. By adjusting the applied electric field, film thickness and changing the π-stacked molecular aggregation via substitutions, one can fix the dispersive parameter and accordingly calculate the charge transport properties to design efficient host-materials for photovoltaic and light emitting diode devices. Dynamic disorder and electric field affect the charge (hole and electron) transport in host-materials for OLEDs.![]()
Collapse
Affiliation(s)
- K. Navamani
- School of Advanced Materials (SAMat)
- Theoretical Sciences Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| | - P. K. Samanta
- School of Advanced Materials (SAMat)
- Theoretical Sciences Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| | - S. K. Pati
- School of Advanced Materials (SAMat)
- Theoretical Sciences Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| |
Collapse
|
17
|
Gali SM, D’Avino G, Aurel P, Han G, Yi Y, Papadopoulos TA, Coropceanu V, Brédas JL, Hadziioannou G, Zannoni C, Muccioli L. Energetic fluctuations in amorphous semiconducting polymers: Impact on charge-carrier mobility. J Chem Phys 2017; 147:134904. [DOI: 10.1063/1.4996969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sai Manoj Gali
- Institut des Sciences Moléculaires, UMR 5255, University of Bordeaux, Talence, France
- Laboratoire de Chimie des Polymères Organiques, UMR 5629, University of Bordeaux, Pessac, France
| | - Gabriele D’Avino
- Institut Néel, CNRS and Grenoble Alpes University, Grenoble, France
| | - Philippe Aurel
- Institut des Sciences Moléculaires, UMR 5255, University of Bordeaux, Talence, France
| | - Guangchao Han
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yuanping Yi
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | | | - Veaceslav Coropceanu
- Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jean-Luc Brédas
- Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Georges Hadziioannou
- Laboratoire de Chimie des Polymères Organiques, UMR 5629, University of Bordeaux, Pessac, France
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale “Toso Montanari,” University of Bologna, Bologna, Italy
| | - Luca Muccioli
- Institut des Sciences Moléculaires, UMR 5255, University of Bordeaux, Talence, France
- Dipartimento di Chimica Industriale “Toso Montanari,” University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Matsidik R, Luzio A, Askin Ö, Fazzi D, Sepe A, Steiner U, Komber H, Caironi M, Sommer M. Highly Planarized Naphthalene Diimide-Bifuran Copolymers with Unexpected Charge Transport Performance. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:5473-5483. [PMID: 28890605 PMCID: PMC5584907 DOI: 10.1021/acs.chemmater.6b05313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/09/2017] [Indexed: 05/28/2023]
Abstract
The synthesis, characterization, and charge transport performance of novel copolymers PNDIFu2 made from alternating naphthalene diimide (NDI) and bifuran (Fu2) units are reported. Usage of potentially biomass-derived Fu2 as alternating repeat unit enables flattened polymer backbones due to reduced steric interactions between the imide oxygens and Fu2 units, as seen by density functional theory (DFT) calculations and UV-vis spectroscopy. Aggregation of PNDIFu2 in solution is enhanced if compared to the analogous NDI-bithiophene (T2) copolymers PNDIT2, occurring in all solvents and temperatures probed. PNDIFu2 features a smaller π-π stacking distance of 0.35 nm compared to 0.39 nm seen for PNDIT2. Alignment of aggregates in films is achieved by using off-center spin coating, whereby PNDIFu2 exhibits a stronger dichroic ratio and transport anisotropy in field-effect transistors (FET) compared to PNDIT2, with an overall good electron mobility of 0.21 cm2/(V s). Despite an enhanced backbone planarity, the smaller π-π stacking and the enhanced charge transport anisotropy, the electron mobility of PNDIFu2 is about three times lower compared to PNDIT2. Density functional theory calculations suggest that charge transport in PNDIFu2 is limited by enhanced polaron localization compared to PNDIT2.
Collapse
Affiliation(s)
- Rukiya Matsidik
- Universität
Freiburg, Institut für Makromolekulare
Chemie, Stefan-Meier-Str.
31, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | - Alessandro Luzio
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Özge Askin
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Daniele Fazzi
- Max-Planck-Institut
für Kohlenforschung (MPI-KOFO), Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Alessandro Sepe
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Ullrich Steiner
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Hartmut Komber
- Leibniz
Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Mario Caironi
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Michael Sommer
- Universität
Freiburg, Institut für Makromolekulare
Chemie, Stefan-Meier-Str.
31, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
- FIT
Freiburger
Zentrum für interaktive Werkstoffe und bioinspirierte Technologien, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
19
|
Volpi R, Linares M. Study of the cold charge transfer state separation at the TQ1/PC 71 BM interface. J Comput Chem 2017; 38:1039-1048. [PMID: 28318028 DOI: 10.1002/jcc.24776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 11/09/2022]
Abstract
Charge transfer (CT) state separation is one of the most critical processes in the functioning of an organic solar cell. In this article, we study a bilayer of TQ1 and PC71 BM molecules presenting disorder at the interface, obtained by means of Molecular Dynamics. The study of the CT state splitting can be first analyzed through the CT state splitting diagram, introduced in a previous work. Through this analysis, we identify the possibility of CT state splitting within Marcus Theory in function of the electric field. Once the right range of electric fields has been identified, we perform Kinetic Monte Carlo simulations to estimate percentages and times for the CT state splitting and the free charge carriers collection. Statistical information extracted from these simulations allows us to highlight the importance of polarization and to test the limits of the predictions given by the CT state splitting diagram. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Riccardo Volpi
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden
| | - Mathieu Linares
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden.,Swedish e-Science Research Centre (SeRC), Linköping University, Linköping, SE-581 83, Sweden
| |
Collapse
|
20
|
Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer. Polymers (Basel) 2017; 9:polym9020048. [PMID: 30970727 PMCID: PMC6431982 DOI: 10.3390/polym9020048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/17/2022] Open
Abstract
This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.
Collapse
|
21
|
Groves C. Simulating charge transport in organic semiconductors and devices: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:026502. [PMID: 27991440 DOI: 10.1088/1361-6633/80/2/026502] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling. The review concludes with an outlook for charge transport modelling in organic electronics.
Collapse
Affiliation(s)
- C Groves
- Durham University, School of Engineering and Computing Sciences, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
22
|
Volpi R, Nassau R, Nørby MS, Linares M. Theoretical Study of the Charge-Transfer State Separation within Marcus Theory: The C60-Anthracene Case Study. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24722-24736. [PMID: 27561228 DOI: 10.1021/acsami.6b06645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study, within Marcus theory, the possibility of the charge-transfer (CT) state splitting at organic interfaces and a subsequent transport of the free charge carriers to the electrodes. As a case study we analyze model anthracene-C60 interfaces. Kinetic Monte Carlo (KMC) simulations on the cold CT state were performed at a range of applied electric fields, and with the fields applied at a range of angles to the interface to simulate the action of the electric field in a bulk heterojunction (BHJ) interface. The results show that the inclusion of polarization in our model increases CT state dissociation and charge collection. The effect of the electric field on CT state splitting and free charge carrier conduction is analyzed in detail with and without polarization. Also, depending on the relative orientation of the anthracene and C60 molecules at the interface, CT state splitting shows different behavior with respect to both applied field strength and applied field angle. The importance of the hot CT in helping the charge carrier dissociation is also analyzed in our scheme.
Collapse
Affiliation(s)
- Riccardo Volpi
- Department of Physics, Chemistry and Biology (IFM), Linköping University , SE-581 83 Linköping, Sweden
- Swedish e-Science Research Centre (SeRC), Linköping University , SE-581 83 Linköping, Sweden
| | - Racine Nassau
- Department of Physics, Chemistry and Biology (IFM), Linköping University , SE-581 83 Linköping, Sweden
| | - Morten Steen Nørby
- Department of Physics, Chemistry and Biology (IFM), Linköping University , SE-581 83 Linköping, Sweden
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , DK-5230 Odense M, Denmark
| | - Mathieu Linares
- Department of Physics, Chemistry and Biology (IFM), Linköping University , SE-581 83 Linköping, Sweden
- Swedish e-Science Research Centre (SeRC), Linköping University , SE-581 83 Linköping, Sweden
| |
Collapse
|
23
|
Abstract
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, [Formula: see text] Simulations reveal the relevant timescale for local transfer integral decorrelation to be [Formula: see text]100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.
Collapse
|
24
|
Winands T, Böckmann M, Schemme T, Ly PMT, de Jong DH, Wang Z, Denz C, Heuer A, Doltsinis NL. P3HT:DiPBI bulk heterojunction solar cells: morphology and electronic structure probed by multiscale simulation and UV/vis spectroscopy. Phys Chem Chem Phys 2016; 18:6217-27. [DOI: 10.1039/c5cp06704a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The effect of different annealing protocols on the morphology and light absorption of a P3HT:DiPBI mixture is studied by theory and experiment.
Collapse
Affiliation(s)
- Thorsten Winands
- Institut für Festkörpertheorie
- Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation
- 48149 Münster
- Germany
| | - Marcus Böckmann
- Institut für Festkörpertheorie
- Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation
- 48149 Münster
- Germany
| | - Thomas Schemme
- Institut für Angewandte Physik
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Phong-Minh Timmy Ly
- Institut für Festkörpertheorie
- Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation
- 48149 Münster
- Germany
| | - Djurre H. de Jong
- Institut für Physikalische Chemie
- Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation
- 48149 Münster
- Germany
| | - Zhaohui Wang
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences Beijing
- P. R. China
| | - Cornelia Denz
- Institut für Angewandte Physik
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Andreas Heuer
- Institut für Physikalische Chemie
- Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation
- 48149 Münster
- Germany
| | - Nikos L. Doltsinis
- Institut für Festkörpertheorie
- Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation
- 48149 Münster
- Germany
| |
Collapse
|
25
|
Heck A, Kranz JJ, Kubař T, Elstner M. Multi-Scale Approach to Non-Adiabatic Charge Transport in High-Mobility Organic Semiconductors. J Chem Theory Comput 2015; 11:5068-82. [DOI: 10.1021/acs.jctc.5b00719] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Heck
- Department
of Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
- Heidelberg
Karlsruhe Research Partnership (HEiKA), Heidelberg University, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Julian J. Kranz
- Department
of Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Department
of Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Department
of Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
- Heidelberg
Karlsruhe Research Partnership (HEiKA), Heidelberg University, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
26
|
Kilina S, Kilin D, Tretiak S. Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chem Rev 2015; 115:5929-78. [DOI: 10.1021/acs.chemrev.5b00012] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Svetlana Kilina
- Chemistry
and Biochemistry Department, North Dakota State University, Fargo, North Dakota 5810, United States
| | - Dmitri Kilin
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Sergei Tretiak
- Theoretical
Division, Center for Nonlinear Studies (CNLS) and Center for Integrated
Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
27
|
Jackson NE, Kohlstedt KL, Savoie BM, Olvera de la Cruz M, Schatz GC, Chen LX, Ratner MA. Conformational Order in Aggregates of Conjugated Polymers. J Am Chem Soc 2015; 137:6254-62. [DOI: 10.1021/jacs.5b00493] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nicholas E. Jackson
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kevin L. Kohlstedt
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Brett M. Savoie
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X. Chen
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mark A. Ratner
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Laquai F, Andrienko D, Mauer R, Blom PWM. Charge Carrier Transport and Photogeneration in P3HT:PCBM Photovoltaic Blends. Macromol Rapid Commun 2015; 36:1001-25. [DOI: 10.1002/marc.201500047] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/30/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Frédéric Laquai
- Max Planck Institute for Polymer Research; Ackermannweg 10 D-55122 Mainz Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research; Ackermannweg 10 D-55122 Mainz Germany
| | - Ralf Mauer
- Max Planck Institute for Polymer Research; Ackermannweg 10 D-55122 Mainz Germany
| | - Paul W. M. Blom
- Max Planck Institute for Polymer Research; Ackermannweg 10 D-55122 Mainz Germany
| |
Collapse
|
29
|
Gemünden P, Poelking C, Kremer K, Daoulas K, Andrienko D. Effect of Mesoscale Ordering on the Density of States of Polymeric Semiconductors. Macromol Rapid Commun 2015; 36:1047-53. [DOI: 10.1002/marc.201400725] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/24/2015] [Indexed: 11/06/2022]
Affiliation(s)
| | - Carl Poelking
- Max Planck Institute for Polymer Research; 55128 Mainz Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research; 55128 Mainz Germany
| | - Kostas Daoulas
- Max Planck Institute for Polymer Research; 55128 Mainz Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research; 55128 Mainz Germany
| |
Collapse
|
30
|
Jackson NE, Savoie BM, Marks TJ, Chen LX, Ratner MA. The Next Breakthrough for Organic Photovoltaics? J Phys Chem Lett 2015; 6:77-84. [PMID: 26263095 DOI: 10.1021/jz502223t] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While the intense focus on energy level tuning in organic photovoltaic materials has afforded large gains in device performance, we argue here that strategies based on microstructural/morphological control are at least as promising in any rational design strategy. In this work, a meta-analysis of ∼150 bulk heterojunction devices fabricated with different materials combinations is performed and reveals strong correlations between power conversion efficiency and morphology-dominated properties (short-circuit current, fill factor) and surprisingly weak correlations between efficiency and energy level positioning (open-circuit voltage, enthalpic offset at the interface, optical gap). While energy level positioning should in principle provide the theoretical maximum efficiency, the optimization landscape that must be navigated to reach this maximum is unforgiving. Thus, research aimed at developing understanding-based strategies for more efficient optimization of an active layer microstructure and morphology are likely to be at least as fruitful.
Collapse
Affiliation(s)
- Nicholas E Jackson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brett M Savoie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mark A Ratner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Shao N, Wu Q. Charge self-localization in π-conjugated polymers by long range corrected hybrid functionals. Phys Chem Chem Phys 2014; 16:6700-8. [DOI: 10.1039/c3cp54515f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Prediction and Theoretical Characterization of p-Type Organic Semiconductor Crystals for Field-Effect Transistor Applications. Top Curr Chem (Cham) 2014; 345:95-138. [DOI: 10.1007/128_2013_526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Morphology and Charge Transport in P3HT: A Theorist’s Perspective. P3HT REVISITED – FROM MOLECULAR SCALE TO SOLAR CELL DEVICES 2014. [DOI: 10.1007/12_2014_277] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Gemünden P, Poelking C, Kremer K, Andrienko D, Daoulas KC. Nematic Ordering, Conjugation, and Density of States of Soluble Polymeric Semiconductors. Macromolecules 2013. [DOI: 10.1021/ma400646a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Gemünden
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- InnovationLab GmbH, 69115 Heidelberg, Germany
| | - Carl Poelking
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Kostas Ch. Daoulas
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- InnovationLab GmbH, 69115 Heidelberg, Germany
| |
Collapse
|
35
|
Vukmirović N. A comparative study of electronic properties of disordered conjugated polymers. Phys Chem Chem Phys 2013; 15:3543-51. [DOI: 10.1039/c3cp43115k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
May F, Al-Helwi M, Baumeier B, Kowalsky W, Fuchs E, Lennartz C, Andrienko D. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes. J Am Chem Soc 2012; 134:13818-22. [PMID: 22845011 DOI: 10.1021/ja305310r] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.
Collapse
Affiliation(s)
- Falk May
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Daoulas KC, Rühle V, Kremer K. Simulations of nematic homopolymer melts using particle-based models with interactions expressed through collective variables. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:284121. [PMID: 22738833 DOI: 10.1088/0953-8984/24/28/284121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We develop a hybrid Monte Carlo approach for modelling nematic liquid crystals of homopolymer melts. The polymer architecture is described with a discrete worm-like chain model. A quadratic density functional accounts for the limited compressibility of the liquid, while an additional quadratic functional of the local orientation tensor of the segments captures the nematic ordering. The approach can efficiently address large systems parametrized according to volumetric and conformational properties, representative of real polymeric materials. The results of the simulations regarding the influence of the molecular weight on the isotropic-nematic transition are compared to predictions from a Landau-de Gennes free energy expansion. The formation of the nematic phase is addressed within Rouse-like dynamics, realized using the current model.
Collapse
Affiliation(s)
- Kostas Ch Daoulas
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | | | | |
Collapse
|
38
|
|
39
|
Schrader M, Fitzner R, Hein M, Elschner C, Baumeier B, Leo K, Riede M, Bäuerle P, Andrienko D. Comparative Study of Microscopic Charge Dynamics in Crystalline Acceptor-Substituted Oligothiophenes. J Am Chem Soc 2012; 134:6052-6. [DOI: 10.1021/ja300851q] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel Schrader
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Roland Fitzner
- Institute of Organic Chemistry II and Advanced Materials, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Moritz Hein
- Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Strasse 1, 01069 Dresden, Germany
| | - Chris Elschner
- Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Strasse 1, 01069 Dresden, Germany
| | - Björn Baumeier
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Karl Leo
- Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Strasse 1, 01069 Dresden, Germany
| | - Moritz Riede
- Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Strasse 1, 01069 Dresden, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| |
Collapse
|
40
|
Baumeier B, May F, Lennartz C, Andrienko D. Challenges for in silico design of organic semiconductors. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30182b] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Rühle V, Lukyanov A, May F, Schrader M, Vehoff T, Kirkpatrick J, Baumeier B, Andrienko D. Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors. J Chem Theory Comput 2011; 7:3335-3345. [PMID: 22076120 PMCID: PMC3210523 DOI: 10.1021/ct200388s] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Indexed: 12/31/2022]
Abstract
Charge carrier dynamics in an organic semiconductor can often be described in terms of charge hopping between localized states. The hopping rates depend on electronic coupling elements, reorganization energies, and driving forces, which vary as a function of position and orientation of the molecules. The exact evaluation of these contributions in a molecular assembly is computationally prohibitive. Various, often semiempirical, approximations are employed instead. In this work, we review some of these approaches and introduce a software toolkit which implements them. The purpose of the toolkit is to simplify the workflow for charge transport simulations, provide a uniform error control for the methods and a flexible platform for their development, and eventually allow in silico prescreening of organic semiconductors for specific applications. All implemented methods are illustrated by studying charge transport in amorphous films of tris-(8-hydroxyquinoline)aluminum, a common organic semiconductor.
Collapse
|
42
|
Vukmirović N, Wang LW. Overlapping fragments method for electronic structure calculation of large systems. J Chem Phys 2011; 134:094119. [DOI: 10.1063/1.3560956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Vukmirović N, Wang LW. Density of States and Wave Function Localization in Disordered Conjugated Polymers: A Large Scale Computational Study. J Phys Chem B 2011; 115:1792-7. [DOI: 10.1021/jp1114527] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nenad Vukmirović
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Lin-Wang Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
44
|
Vehoff T, Baumeier B, Andrienko D. Charge transport in columnar mesophases of carbazole macrocycles. J Chem Phys 2010; 133:134901. [DOI: 10.1063/1.3501360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Baumeier B, Kirkpatrick J, Andrienko D. Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. Phys Chem Chem Phys 2010; 12:11103-13. [PMID: 20689881 DOI: 10.1039/c002337j] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical studies of charge transport in organic conducting systems pose a unique challenge since they must describe both extremely short-ranged and fast processes (charge tunneling) and extremely long-ranged and slow ones (molecular ordering). The description of the mobility of electrons and holes in the hopping regime relies on the determination of intermolecular hopping rates in large-scale morphologies. Using Marcus theory these rates can be calculated from intermolecular transfer integrals and on-site energies. Here we present a detailed computational study on the accuracy and efficiency of density-functional theory based approaches to the determination of intermolecular transfer integrals. First, it is demonstrated how these can be obtained from quantum-chemistry calculations by forming the expectation value of a dimer Fock operator with frontier orbitals of two neighboring monomers based on a projective approach. We then consider the prototypical example of one pair out of a larger morphology of tris(8-hydroxyquinolinato)aluminium (Alq(3)) and study the influence of computational parameters, e.g. the choice of basis sets, exchange-correlation functional, and convergence criteria, on the calculated transfer integrals. The respective results are compared in order to derive an optimal strategy for future simulations based on the full morphology.
Collapse
Affiliation(s)
- Björn Baumeier
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | | | | |
Collapse
|
46
|
Vehoff T, Baumeier B, Troisi A, Andrienko D. Charge Transport in Organic Crystals: Role of Disorder and Topological Connectivity. J Am Chem Soc 2010; 132:11702-8. [DOI: 10.1021/ja104380c] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Thorsten Vehoff
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany, and Department of Chemistry and Centre of Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Björn Baumeier
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany, and Department of Chemistry and Centre of Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alessandro Troisi
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany, and Department of Chemistry and Centre of Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany, and Department of Chemistry and Centre of Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
47
|
Do K, Huang DM, Faller R, Moulé AJ. A comparative MD study of the local structure of polymer semiconductors P3HT and PBTTT. Phys Chem Chem Phys 2010; 12:14735-9. [DOI: 10.1039/c0cp00785d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|