1
|
Rams-Baron M, Błażytko A, Casalini R, Paluch M. Insight into properties of sizable glass former from volumetric measurements. J Chem Phys 2024; 161:064502. [PMID: 39120034 DOI: 10.1063/5.0217660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Sizable glass formers feature numerous unique properties and potential applications, but many questions regarding their glass transition dynamics have not been resolved yet. Here, we have analyzed structural relaxation times measured as a function of temperature and pressure in combination with the equation of state obtained from pressure-volume-temperature measurements. Despite evidence from previous dielectric studies indicating a remarkable sensitivity of supercooled dynamics to compression, and contrary to intuition, our results demonstrated the proof for the almost equivalent importance of thermal energy and free volume fluctuations in controlling reorientation dynamics of sizable molecules. The found scaling exponent γ = 3.0 and Ev/Ep ratio of 0.6 were typical for glass-forming materials with relaxation dynamics determined by both effects with a minor advantage of thermal fluctuations involvement. It shows that the high values of key parameters characterizing the sensitivity of the glass transition dynamics to pressure changes, i.e., activation volume ΔV and dTg/dP, are not a valid premise for a remarkable contribution of volume to glass transition dynamics.
Collapse
Affiliation(s)
- Marzena Rams-Baron
- August Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Alfred Błażytko
- August Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Riccardo Casalini
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, USA
| | - Marian Paluch
- August Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
2
|
Cheng S, Patil S, Cheng S. Hydrogen Bonding Exchange and Supramolecular Dynamics of Monohydroxy Alcohols. PHYSICAL REVIEW LETTERS 2024; 132:058201. [PMID: 38364139 DOI: 10.1103/physrevlett.132.058201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2024]
Abstract
We unravel hydrogen bonding dynamics and their relationship with supramolecular relaxations of monohydroxy alcohols (MAs) at intermediate times. The rheological modulus of MAs exhibits Rouse scaling relaxation of G(t)∼t^{-1/2} switching to G(t)∼t^{-1} at time τ_{m} before their terminal time. Meanwhile, dielectric spectroscopy reveals clear signatures of new supramolecular dynamics matching with τ_{m} from rheology. Interestingly, the characteristic time τ_{m} follows an Arrhenius-like temperature dependence over exceptionally wide temperatures and agrees well with the hydrogen bonding exchange time from nuclear magnetic resonance measurements. These observations demonstrate the presence of Rouse modes and active chain swapping of MAs at intermediate times. Moreover, detailed theoretical analyses point out explicitly that the hydrogen bonding exchange truncates the Rouse dynamics of the supramolecular chains and triggers the chain-swapping processes, supporting a recently proposed living polymer model.
Collapse
Affiliation(s)
- Shinian Cheng
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
3
|
Paluch M, Yao B, Pionteck J, Wojnarowska Z. Predicting the Density-Scaling Exponent of a Glass-Forming Liquid from Complex Dielectric Permittivity Measurements. PHYSICAL REVIEW LETTERS 2023; 131:086101. [PMID: 37683158 DOI: 10.1103/physrevlett.131.086101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 09/10/2023]
Abstract
One of the challenging problems related to the liquid-glass transition phenomenon is establishing a link between the character of intermolecular interactions and the behavior of molecular dynamics. Introducing the density scaling concept, according to which dynamic quantities, e.g., viscosity or structural relaxation time (τ_{α}) measured at different thermodynamic conditions are expressed as a single universal curve if plotted against ρ^{γ}/T, led to significant progress in solving this problem since the scaling exponent γ defines the steepness of the repulsive part of the intermolecular potential. Herein, we found that relaxation dynamics of van der Waals and H-bonding glass formers, for which the Kirkwood factor (g_{K}) is an isomorph-invariant quantity, satisfy an alternative scaling, logτ_{α} vs T(Δϵ_{s}T)^{-γ}. As a result, the exponent γ is determined from the temperature and pressure evolutions of τ_{α} and dielectric relaxation strength Δϵ-both obtained in a single dielectric experiment, which makes the γ coefficient to be accessed in the future for an extensive database of glass-forming liquids.
Collapse
Affiliation(s)
- Marian Paluch
- August Chełkowski Institute of Physics, The University of Silesia in Katowice, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Beibei Yao
- August Chełkowski Institute of Physics, The University of Silesia in Katowice, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Jurgen Pionteck
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, D-01069 Dresden, Germany
| | - Zaneta Wojnarowska
- August Chełkowski Institute of Physics, The University of Silesia in Katowice, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
4
|
Patil S, Sun R, Cheng S, Cheng S. Molecular Mechanism of the Debye Relaxation in Monohydroxy Alcohols Revealed from Rheo-Dielectric Spectroscopy. PHYSICAL REVIEW LETTERS 2023; 130:098201. [PMID: 36930926 DOI: 10.1103/physrevlett.130.098201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Rheo-dielectric spectroscopy is employed to investigate the effect of external shear on Debye-like relaxation of a model monohydroxy alcohol, i.e., the 2-ethyl-1-hexanol (2E1H). Shear deformation leads to strong acceleration in the structural relaxation, the Debye relaxation, and the terminal relaxation of 2E1H. Moreover, the shear-induced reduction in structural relaxation time, τ_{α}, scales quadratically with that of Debye time, τ_{D}, and the terminal flow time, τ_{f}, suggesting a relationship of τ_{D}^{2}∼τ_{α}. Further analyses reveal τ_{D}^{2}/τ_{α} of 2E1H follows Arrhenius temperature dependence that applies remarkably well to many other monohydroxy alcohols with different molecular sizes, architectures, and alcohol types. These results cannot be understood by the prevailing transient chain model, and suggest a H-bonding breakage facilitated sub-supramolecular reorientation as the origin of Debye relaxation of monohydroxy alcohols, akin to the molecular mechanism for the terminal relaxation of unentangled "living" polymers.
Collapse
Affiliation(s)
- Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ruikun Sun
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shinian Cheng
- Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
5
|
Hachuła B, Kamińska E, Koperwas K, Wrzalik R, Jurkiewicz K, Tarnacka M, Scelta D, Fanetti S, Pawlus S, Paluch M, Kamiński K. A study of OH···O hydrogen bonds along various isolines in 2-ethyl-1-hexanol. Temperature or pressure - which parameter controls their behavior? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121726. [PMID: 35970088 DOI: 10.1016/j.saa.2022.121726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The nature of H-bonding interactions is still far from being understood despite intense experimental and theoretical studies on this subject carried out by the leading research centers. In this paper, by a combination of unique high-pressure infrared, dielectric and volumetric data, the intramolecular dynamics of hydroxyl moieties (which provides direct information about H-bonds) was studied along various isolines, i.e., isotherms, isobars, isochrones, and isochores, in a simple monohydroxy alcohol (2-ethyl-1-hexanol). This allowed us to discover that the temperature controls the intermolecular hydrogen bonds, which then affect the intramolecular dynamics of OH units. Although the role of density fluctuations gets stronger as temperature rises. We also demonstrated a clear connection between the intra- and intermolecular dynamics of the associating liquid at high pressure. The data reported herein open a new perspective to explore this important aspect of the glass transition phenomenon and understand H-bonding interactions at varying thermodynamic conditions.
Collapse
Affiliation(s)
- Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland.
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Kajetan Koperwas
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Roman Wrzalik
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Demetrio Scelta
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy; ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Samuele Fanetti
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy; ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Sebastian Pawlus
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Marian Paluch
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| |
Collapse
|
6
|
Paturej J, Koperwas K, Tarnacka M, Jurkiewicz K, Maksym P, Grelska J, Paluch M, Kamiński K. Supramolecular structures of self-assembled oligomers under confinement. SOFT MATTER 2022; 18:4930-4936. [PMID: 35730478 DOI: 10.1039/d2sm00343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the molecular origin of a prepeak (PP) observed at low q values in the structure factors of three oligomers in a bulk (poly(mercaptopropyl)methylsiloxane, PMMS, poly(methylmercaptopropyl)-grafted-hexylmethacrylate, PMMS-g-HMA, and poly(methylphenyl)siloxane, PMPS) in order to understand the lowering of the PP intensity detected for oligomers confined in cylindrical pores with low diameter. For this purpose, we use a combination of X-ray diffraction measurements and coarse-grained bead-spring molecular dynamics simulations. Our molecular modelling demonstrated that the planarity of the pendant groups triggers the self-association of oligomers into nanoaggregates. However, the formation of oligomeric nanodomains is not sufficient for building-up the PP. The latter requires spatial disturbance in the arrangement of the side groups of oligomers within clusters. Importantly, our numerical analysis revealed that the increasing degree of the confinement of oligomers limits their aggregation and consequently lowers the amplitude of the PP observed in the experimental data.
Collapse
Affiliation(s)
- Jarosław Paturej
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
- Leibniz-Institut für Polymerforschung, Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Kajetan Koperwas
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Magdalena Tarnacka
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Karolina Jurkiewicz
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Paulina Maksym
- Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzow, Poland
| | - Joanna Grelska
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Marian Paluch
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Kamil Kamiński
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| |
Collapse
|
7
|
Singh S, Ozaki Y, Antoni Czarnecki M. Association and solubility of chlorophenols in CCl 4: MIR/NIR spectroscopic and DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121077. [PMID: 35248856 DOI: 10.1016/j.saa.2022.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
This work provides new information on the effect of position and number of substituents on association and solubility of chlorophenols in CCl4. Using MIR and NIR spectroscopy we examined solutions of 12 chlorophenols at several concentrations. In addition, we calculated (DFT) theoretical spectra and structures of monomers and associates of chlorophenols from dimer to tetramer. The number of substituents at positions 2 and 6 allows to divide studied chlorophenols into three Groups: I (3; 4; 3,4; 3,5), II (2; 2,3; 2,4; 2,5; 2,4,5), and III (2,6; 2,4,6; 2,3,4,5,6). An equilibrium between intermolecular OH⋅⋅⋅OH and intramolecular OH⋅⋅⋅Cl hydrogen bonding depends on position and number of substituents. The extent of association decreases in going from Group I to Group III due to growing steric hindrance near the OH group and the resonance effect from Cl. In chlorophenols of Group I, Cl at positions 3 or 5 weakens the OH⋅⋅⋅OH intermolecular hydrogen bonding, while for Group II it strengthens the OH⋅⋅⋅⋅Cl intramolecular bonding. In contrast, Cl at position 4 has minor effect on association. In the case of Group I, increasing concentration shifts the equilibrium towards solute-solute interactions, whereas for Groups II and III dominate the species with intramolecular OH⋅⋅⋅Cl bonding. The theoretical calculations predict that for monosubstituted chlorophenols of Group I the most stable are non-planar cyclic tetramers, while for disubstituted ones, the non-planar cyclic tetramers and linear trimers have similar binding energies. Chlorophenols of Group II prefer the cyclic non-planar trimers, whereas those of Group III form the planar dimers with an antiparallel orientation of the OH groups. Our study reveals that chlorophenols creating the cyclic associates are better soluble in CCl4 as compared with those forming the linear ones. Hence, one can conclude that in an inert or weakly interacting solvents the solubility is closely related to the structure of the solute associates.
Collapse
Affiliation(s)
- Swapnil Singh
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, POLAND
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan; Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | | |
Collapse
|
8
|
Heczko D, Jesionek P, Hachuła B, Jurkiewicz K, Grelska J, Tarnacka M, Kamiński K, Paluch M, Kamińska E. Variation in the local ordering, H-bonding pattern and molecular dynamics in the pressure densified ritonavir. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Ananiadou A, Papamokos G, Steinhart M, Floudas G. Effect of confinement on the dynamics of 1-propanol and other monohydroxy alcohols. J Chem Phys 2021; 155:184504. [PMID: 34773957 DOI: 10.1063/5.0063967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the effect of confinement on the dynamics of three monohydroxy alcohols (1-propanol, 2-ethyl-1-hexanol, and 4-methyl-3-heptanol) differing in their chemical structure and, consequently, in the dielectric strength of the "Debye" process. Density functional theory calculations in bulk 1-propanol identified both linear and ring-like associations composed of up to five repeat units. The simulation results revealed that the ring structures, with a low dipole moment (∼2 D), are energetically preferred over the linear assemblies with a dipole moment of 2.18 D per repeat unit. Under confinement in nanoporous alumina (in templates with pore diameters ranging from 400 to 20 nm), all dynamic processes were found to speed up irrespective of the molecular architecture. The characteristic freezing temperatures of the α and the Debye-like processes followed the pore size dependence: Ta,D=Ta,D bulk-A/d1/2, where d is the pore diameter. The characteristic "freezing" temperatures for the Debye-like (the slow process for confined 1-propanol is non-Debye) and the α-processes decrease, respectively, by 6.5 and 13 K in confined 1-propanol, by 9.5 and 19 K in confined 2-ethyl-1-hexanol, and by 9 and 23 K in confined 4-methyl-3-heptanol within the same 25 nm pores. In 2-ethyl-1-hexanol, confinement reduced the number of linearly associated repeats from approximately heptamers in the bulk to dimers within 25 pores. In addition, the slower process in bulk 2-ethyl-1-hexanol and 4-methyl-3-heptanol, where the signal is dominated by ring-like supramolecular assemblies, is clearly non-Debye. The results suggest that the effect of confinement is dominant in the latter assemblies.
Collapse
Affiliation(s)
- Antonela Ananiadou
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - George Papamokos
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| |
Collapse
|
10
|
Nowok A, Dulski M, Grelska J, Szeremeta AZ, Jurkiewicz K, Grzybowska K, Musiał M, Pawlus S. Phenyl Ring: A Steric Hindrance or a Source of Different Hydrogen Bonding Patterns in Self-Organizing Systems? J Phys Chem Lett 2021; 12:2142-2147. [PMID: 33625856 PMCID: PMC8034769 DOI: 10.1021/acs.jpclett.1c00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A series of five alcohols (3-methyl-2-butanol, 1-cyclopropylethanol, 1-cyclopentylethanol, 1-cyclohexylethanol, and 1-phenylethanol) was used to study the impact of the size of steric hindrance and its aromaticity on self-assembling phenomena in the liquid phase. In this Letter, we have explicitly shown that the phenyl ring exerts a much stronger effect on the self-organization of molecules via the O-H···O scheme than any other type of steric hindrance, leading to a significant decline in the size and concentration of the H-bonded clusters. Given the combination of calorimetric, dielectric, infrared, and diffraction studies, this phenomenon was ascribed to its additional proton-acceptor function for the competitive intermolecular O-H···π interactions. The consequence of this is a different packing of molecules on the short- and medium-range scale.
Collapse
Affiliation(s)
- Andrzej Nowok
- Institute
of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Mateusz Dulski
- Silesian
Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
- Institute
of Materials Engineering, University of
Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Joanna Grelska
- Institute
of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Anna Z. Szeremeta
- Institute
of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Karolina Jurkiewicz
- Institute
of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Katarzyna Grzybowska
- Institute
of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Małgorzata Musiał
- Institute
of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Sebastian Pawlus
- Institute
of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
11
|
Guo Y, Jin X, Wang LM. Unusual Debye relaxation in 4-methyl-2-pentanol evidenced by high-pressure dielectric studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:025401. [PMID: 33052889 DOI: 10.1088/1361-648x/abb742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Debye relaxation is the main signal in the dielectric measurements of monoalcohols arising from the hydrogen-bonded superstructures, but its physics remains to be cleared. In this work, a monoalcohol of 4-methyl-2-pentanol is studied using dielectric spectroscopies recorded at high pressures. The dynamic parameters of the Debye and structural relaxations are extracted. The calculation of the Kirkwood factor of the Debye relaxation indicates chain-like H-bond molecular configurations. Remarkably, we found that both ratios of the relaxation strength and relaxation time between the Debye and structural dynamics, Δε D/Δε α and τ D/τ α , decreases upon compression, indicating a positive correlation. This is different from the results reported in primary 2-ethyl-1-hexanol and secondary 4-methyl-3-heptanol, where the two ratios are inversely correlated. The discussion and interpretation of these different results are provided.
Collapse
Affiliation(s)
- Yuxing Guo
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004 People's Republic of China
| | - Xiao Jin
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004 People's Republic of China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004 People's Republic of China
| |
Collapse
|
12
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 841] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
13
|
Interplay between structural static and dynamical parameters as a key factor to understand peculiar behaviour of associated liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Talik A, Tarnacka M, Geppert-Rybczyńska M, Hachuła B, Bernat R, Chrzanowska A, Kaminski K, Paluch M. Are hydrogen supramolecular structures being suppressed upon nanoscale confinement? The case of monohydroxy alcohols. J Colloid Interface Sci 2020; 576:217-229. [PMID: 32417683 DOI: 10.1016/j.jcis.2020.04.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/27/2022]
Abstract
In this paper, the molecular dynamics, H-bonding pattern and wettability of the primary and secondary monohydroxyalcohols, 2-ethyl-1-hexanol (2E1H), 2-ethyl-1-butanol (2E1B) and 5-methyl-3-heptanol (5M3H) infiltrated into native and functionalized silica and alumina pores having pore diameters, d = 4 nm and d = 10 nm, have been studied with the use of Broadband Dielectric (BDS) and Fourier Transform InfraRed (FTIR) spectroscopies, as well as contact angle measurements. We found significant differences in the behavior of alcohols forming chain- (2E1H, 2E1B) or micelle-like (5M3H) supramolecular structures despite of their similarities in the wettability and interfacial energy. It turned out that nanoassociates as well as H-bonds are more or less affected by the confinement dependently on the chemical structure and alcohol order. Moreover, a peculiar behavior of the self-assemblies at the interface was noted in the latter material (5M3H). Finally, it was found that irrespectively to the sample, type of pores, functionalization, the temperature evolution of Debye relaxation times, τD, of the confined systems deviates from the bulk behavior always at similar τD due to vitrification of the interfacial layer. This finding is a clear indication that unexpectedly dynamics (mobility) of the supramolecular structures close to the hydrophilic and hydrophobic surfaces is similar in each system.
Collapse
Affiliation(s)
- Agnieszka Talik
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Magdalena Tarnacka
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | | | - Barbara Hachuła
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Roksana Bernat
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Agnieszka Chrzanowska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Kamil Kaminski
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
15
|
Density Scaling Based Detection of Thermodynamic Regions of Complex Intermolecular Interactions Characterizing Supramolecular Structures. Sci Rep 2020; 10:9316. [PMID: 32518282 PMCID: PMC7283260 DOI: 10.1038/s41598-020-66244-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/06/2020] [Indexed: 11/17/2022] Open
Abstract
In this paper, applying the density scaling idea to an associated liquid 4-methyl-2-pentanol used as an example, we identify different pressure-volume-temperature ranges within which molecular dynamics is dominated by either complex H-bonded networks most probably leading to supramolecular structures or non-specific intermolecular interactions like van der Waals forces. In this way, we show that the density scaling law for molecular dynamics near the glass transition provides a sensitive tool to detect thermodynamic regions characterized by intermolecular interactions of different type and complexity for a given material in the wide pressure-volume-temperature domain even if its typical form with constant scaling exponent is not obeyed. Moreover, we quantify the observed decoupling between dielectric and mechanical relaxations of the material in the density scaling regime. The suggested methods of analyses and their interpretations open new prospects for formulating models based on proper effective intermolecular potentials describing physicochemical phenomena near the glass transition.
Collapse
|
16
|
Essential meaning of high pressure measurements in discerning the properties of monohydroxy alcohols with a single phenyl group. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Zhuravlev VI, Usacheva TM. Dielectric Properties of the Liquid Phase of Higher Alkanols on the Line of Vapor–Liquid Equilibrium. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Ngai K, Pawlus S, Paluch M. Explanation of the difference in temperature and pressure dependences of the Debye relaxation and the structural α-relaxation near T of monohydroxy alcohols. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Guo Y, Jin X, Kang Z, Wang LM. Distinct changes of Debye relaxation in primary and secondary monoalcohols by carbon nano-dots. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Casalini R, Ransom TC. On the experimental determination of the repulsive component of the potential from high pressure measurements: What is special about twelve? J Chem Phys 2019; 151:194504. [PMID: 31757149 DOI: 10.1063/1.5123614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this paper, we present an overview of results in the literature regarding the thermodynamical scaling of the dynamics of liquids and polymers as measured from high-pressure measurements. Specifically, we look at the scaling exponent γ and argue that it exhibits the limiting behavior γ → 4 in regimes for which molecular interactions are dominated by the repulsive part of the intermolecular potential. For repulsive potentials of the form U(r) ∝ r-n, γ has been found to be related to the exponent n via the relation γ = n/3. Therefore, this limiting behavior for γ would suggest that a large number of molecular systems may be described by a common repulsive potential U(r) ∝ r-n with n ≈ 12.
Collapse
Affiliation(s)
- R Casalini
- Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA
| | - T C Ransom
- Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA
| |
Collapse
|
21
|
Jedrzejowska A, Hensel-Bielowka S, Koperwas K, Jurkiewicz K, Chmiel K, Jacquemin J, Kruk D, Paluch M. Peculiar relaxation dynamics of propylene carbonate derivatives. J Chem Phys 2019; 150:044504. [PMID: 30709305 DOI: 10.1063/1.5055204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The aim of this work is to analyze in detail the effect of the alkyl chain length on the dynamics of glass-forming propylene carbonate (PC) derivatives. Examined samples are low-molecular weight derivatives of the PC structure, i.e., the 4-alkyl-1,3-dioxolan-2-one series, modified by changing the alkyl substituent from methyl to hexyl. The molecular dynamics (MD) has been analyzed based on experimental data collected from differential scanning calorimetry, broadband dielectric spectroscopy (BDS), X-ray diffraction (XRD), and nuclear magnetic resonance relaxometry measurements as well as MD simulations. The dielectric results show in samples with the propyl- or longer carbon chain the presence of slow Debye-like relaxation with features similar to those found in associative materials. Both XRD and MD reveal differences in the intermolecular structure between PC and 4-butyl-1,3-dioxolan-2-one liquids. Moreover, MD shows that the probability of finding one terminal carbon atom of the side chain of BPC in the vicinity of another carbon atom of the same type is much higher than in the case of PC. It suggests that there is a preference for longer hydrocarbon chains to set themselves close to each other. Consequently, the observed slow-mode peak may be caused by movement of aggregates maintained by van der Waals interactions. Reported herein, findings provide a new insight into the molecular origin of Debye-like relaxation.
Collapse
Affiliation(s)
- Agnieszka Jedrzejowska
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | | | - Kajetan Koperwas
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Johan Jacquemin
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland
| | - Danuta Kruk
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, PL-10-710 Olsztyn, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
22
|
Atawa B, Correia NT, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A. Molecular mobility of amorphous N-acetyl-α-methylbenzylamine and Debye relaxation evidenced by dielectric relaxation spectroscopy and molecular dynamics simulations. Phys Chem Chem Phys 2019; 21:702-717. [DOI: 10.1039/c8cp04880k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular mobility of NAC-MBA molecule is described by means of DRS, FSC and MD simulations.
Collapse
|
23
|
Thoms E, Kołodziej S, Wikarek M, Klotz S, Pawlus S, Paluch M. Inflection point in the Debye relaxation time of 2-butyl-1-octanol. J Chem Phys 2018; 149:214502. [PMID: 30525728 DOI: 10.1063/1.5064757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report a striking anomaly in the pressure dependent Debye-relaxation time of the branched monohydroxy alcohol 2-butyl-1-octanol. Evidence of a crossover from slower to faster than exponential pressure dependency was obtained at different temperatures via high pressure broadband dielectric spectroscopy. At the same time, viscosity measurements reveal similar behavior in the viscosity, respectively, the structural relaxation time, indicating a similar origin of the phenomena.
Collapse
Affiliation(s)
- Erik Thoms
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Sławomir Kołodziej
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Michał Wikarek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Stefan Klotz
- IMPMC, UMR 7590, Sorbonne Université, 4 Place Jussieu, 75252 Paris, France
| | - Sebastian Pawlus
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| |
Collapse
|
24
|
Cosby T, Vicars Z, Heres M, Sangoro J. Associating Imidazoles: Elucidating the Correlation between the Static Dielectric Permittivity and Proton Conductivity. PHYSICAL REVIEW LETTERS 2018; 120:136001. [PMID: 29694165 DOI: 10.1103/physrevlett.120.136001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Broadband dielectric spectroscopy is employed to investigate the impact of supramolecular structure on charge transport and dynamics in hydrogen-bonded 2-ethyl-4-methylimidazole and 4-methylimidazole. Detailed analyses reveal (i) an inverse relationship between the average supramolecular chain length and proton conductivity and (ii) no direct correlation between the static dielectric permittivity and proton conductivity in imidazoles. These findings raise fundamental questions regarding the widespread notion that extended supramolecular hydrogen-bonded networks facilitate proton conduction in hydrogen bonding materials.
Collapse
Affiliation(s)
- Tyler Cosby
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Maximilian Heres
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
25
|
Danilov IV, Pronin AA, Gromnitskaya EL, Kondrin MV, Lyapin AG, Brazhkin VV. Structural and Dielectric Relaxations in Vitreous and Liquid State of Monohydroxy Alcohol at High Pressure. J Phys Chem B 2017; 121:8203-8210. [PMID: 28766946 DOI: 10.1021/acs.jpcb.7b05335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Ethyl-1-hexanol monoalcohol is a well-known molecular glassformer, which for a long time attracts attention of researchers. As in all other monohydroxy alcohols, its dielectric relaxation reveals two distinct relaxation processes attributed to the structural relaxation and another more intense process, which gives rise to a low-frequency Debye-like relaxation. In this monoalcohol, the frequency separation between these two processes reaches an extremely high value of 3 orders of magnitude, which makes this substance a rather convenient object for studies of mechanisms (supposedly common to all monoalcohols) leading to vitrification of this type of liquids. In this work, we apply two experimental techniques, dielectric spectroscopy and ultrasonic measurements (in both longitudinal and transverse polarizations) at high pressure, to study interference between different relaxation mechanisms occurring in this liquid, which could shed light on both structural and dielectric relaxation processes observed in a supercooled liquid and a glass state. Application of high pressure in this case leads to the simplification of the frequency spectrum of dielectric relaxation, where only one asymmetric feature is observed. Nonetheless, the maximum attenuation of the longitudinal wave in ultrasonic experiments at high pressure is observed at temperatures ≈50 K above the corresponding temperature for the transverse wave. This might indicate different mechanisms of structural relaxation in shear and bulk elasticities in this liquid.
Collapse
Affiliation(s)
- I V Danilov
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk, Moscow 108840, Russia.,Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region 141701, Russia
| | - A A Pronin
- General Physics Institute, Russian Academy of Sciences , Moscow 117942, Russia
| | - E L Gromnitskaya
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk, Moscow 108840, Russia
| | - M V Kondrin
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk, Moscow 108840, Russia
| | - A G Lyapin
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk, Moscow 108840, Russia.,Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region 141701, Russia
| | - V V Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk, Moscow 108840, Russia
| |
Collapse
|
26
|
Tylinski M, Beasley MS, Chua YZ, Schick C, Ediger MD. Limited surface mobility inhibits stable glass formation for 2-ethyl-1-hexanol. J Chem Phys 2017; 146:203317. [DOI: 10.1063/1.4977787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Tylinski
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - M. S. Beasley
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Y. Z. Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - C. Schick
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
27
|
Tylinski M, Chua YZ, Beasley MS, Schick C, Ediger MD. Vapor-deposited alcohol glasses reveal a wide range of kinetic stability. J Chem Phys 2016; 145:174506. [DOI: 10.1063/1.4966582] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- M. Tylinski
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Y. Z. Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. S. Beasley
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - C. Schick
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
28
|
Ottou Abe MT, Correia NT, Ndjaka JMB, Affouard F. A comparative study of ibuprofen and ketoprofen glass-forming liquids by molecular dynamics simulations. J Chem Phys 2016; 143:164506. [PMID: 26520526 DOI: 10.1063/1.4933430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, structural and dynamical properties of ibuprofen and ketoprofen glass-forming liquids have been investigated by means of molecular dynamics simulations. Molecular mobility of both materials is analyzed with respect to the different inter-molecular linear/cyclic hydrogen bonding associations. For ibuprofen, the dominant organization is found to be composed of small hydrogen bonding aggregates corresponding to cyclic dimers through the carboxyl group. For ketoprofen, the propensity of cyclic dimers is significantly reduced by the formation of hydrogen bonds with the ketone oxygen of the molecule altering the hydrogen bond (HB) associating structures that can be formed and thus molecular dynamics. The issue of the presence/absence of the peculiar low frequency Debye-type process in dielectric relaxation spectroscopy (DRS) data in these materials is addressed. Results obtained from simulations confirm that the Debye process originates from the internal cis-trans conversion of the -COOH carboxyl group. It is shown that the specific intermolecular HB structures associated to a given profen control the main dynamical features of this conversion, in particular its separation from the α-process, which make it detectable or not from DRS. For ibuprofen, the possible role of the -CCCO torsion motion, more "local" than the -COOH motion since it is less influenced by the intermolecular HBs, is suggested in the microscopic origin of the quite intense secondary γ-relaxation process detected from DRS.
Collapse
Affiliation(s)
- M T Ottou Abe
- Unité Matériaux et Transformation (UMET), UMR CNRS 8207, UFR de Physique, BAT P5, Université Lille 1, 59655 Villeneuve d'Ascq, France
| | - N T Correia
- Unité Matériaux et Transformation (UMET), UMR CNRS 8207, UFR de Physique, BAT P5, Université Lille 1, 59655 Villeneuve d'Ascq, France
| | - J M B Ndjaka
- Département de Physique, Faculté des Sciences, Université de Yaoundé I, B.P. 812, Yaoundé, Cameroun
| | - F Affouard
- Unité Matériaux et Transformation (UMET), UMR CNRS 8207, UFR de Physique, BAT P5, Université Lille 1, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
29
|
Ortiz de Urbina J, Sesé G. Influence of hydrogen bonds and temperature on dielectric properties. Phys Rev E 2016; 94:012605. [PMID: 27575177 DOI: 10.1103/physreve.94.012605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/07/2022]
Abstract
Dielectric properties are evaluated by means of molecular dynamics simulations on two model systems made up of dipolar molecules. One of them mimics methanol, whereas the other differs from the former only in the ability to form hydrogen bonds. Static dielectric properties such as the permittivity and the Kirkwood factor are evaluated, and results are analyzed by considering the distribution of relative orientations between molecular dipoles. Dipole moment-time correlation functions are also evaluated. The relevance of contributions associated with autocorrelations of molecular dipoles and with cross-correlations between dipoles belonging to different molecules has been investigated. For methanol, the Debye approximation for the overall dipole moment correlation function is not valid at room temperature. The model applies when hydrogen bonds are suppressed, but it fails upon cooling the nonassociated liquid. Important differences between relaxation times associated with dipole auto- versus cross-correlations as well as their relative relevance are at the root of the Debye model breakdown.
Collapse
Affiliation(s)
- Jordi Ortiz de Urbina
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord-Mòdul B4, c/ Jordi Girona 1-3, 08034 Barcelona, Spain
| | - Gemma Sesé
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord-Mòdul B4, c/ Jordi Girona 1-3, 08034 Barcelona, Spain
| |
Collapse
|
30
|
Tarnacka M, Kipnusu WK, Kaminska E, Pawlus S, Kaminski K, Paluch M. The peculiar behavior of the molecular dynamics of a glass-forming liquid confined in native porous materials - the role of negative pressure. Phys Chem Chem Phys 2016; 18:23709-14. [PMID: 27510859 DOI: 10.1039/c6cp03923e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this paper, we combine Broadband Dielectric Spectroscopy (BDS) at ambient and high pressure, and positron annihilation lifetime spectroscopy (PALS) data of 2-ethylhexanol in the bulk state and when infiltrated in native silica nanopores to elucidate the relative role of surface effects on the Debye and structural relaxation processes under 2D spatial constraints. We show that the two processes have different sensitivities to (i) the changes in density as quantified by the EV/Hp ratio and (ii) the degree of confinement. Significant enhancement of the dynamics of the confined molecules at low temperatures is related to the vitrification of the interfacial molecules (Tg,int) affecting the packing density of the core molecules. This is corroborated by the PALS measurements, which demonstrated that the effective volume for the confined samples is slightly higher and seems to be temperature invariant below Tg,int. Consequently, negative pressure systematically develops with lowering temperature reaching values of -100 and -110 MPa (depending on the pore size) at the glass transition temperature. This result offers a better understanding of the counterbalance between surface and finite size effects as well as the role of negative pressure in controlling the dynamics and the glass transition of liquids under 2D spatial restrictions.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland. and Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Wycliffe K Kipnusu
- Institute of Experimental Physics I, University of Leipzig, Linnestrasse 5, 04103 Leipzig, Germany and Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Ewa Kaminska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Sebastian Pawlus
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland. and Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Kamil Kaminski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland. and Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland. and Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
31
|
Mariani A, Ballirano P, Angiolari F, Caminiti R, Gontrani L. Does High Pressure Induce Structural Reorganization in Linear Alcohols? A Computational Answer. Chemphyschem 2016; 17:3023-3029. [DOI: 10.1002/cphc.201600268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Alessandro Mariani
- Dipartimento di Chimica; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| | - Paolo Ballirano
- Dipartimento di Scienze della Terra; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
- Centro di Ricerca per le Nanotecnologie Applicate all'Ingegneria; Laboratorio per le Nanotecnologie e le Nanoscienze; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| | - Federica Angiolari
- Dipartimento di Chimica; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| | - Ruggero Caminiti
- Dipartimento di Chimica; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
- Centro di Ricerca per le Nanotecnologie Applicate all'Ingegneria; Laboratorio per le Nanotecnologie e le Nanoscienze; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| | - Lorenzo Gontrani
- Dipartimento di Chimica; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| |
Collapse
|
32
|
Wikarek M, Pawlus S, Tripathy SN, Szulc A, Paluch M. How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols. J Phys Chem B 2016; 120:5744-52. [DOI: 10.1021/acs.jpcb.6b01458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Wikarek
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - S. Pawlus
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Satya N. Tripathy
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - A. Szulc
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M. Paluch
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
33
|
Gao Y, Chen Z, Tu W, Li X, Tian Y, Liu R, Wang LM. Anomaly in dielectric relaxation dispersion of glass-forming alkoxy alcohols. J Chem Phys 2015; 142:214505. [DOI: 10.1063/1.4921941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yanqin Gao
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
- Department of Physics, School of Science, North University of China, Taiyuan, Shanxi 030051, China
| | - Zeming Chen
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Wenkang Tu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Xiangqian Li
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Yongjun Tian
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Riping Liu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
34
|
Singh LP, Raihane A, Alba-Simionesco C, Richert R. Dopant effects on 2-ethyl-1-hexanol: A dual-channel impedance spectroscopy and neutron scattering study. J Chem Phys 2015; 142:014501. [DOI: 10.1063/1.4904908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Lokendra P. Singh
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Ahmed Raihane
- Laboratoire Léon Brillouin, CNRS /CEA -UMR 12, DSM/IRAMIS/LLB CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Christiane Alba-Simionesco
- Laboratoire Léon Brillouin, CNRS /CEA -UMR 12, DSM/IRAMIS/LLB CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Ranko Richert
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
35
|
Kondrin MV, Pronin AA, Brazhkin VV. Crystallization and vitrification of ethanol at high pressures. J Chem Phys 2014; 141:194504. [PMID: 25416895 DOI: 10.1063/1.4902059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the high pressure (up to 3 GPa) dielectric spectroscopy study of ethanol in supercooled liquid and solid states. It was found that ethanol can be obtained in the glassy form by relatively slow cooling in the pressure range below 1.5 GPa. Glassy dynamics of ethanol is dominated by hydrogen bonds which cause rise of fragility index with pressure rising and relatively slow increase of glassification temperature. The termination of ethanol galssification at 1.5 GPa is related to the phase transition of ethanol in this pressure range to the disordered crystal structure which allows easy crystallization of ethanol at high pressures. Dielectric spectroscopy of solid phases of ethanol reveals the presence of molecular motion in both of them in the temperature range close to the melting curve but demonstrates different molecular dynamics in the two solid phases of ethanol.
Collapse
Affiliation(s)
- M V Kondrin
- Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow, Russia
| | - A A Pronin
- General Physics Institute RAS, 117942 Moscow, Russia
| | - V V Brazhkin
- Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow, Russia
| |
Collapse
|
36
|
Li X, Chen Z, Li Z, Gao Y, Tu W, Li X, Zhang Y, Liu YD, Wang LM. Comparative study of dynamics in glass forming mixtures of Debye-type N-ethylacetamide with water, alcohol, and amine. J Chem Phys 2014; 141:104506. [DOI: 10.1063/1.4895066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xin Li
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Zeming Chen
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Zijing Li
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Yanqin Gao
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Wenkang Tu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Xiangqian Li
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Yaqi Zhang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Ying Dan Liu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
37
|
|
38
|
Wieth P, Vogel M. Dynamical and structural properties of monohydroxy alcohols exhibiting a Debye process. J Chem Phys 2014; 140:144507. [DOI: 10.1063/1.4870654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Bøhling L, Bailey NP, Schrøder TB, Dyre JC. Estimating the density-scaling exponent of a monatomic liquid from its pair potential. J Chem Phys 2014; 140:124510. [DOI: 10.1063/1.4869114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Wang Y, Griffin PJ, Holt A, Fan F, Sokolov AP. Observation of the slow, Debye-like relaxation in hydrogen-bonded liquids by dynamic light scattering. J Chem Phys 2014; 140:104510. [DOI: 10.1063/1.4867913] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Gao Y, Tu W, Chen Z, Tian Y, Liu R, Wang LM. Dielectric relaxation of long-chain glass-forming monohydroxy alcohols. J Chem Phys 2013; 139:164504. [DOI: 10.1063/1.4825398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Bauer S, Wittkamp H, Schildmann S, Frey M, Hiller W, Hecksher T, Olsen NB, Gainaru C, Böhmer R. Broadband dynamics in neat 4-methyl-3-heptanol and in mixtures with 2-ethyl-1-hexanol. J Chem Phys 2013; 139:134503. [DOI: 10.1063/1.4821229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Pawlus S, Wikarek M, Gainaru C, Paluch M, Böhmer R. How do high pressures change the Debye process of 4-methyl-3-heptanol? J Chem Phys 2013; 139:064501. [DOI: 10.1063/1.4816364] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Gao Y, Bi D, Li X, Liu R, Tian Y, Wang LM. Debye-type dielectric relaxation in glass-forming 3-methylthio-1-hexanol. J Chem Phys 2013; 139:024503. [DOI: 10.1063/1.4812743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
45
|
Pawlus S, Klotz S, Paluch M. Effect of compression on the relationship between viscosity and dielectric relaxation time in hydrogen-bonded primary alcohols. PHYSICAL REVIEW LETTERS 2013; 110:173004. [PMID: 23679720 DOI: 10.1103/physrevlett.110.173004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Indexed: 06/02/2023]
Abstract
High pressure viscosity and dielectric measurements were carried out on two monohydroxy alcohols, 2-ethyl-1-hexanol and 5-methyl-2-hexanol, at room temperature. Analysis of the dielectric relaxation times versus viscosity revealed the breakdown of the Einstein-Debye relation above some characteristic pressure. The failure of the Einstein-Debye relation is a manifestation of pressure induced changes of supramolecular hydrogen bonded structures which occur in these liquids.
Collapse
Affiliation(s)
- S Pawlus
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | | | | |
Collapse
|
46
|
Lou N, Wang Y, Li X, Li H, Wang P, Wesdemiotis C, Sokolov AP, Xiong H. Dielectric Relaxation and Rheological Behavior of Supramolecular Polymeric Liquid. Macromolecules 2013. [DOI: 10.1021/ma400088w] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nan Lou
- Department of Polymer Science, Shanghai Jiao Tong University, Shanghai 200240, P.
R. China
| | - Yangyang Wang
- Chemical Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, United States
| | - Xiaopeng Li
- Department
of Chemistry and Polymer
Science, University of Akron, Akron, Ohio
44325, United States
- Department
of Chemistry and
Biochemistry, Texas State University, San
Marcos, Texas 78666, United States
| | - Haixia Li
- Department of Polymer Science, Shanghai Jiao Tong University, Shanghai 200240, P.
R. China
| | - Ping Wang
- Dow Chemicals Company Limited, Shanghai 201203, P. R. China
| | - Chrys Wesdemiotis
- Department
of Chemistry and Polymer
Science, University of Akron, Akron, Ohio
44325, United States
| | - Alexei P. Sokolov
- Chemical Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, United States
| | - Huiming Xiong
- Department of Polymer Science, Shanghai Jiao Tong University, Shanghai 200240, P.
R. China
| |
Collapse
|
47
|
Bauer S, Burlafinger K, Gainaru C, Lunkenheimer P, Hiller W, Loidl A, Böhmer R. Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols. J Chem Phys 2013; 138:094505. [DOI: 10.1063/1.4793469] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
48
|
Kwon HJ, Kim TH, Ko JH, Hwang YH. Relaxation phenomena in supercooled liquid and glassy acetaminophen studied by dielectric, photon correlation and Brillouin light scattering spectroscopies. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.11.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Wang H, Wu X, Liu CS, Zhu Z, Ao Z, Zhang G. Dynamics in N-Isopropylacrylamide-acrylic Acid Copolymer Aqueous Solution from Mechanical Spectroscopy. J Phys Chem B 2012; 116:13411-5. [DOI: 10.1021/jp306531b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huaguang Wang
- Key Laboratory of Materials
Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei, Anhui, People’s
Republic of China
| | - Xuebang Wu
- Key Laboratory of Materials
Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei, Anhui, People’s
Republic of China
| | - C. S. Liu
- Key Laboratory of Materials
Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei, Anhui, People’s
Republic of China
| | - Zhengang Zhu
- Key Laboratory of Materials
Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei, Anhui, People’s
Republic of China
| | - Zhuo Ao
- Hefei
National Laboratory for
Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei,
P. R. China 230026
| | - Guangzhao Zhang
- Hefei
National Laboratory for
Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei,
P. R. China 230026
| |
Collapse
|
50
|
Preuß M, Gainaru C, Hecksher T, Bauer S, Dyre JC, Richert R, Böhmer R. Experimental studies of Debye-like process and structural relaxation in mixtures of 2-ethyl-1-hexanol and 2-ethyl-1-hexyl bromide. J Chem Phys 2012; 137:144502. [DOI: 10.1063/1.4755754] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|