1
|
Rodríguez-Cuenca E, Picón A, Oberli S, Kuleff AI, Vendrell O. Core-Hole Coherent Spectroscopy in Molecules. PHYSICAL REVIEW LETTERS 2024; 132:263202. [PMID: 38996324 DOI: 10.1103/physrevlett.132.263202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/08/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
We study the ultrafast dynamics initiated by a coherent superposition of core-excited states of nitrous oxide molecule. Using high-level ab initio methods, we show that the decoherence caused by the electronic decay and the nuclear dynamics is substantially slower than the induced ultrafast quantum beatings, allowing the system to undergo several oscillations before it dephases. We propose a proof-of-concept experiment using the harmonic up-conversion scheme available at x-ray free-electron laser facilities to trace the evolution of the created core-excited-state coherence through a time-resolved x-ray photoelectron spectroscopy.
Collapse
|
2
|
Schmidt M, Melzer N, Kircher M, Kastirke G, Pier A, Kaiser L, Daum P, Tsitsonis D, Astaschov M, Rist J, Anders N, Roth P, Lin K, Drnec J, Trinter F, Schöffler MS, Schmidt LPH, Novikovskiy NM, Demekhin PV, Jahnke T, Dörner R. Role of the Binding Energy on Nondipole Effects in Single-Photon Ionization. PHYSICAL REVIEW LETTERS 2024; 132:233002. [PMID: 38905657 DOI: 10.1103/physrevlett.132.233002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 05/01/2024] [Indexed: 06/23/2024]
Abstract
We experimentally study the influence of the binding energy on nondipole effects in K-shell single-photon ionization of atoms at high photon energies. We find that for each ionization event, as expected by momentum conservation, the photon momentum is transferred almost fully to the recoiling ion. The momentum distribution of the electrons becomes asymmetrically deformed along the photon propagation direction with a mean value of 8/(5c)(E_{γ}-I_{P}) confirming an almost 100 year old prediction by Sommerfeld and Schur [Ann. Phys. (N.Y.) 396, 409 (1930)10.1002/andp.19303960402]. The emission direction of the photoions results from competition between the forward-directed photon momentum and the backward-directed recoil imparted by the photoelectron. Which of the two counteracting effects prevails depends on the binding energy of the emitted electron. As an example, we show that at 20 keV photon energy, Ne^{+} and Ar^{+} photoions are pushed backward towards the radiation source, while Kr^{+} photoions are emitted forward along the light propagation direction.
Collapse
Affiliation(s)
- M Schmidt
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N Melzer
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M Kircher
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - G Kastirke
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - A Pier
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - L Kaiser
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - P Daum
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - D Tsitsonis
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M Astaschov
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - J Rist
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N Anders
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - P Roth
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - K Lin
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - J Drnec
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - F Trinter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - M S Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - L Ph H Schmidt
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N M Novikovskiy
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - T Jahnke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Li Y, He F, Sato T, Ishikawa KL. Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules. J Phys Chem A 2024; 128:1523-1532. [PMID: 38373288 DOI: 10.1021/acs.jpca.3c06799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full dimensionality of the problem using prolate spheroidal coordinates. The method incorporates the gauge-invariant frozen-core approximation, boosts the evaluation of the electron-electron interaction term using finite-element discrete-variable representation with Neumann expansion, and utilizes an exponential time differencing scheme tailored for the stable propagation of the stiff nonlinear orbital functions. We have successfully applied this methodology to study high-harmonic generation in diatomic molecules such as H2, LiH, and N2, shedding light on the impact of electron correlations in these systems.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Takeshi Sato
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenichi L Ishikawa
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Rezvan DV, Klyssek K, Grundmann S, Pier A, Novikovskiy NM, Strenger N, Tsitsonis D, Kircher M, Vela-Peréz I, Fehre K, Trinter F, Schöffler MS, Jahnke T, Dörner R, Demekhin PV. Observation of Nondipole-Induced Asymmetry in the Angular Emission Distribution of Photoelectrons from Fixed-in-Space CO Molecules. PHYSICAL REVIEW LETTERS 2022; 129:253201. [PMID: 36608244 DOI: 10.1103/physrevlett.129.253201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
We investigate experimentally and theoretically the C and O 1s photoionization of fixed-in-space CO molecules at a photon energy of 905 eV. We find a significant dependence of the photoelectron angular distributions on the direction of propagation of the ionizing radiation. It results from an interplay of nondipole effects, on one hand, and molecular effects, on the other. The nondipole effects lead to an increase of the emission probability in the forward direction along the light propagation, and the photoelectron wave being scattered by the molecular potential gives rise to a strong peak in the direction of the atom neighboring the emitter site. These effects can either conspire or extenuate each other, depending on the photoelectron emission direction and molecular orientation in space.
Collapse
Affiliation(s)
- D V Rezvan
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - K Klyssek
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - S Grundmann
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - A Pier
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N M Novikovskiy
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - N Strenger
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - D Tsitsonis
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M Kircher
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - I Vela-Peréz
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - K Fehre
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - F Trinter
- FS-PETRA-S, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - M S Schöffler
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - T Jahnke
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R Dörner
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| |
Collapse
|
5
|
Fehre K, Trinter F, Novikovskiy NM, Grundmann S, Tsitsonis D, Eckart S, Bauer L, Hilzinger M, Jahnke T, Dörner R, Demekhin PV, Schöffler MS. Influence of the emission site on the photoelectron circular dichroism in trifluoromethyloxirane. Phys Chem Chem Phys 2022; 24:13597-13604. [PMID: 35621377 DOI: 10.1039/d2cp00143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a joint experimental and theoretical study of the differential photoelectron circular dichroism (PECD) in inner-shell photoionization of uniaxially oriented trifluoromethyloxirane. By adjusting the photon energy of the circularly polarized synchrotron radiation, we address 1s-photoionization of the oxygen, different carbon, and all fluorine atoms. The photon energies were chosen such that in all cases electrons with a similar kinetic energy of about 11 eV are emitted. Employing coincident detection of electrons and fragment ions, we concentrate on identical molecular fragmentation channels for all of the electron-emitter scenarios. Thereby, we systematically examine the influence of the emission site of the photoelectron wave on the differential PECD. We observe large differences in the PECD signals. The present experimental results are supported by corresponding relaxed-core Hartree-Fock calculations.
Collapse
Affiliation(s)
- Kilian Fehre
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Florian Trinter
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany. .,Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Nikolay M Novikovskiy
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany. .,Institute of Physics, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Dimitrios Tsitsonis
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Sebastian Eckart
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Leonie Bauer
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Maria Hilzinger
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Till Jahnke
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Philipp V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Continuum Electronic States: The Tiresia Code. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062026. [PMID: 35335385 PMCID: PMC8951385 DOI: 10.3390/molecules27062026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
A multicenter (LCAO) B-spline basis is described in detail, and its capabilities concerning affording convergent solutions for electronic continuum states and wavepacket propagation are presented. It forms the core of the Tiresia code, which implements static-DFT and TDDFT hamiltonians, as well as single channel Dyson-DFT and Dyson-TDDFT descriptions to include correlation in the bound states. Together they afford accurate and computationally efficient descriptions of photoionization properties of complex systems, both in the single photon and strong field environments. A number of examples are provided.
Collapse
|
7
|
Artemyev AN, Kutscher E, Demekhin PV. Photoelectron circular dichroism of a model chiral anion. J Chem Phys 2022; 156:031101. [DOI: 10.1063/5.0079723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anton N. Artemyev
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Eric Kutscher
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Philipp V. Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
8
|
Moitra T, Paul AC, Decleva P, Koch H, Coriani S. Multi-electron excitation contributions towards primary and satellite states in the photoelectron spectrum. Phys Chem Chem Phys 2022; 24:8329-8343. [DOI: 10.1039/d1cp04695k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The computation of Dyson orbitals and corresponding ionization energies has been implemented within the Equation of Motion Coupled Cluster Singles, Doubles and Perturbative Triples (EOM-CC3) method. Coupled to an accurate...
Collapse
|
9
|
Kastirke G, Ota F, Rezvan DV, Schöffler MS, Weller M, Rist J, Boll R, Anders N, Baumann TM, Eckart S, Erk B, De Fanis A, Fehre K, Gatton A, Grundmann S, Grychtol P, Hartung A, Hofmann M, Ilchen M, Janke C, Kircher M, Kunitski M, Li X, Mazza T, Melzer N, Montano J, Music V, Nalin G, Ovcharenko Y, Pier A, Rennhack N, Rivas DE, Dörner R, Rolles D, Rudenko A, Schmidt P, Siebert J, Strenger N, Trabert D, Vela-Perez I, Wagner R, Weber T, Williams JB, Ziolkowski P, Schmidt LPH, Czasch A, Tamura Y, Hara N, Yamazaki K, Hatada K, Trinter F, Meyer M, Ueda K, Demekhin PV, Jahnke T. Investigating charge-up and fragmentation dynamics of oxygen molecules after interaction with strong X-ray free-electron laser pulses. Phys Chem Chem Phys 2022; 24:27121-27127. [DOI: 10.1039/d2cp02408j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The X-ray-induced charge-up and fragmentation process of a small molecule is examined in great detail by measuring the molecular-frame photoelectron interference pattern in conjunction with other observables in coincidence.
Collapse
Affiliation(s)
- G. Kastirke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - F. Ota
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - D. V. Rezvan
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - M. S. Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Weller
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - J. Rist
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - R. Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - N. Anders
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - T. M. Baumann
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - S. Eckart
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - B. Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A. De Fanis
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Fehre
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - A. Gatton
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S. Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - P. Grychtol
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A. Hartung
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Hofmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Ilchen
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Janke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Kircher
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Kunitski
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - X. Li
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - T. Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - N. Melzer
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - J. Montano
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - V. Music
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - G. Nalin
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Y. Ovcharenko
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A. Pier
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N. Rennhack
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D. E. Rivas
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. Dörner
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - D. Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - A. Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ph. Schmidt
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Siebert
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N. Strenger
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - D. Trabert
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - I. Vela-Perez
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - R. Wagner
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Th. Weber
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, USA
| | - J. B. Williams
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - P. Ziolkowski
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - L. Ph. H. Schmidt
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - A. Czasch
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Y. Tamura
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - N. Hara
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - K. Hatada
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - F. Trinter
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - M. Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Ph. V. Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - T. Jahnke
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
10
|
Dowek D, Decleva P. Trends in angle-resolved molecular photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:24614-24654. [DOI: 10.1039/d2cp02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this perspective article, main trends of angle-resolved molecular photoelectron spectroscopy in the laboratory up to the molecular frame, in different regimes of light-matter interactions, are highlighted with emphasis on foundations and most recent applications.
Collapse
Affiliation(s)
- Danielle Dowek
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Piero Decleva
- CNR IOM and Dipartimento DSCF, Università di Trieste, Trieste, Italy
| |
Collapse
|
11
|
Fehre K, Novikovskiy NM, Grundmann S, Kastirke G, Eckart S, Trinter F, Rist J, Hartung A, Trabert D, Janke C, Pitzer M, Zeller S, Wiegandt F, Weller M, Kircher M, Nalin G, Hofmann M, Schmidt LPH, Knie A, Hans A, Ben Ltaief L, Ehresmann A, Berger R, Fukuzawa H, Ueda K, Schmidt-Böcking H, Williams JB, Jahnke T, Dörner R, Demekhin PV, Schöffler MS. A new route for enantio-sensitive structure determination by photoelectron scattering on molecules in the gas phase. Phys Chem Chem Phys 2022; 24:26458-26465. [DOI: 10.1039/d2cp03090j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Combination of Coulomb explosion imaging, molecular frame diffraction imaging, and ab initio computations provide a route for enantio-sensitive structure determination.
Collapse
Affiliation(s)
- Kilian Fehre
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Nikolay M. Novikovskiy
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
- Institute of Physics, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Gregor Kastirke
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Sebastian Eckart
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Florian Trinter
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Jonas Rist
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Alexander Hartung
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Daniel Trabert
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Christian Janke
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Martin Pitzer
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Stefan Zeller
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Florian Wiegandt
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Miriam Weller
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Max Kircher
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Giammarco Nalin
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Max Hofmann
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Lothar Ph. H. Schmidt
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - André Knie
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Andreas Hans
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Ltaief Ben Ltaief
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Arno Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Robert Berger
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Hironobu Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Horst Schmidt-Böcking
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | | | - Till Jahnke
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Philipp V. Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Markus S. Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Rist J, Klyssek K, Novikovskiy NM, Kircher M, Vela-Pérez I, Trabert D, Grundmann S, Tsitsonis D, Siebert J, Geyer A, Melzer N, Schwarz C, Anders N, Kaiser L, Fehre K, Hartung A, Eckart S, Schmidt LPH, Schöffler MS, Davis VT, Williams JB, Trinter F, Dörner R, Demekhin PV, Jahnke T. Measuring the photoelectron emission delay in the molecular frame. Nat Commun 2021; 12:6657. [PMID: 34789736 PMCID: PMC8599449 DOI: 10.1038/s41467-021-26994-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion's potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons' emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.
Collapse
Affiliation(s)
- Jonas Rist
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany.
| | - Kim Klyssek
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Nikolay M Novikovskiy
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany
- Institute of Physics, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Max Kircher
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Isabel Vela-Pérez
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Daniel Trabert
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Sven Grundmann
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Dimitrios Tsitsonis
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Juliane Siebert
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Angelina Geyer
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Niklas Melzer
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Christian Schwarz
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Nils Anders
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Leon Kaiser
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Kilian Fehre
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Alexander Hartung
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Sebastian Eckart
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Lothar Ph H Schmidt
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Markus S Schöffler
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Vernon T Davis
- Department of Physics, University of Nevada, Reno, NV, 89557, USA
| | | | - Florian Trinter
- FS-PETRA-S, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - Philipp V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.
| | - Till Jahnke
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany.
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| |
Collapse
|
13
|
Fehre K, Novikovskiy NM, Grundmann S, Kastirke G, Eckart S, Trinter F, Rist J, Hartung A, Trabert D, Janke C, Nalin G, Pitzer M, Zeller S, Wiegandt F, Weller M, Kircher M, Hofmann M, Schmidt LPH, Knie A, Hans A, Ltaief LB, Ehresmann A, Berger R, Fukuzawa H, Ueda K, Schmidt-Böcking H, Williams JB, Jahnke T, Dörner R, Schöffler MS, Demekhin PV. Fourfold Differential Photoelectron Circular Dichroism. PHYSICAL REVIEW LETTERS 2021; 127:103201. [PMID: 34533326 DOI: 10.1103/physrevlett.127.103201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s photoelectrons in coincidence with fragment ions, we deduce the molecule's orientation and photoelectron emission direction in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%. This strong chiral asymmetry is reproduced by ab initio electronic structure calculations. Providing such a pronounced contrast makes PECD of fixed-in-space chiral molecules an even more sensitive tool for chiral recognition in the gas phase.
Collapse
Affiliation(s)
- K Fehre
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - N M Novikovskiy
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, Kassel 34132, Germany
- Institute of Physics, Southern Federal University, Rostov-on-Don 344090, Russia
| | - S Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - G Kastirke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - S Eckart
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - F Trinter
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - J Rist
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - A Hartung
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - D Trabert
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - C Janke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - G Nalin
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - M Pitzer
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - S Zeller
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - F Wiegandt
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - M Weller
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - M Kircher
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - M Hofmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - L Ph H Schmidt
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - A Knie
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, Kassel 34132, Germany
| | - A Hans
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, Kassel 34132, Germany
| | - L Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, Århus 8000, Denmark
| | - A Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, Kassel 34132, Germany
| | - R Berger
- Theoretical Chemistry, Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35032, Germany
| | - H Fukuzawa
- Institute of multidisciplinary research for advanced materials, Tohoku University, Sendai 980-8577, Japan
| | - K Ueda
- Institute of multidisciplinary research for advanced materials, Tohoku University, Sendai 980-8577, Japan
| | - H Schmidt-Böcking
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - J B Williams
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - T Jahnke
- European XFEL, Holzkoppel 4, Schenefeld 22869, Germany
| | - R Dörner
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - M S Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, Kassel 34132, Germany
| |
Collapse
|
14
|
Ilchen M, Schmidt P, Novikovskiy NM, Hartmann G, Rupprecht P, Coffee RN, Ehresmann A, Galler A, Hartmann N, Helml W, Huang Z, Inhester L, Lutman AA, MacArthur JP, Maxwell T, Meyer M, Music V, Nuhn HD, Osipov T, Ray D, Wolf TJA, Bari S, Walter P, Li Z, Moeller S, Knie A, Demekhin PV. Site-specific interrogation of an ionic chiral fragment during photolysis using an X-ray free-electron laser. Commun Chem 2021; 4:119. [PMID: 36697819 PMCID: PMC9814667 DOI: 10.1038/s42004-021-00555-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.
Collapse
Affiliation(s)
- Markus Ilchen
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany ,Stanford PULSE Institute, Menlo Park, CA USA
| | - Philipp Schmidt
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nikolay M. Novikovskiy
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.182798.d0000 0001 2172 8170Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
| | - Gregor Hartmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.424048.e0000 0001 1090 3682Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Patrick Rupprecht
- grid.419604.e0000 0001 2288 6103Max-Planck-Institut für Kernphysik Heidelberg, Heidelberg, Germany
| | - Ryan N. Coffee
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Arno Ehresmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Andreas Galler
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nick Hartmann
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Wolfram Helml
- grid.5675.10000 0001 0416 9637Fakultät für Physik, Technische Universität Dortmund, Dortmund, Germany
| | - Zhirong Huang
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Ludger Inhester
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Alberto A. Lutman
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - James P. MacArthur
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timothy Maxwell
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Michael Meyer
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Valerija Music
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Heinz-Dieter Nuhn
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timur Osipov
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Dipanwita Ray
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Thomas J. A. Wolf
- Stanford PULSE Institute, Menlo Park, CA USA ,grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Sadia Bari
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Peter Walter
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Zheng Li
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Stefan Moeller
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - André Knie
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Philipp V. Demekhin
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| |
Collapse
|
15
|
Nalin G, Fehre K, Trinter F, Novikovskiy NM, Anders N, Trabert D, Grundmann S, Kircher M, Khan A, Tomar R, Hofmann M, Waitz M, Vela-Pérez I, Kastirke G, Siebert J, Tsitsonis D, Fukuzawa H, Ueda K, Williams JB, Kargin D, Maurer M, Küstner-Wetekam C, Marder L, Viehmann J, Knie A, Jahnke T, Ilchen M, Dörner R, Pietschnig R, Demekhin PV, Schöffler MS. Photoelectron circular dichroism of O 1s-photoelectrons of uniaxially oriented trifluoromethyloxirane: energy dependence and sensitivity to molecular configuration. Phys Chem Chem Phys 2021; 23:17248-17258. [PMID: 34346440 DOI: 10.1039/d1cp02462k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane (TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincident electron and fragment ion detection using cold target recoil ion momentum spectroscopy. The corresponding calculations were performed by means of the single center method within the relaxed-core Hartree-Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare the results for the differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl group by the trifluoromethyl group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in the literature.
Collapse
Affiliation(s)
- Giammarco Nalin
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Skomorowski W, Krylov AI. Feshbach-Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and implementation. J Chem Phys 2021; 154:084124. [PMID: 33639760 DOI: 10.1063/5.0036976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
X-ray absorption creates electron vacancies in the core shell. These highly excited states often relax by Auger decay-an autoionization process in which one valence electron fills the core hole and another valence electron is ejected into the ionization continuum. Despite the important role of Auger processes in many experimental settings, their first-principles modeling is challenging, even for small systems. The difficulty stems from the need to describe many-electron continuum (unbound) states, which cannot be tackled with standard quantum-chemistry methods. We present a novel approach to calculate Auger decay rates by combining Feshbach-Fano resonance theory with the equation-of-motion coupled-cluster single double (EOM-CCSD) framework. We use the core-valence separation scheme to define projectors into the bound (square-integrable) and unbound (continuum) subspaces of the full function space. The continuum many-body decay states are represented by products of an appropriate EOM-CCSD state and a free-electron state, described by a continuum orbital. The Auger rates are expressed in terms of reduced quantities, two-body Dyson amplitudes (objects analogous to the two-particle transition density matrix), contracted with two-electron bound-continuum integrals. Here, we consider two approximate treatments of the free electron: a plane wave and a Coulomb wave with an effective charge, which allow us to evaluate all requisite integrals analytically; however, the theory can be extended to incorporate a more sophisticated description of the continuum orbital.
Collapse
Affiliation(s)
- Wojciech Skomorowski
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
17
|
Jahnke T, Hergenhahn U, Winter B, Dörner R, Frühling U, Demekhin PV, Gokhberg K, Cederbaum LS, Ehresmann A, Knie A, Dreuw A. Interatomic and Intermolecular Coulombic Decay. Chem Rev 2020; 120:11295-11369. [PMID: 33035051 PMCID: PMC7596762 DOI: 10.1021/acs.chemrev.0c00106] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed.
Collapse
Affiliation(s)
- Till Jahnke
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Uwe Hergenhahn
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Max
Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald, Germany
- Leibniz
Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
| | - Bernd Winter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Reinhard Dörner
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Ulrike Frühling
- Institut
für Experimentalphysik and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Philipp V. Demekhin
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Kirill Gokhberg
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Lorenz S. Cederbaum
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Arno Ehresmann
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - André Knie
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Kastirke G, Schöffler MS, Weller M, Rist J, Boll R, Anders N, Baumann TM, Eckart S, Erk B, De Fanis A, Fehre K, Gatton A, Grundmann S, Grychtol P, Hartung A, Hofmann M, Ilchen M, Janke C, Kircher M, Kunitski M, Li X, Mazza T, Melzer N, Montano J, Music V, Nalin G, Ovcharenko Y, Pier A, Rennhack N, Rivas DE, Dörner R, Rolles D, Rudenko A, Schmidt P, Siebert J, Strenger N, Trabert D, Vela-Perez I, Wagner R, Weber T, Williams JB, Ziolkowski P, Schmidt LPH, Czasch A, Ueda K, Trinter F, Meyer M, Demekhin PV, Jahnke T. Double Core-Hole Generation in O_{2} Molecules Using an X-Ray Free-Electron Laser: Molecular-Frame Photoelectron Angular Distributions. PHYSICAL REVIEW LETTERS 2020; 125:163201. [PMID: 33124863 DOI: 10.1103/physrevlett.125.163201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.
Collapse
Affiliation(s)
- Gregor Kastirke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Miriam Weller
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Jonas Rist
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Rebecca Boll
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Nils Anders
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | | | - Sebastian Eckart
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Kilian Fehre
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Averell Gatton
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | | | - Alexander Hartung
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Max Hofmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Markus Ilchen
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Christian Janke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Max Kircher
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Maksim Kunitski
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Xiang Li
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Tommaso Mazza
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Niklas Melzer
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Jacobo Montano
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Valerija Music
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Giammarco Nalin
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | | | - Andreas Pier
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Nils Rennhack
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Daniel E Rivas
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Artem Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Philipp Schmidt
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Juliane Siebert
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Nico Strenger
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Daniel Trabert
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Isabel Vela-Perez
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Rene Wagner
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Thorsten Weber
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, USA
| | - Joshua B Williams
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | | | - Lothar Ph H Schmidt
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Achim Czasch
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Florian Trinter
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Michael Meyer
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Philipp V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Till Jahnke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Grell G, Bokarev SI. Multi-reference protocol for (auto)ionization spectra: Application to molecules. J Chem Phys 2020; 152:074108. [DOI: 10.1063/1.5142251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gilbert Grell
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Sergey I. Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| |
Collapse
|
20
|
Müller AD, Kutscher E, Artemyev AN, Demekhin PV. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. III. Photoionization of fenchone in different regimes. J Chem Phys 2020; 152:044302. [PMID: 32007036 DOI: 10.1063/1.5139608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoelectron circular dichroism (PECD) in different regimes of multiphoton ionization of fenchone is studied theoretically using the time-dependent single center method. In particular, we investigate the chiral response to the one-color multiphoton or strong-field ionization by circularly polarized 400 nm and 814 nm optical laser pulses or 1850 nm infrared pulse. In addition, the broadband ionization by short coherent circularly polarized 413-1240 nm spanning pulse is considered. Finally, the two-color ionization by the phase-locked 400 nm and 800 nm pulses, which are linearly polarized in mutually orthogonal directions, is investigated. The present computational results on the one-color multiphoton ionization of fenchone are in agreement with the available experimental data. For the ionization of fenchone by broadband and bichromatic pulses, the present theoretical study predicts substantial multiphoton PECDs.
Collapse
Affiliation(s)
- Anne D Müller
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Eric Kutscher
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Anton N Artemyev
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Philipp V Demekhin
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
21
|
Kircher M, Rist J, Trinter F, Grundmann S, Waitz M, Melzer N, Vela-Pérez I, Mletzko T, Pier A, Strenger N, Siebert J, Janssen R, Schmidt LPH, Artemyev AN, Schöffler MS, Jahnke T, Dörner R, Demekhin PV. Recoil-Induced Asymmetry of Nondipole Molecular Frame Photoelectron Angular Distributions in the Hard X-ray Regime. PHYSICAL REVIEW LETTERS 2019; 123:243201. [PMID: 31922823 DOI: 10.1103/physrevlett.123.243201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 06/10/2023]
Abstract
We investigate angular emission distributions of the 1s photoelectrons of N_{2} ionized by linearly polarized synchrotron radiation at hν=40 keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of the molecular fragmentation. In particular, photoelectrons are predominantly emitted in the direction of the forward nitrogen atom. This observation cannot be explained via asymmetries introduced by the initial bound and final continuum electronic states of the oriented molecule. The present simulations assign this asymmetry to a novel nontrivial effect of the recoil imposed to the nuclei by the fast photoelectrons and high-energy photons, which results in a propensity for the ions to break up along the axis of the recoil momentum. The results are of particular importance for the interpretation of future experiments at x-ray free electron lasers operating in the few tens of keV regime, where such nondipole and recoil effects will be essential.
Collapse
Affiliation(s)
- M Kircher
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - J Rist
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - F Trinter
- FS-PETRA-S, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4, 14195 Berlin, Germany
| | - S Grundmann
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - M Waitz
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - N Melzer
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - I Vela-Pérez
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - T Mletzko
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - A Pier
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - N Strenger
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - J Siebert
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - R Janssen
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - L Ph H Schmidt
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - A N Artemyev
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - M S Schöffler
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - T Jahnke
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - R Dörner
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
22
|
Hartmann G, Ilchen M, Schmidt P, Küstner-Wetekam C, Ozga C, Scholz F, Buck J, Trinter F, Viefhaus J, Ehresmann A, Schöffler MS, Knie A, Demekhin PV. Recovery of High-Energy Photoelectron Circular Dichroism through Fano Interference. PHYSICAL REVIEW LETTERS 2019; 123:043202. [PMID: 31491235 DOI: 10.1103/physrevlett.123.043202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 06/10/2023]
Abstract
It is commonly accepted that the magnitude of a photoelectron circular dichroism (PECD) is governed by the ability of an outgoing photoelectron wave packet to probe the chiral asymmetry of a molecule. To be able to accumulate this characteristic asymmetry while escaping the chiral ion, photoelectrons need to have relatively small kinetic energies of up to a few tens of electron volts. Here, we demonstrate a substantial PECD for very fast photoelectrons above 500 eV kinetic energy released from methyloxirane by a participator resonant Auger decay of its lowermost O 1s excitation. This effect emerges as a result of the Fano interference between the direct and resonant photoionization pathways, notwithstanding that their individual effects are negligibly small. The resulting dichroic parameter has an anomalous dispersion: It changes its sign across the resonance, which can be considered as an analogue of the Cotton effect in the x-ray regime.
Collapse
Affiliation(s)
- G Hartmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - M Ilchen
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Ph Schmidt
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - C Küstner-Wetekam
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - C Ozga
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - F Scholz
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - J Buck
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Institut für Experimentelle und Angewandte Physik, Universität Kiel, Leibnizstrasse 19, 24118 Kiel, Germany
| | - F Trinter
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4, 14195 Berlin, Germany
| | - J Viefhaus
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Helmholtz-Zentrum Berlin (HZB), Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - A Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - M S Schöffler
- Institut für Kernphysik, J.W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - A Knie
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| |
Collapse
|
23
|
Demekhin PV, Artemyev AN, Kastner A, Baumert T. Photoelectron Circular Dichroism with Two Overlapping Laser Pulses of Carrier Frequencies ω and 2ω Linearly Polarized in Two Mutually Orthogonal Directions. PHYSICAL REVIEW LETTERS 2018; 121:253201. [PMID: 30608808 DOI: 10.1103/physrevlett.121.253201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/09/2018] [Indexed: 05/20/2023]
Abstract
Using a model methanelike chiral system, we theoretically demonstrate a possibility to access photoelectron circular dichroism (PECD) by a single experiment with two overlapping laser pulses of carrier frequencies ω and 2ω, which are linearly polarized in two mutually orthogonal directions. Depending on the relative phase, the resulting electric field can be tailored to have two different rotational directions in the upper and lower hemispheres along the polarization of the ω pulse. We predict a strong forward-backward asymmetry in the emission of photoelectrons from randomly oriented samples, which has an opposite sign in the upper and lower hemispheres. The predicted PECD effect is phase and enantiomer sensitive, providing new insight in this fascinating fundamental phenomenon. The effect can be optimized by varying relative intensities of the pulses.
Collapse
Affiliation(s)
- Philipp V Demekhin
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Anton N Artemyev
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Alexander Kastner
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Thomas Baumert
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| |
Collapse
|
24
|
Mhamdi A, Rist J, Aslitürk D, Weller M, Melzer N, Trabert D, Kircher M, Vela-Pérez I, Siebert J, Eckart S, Grundmann S, Kastirke G, Waitz M, Khan A, Schöffler MS, Trinter F, Dörner R, Jahnke T, Demekhin PV. Breakdown of the Spectator Concept in Low-Electron-Energy Resonant Decay Processes. PHYSICAL REVIEW LETTERS 2018; 121:243002. [PMID: 30608769 DOI: 10.1103/physrevlett.121.243002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 06/09/2023]
Abstract
We suggest that low-energy electrons, released by resonant decay processes, experience substantial scattering on the electron density of excited electrons, which remain a spectator during the decay. As a result, the angular emission distribution is altered significantly. This effect is expected to be a common feature of low-energy secondary electron emission. In this Letter, we exemplify our idea by examining the spectator resonant interatomic Coulombic decay of Ne dimers. Our theoretical predictions are confirmed by a corresponding coincidence experiment.
Collapse
Affiliation(s)
- A Mhamdi
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - J Rist
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - D Aslitürk
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - M Weller
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - N Melzer
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - D Trabert
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - M Kircher
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - I Vela-Pérez
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - J Siebert
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - S Eckart
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - S Grundmann
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - G Kastirke
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - M Waitz
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - A Khan
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - M S Schöffler
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - F Trinter
- Deutsches Elektronen-Synchrotron (DESY), FS-PE, Notkestrasse 85, 22607 Hamburg, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Molecular Physics, Faradayweg 4, 14195 Berlin, Germany
| | - R Dörner
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - T Jahnke
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| |
Collapse
|
25
|
Pitzer M, Schmidt P, Ozga C, Hans A, Reiß P, Petrov ID, Artemyev AN, Ehresmann A, Knie A, Demekhin PV. Circular Dichroism in Fluorescence Emission Following the C 1s→π* Excitation and Resonant Auger Decay of Carbon Monoxide. Molecules 2018; 23:molecules23071534. [PMID: 29949868 PMCID: PMC6100420 DOI: 10.3390/molecules23071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 11/26/2022] Open
Abstract
Dichroism in angle-resolved spectra of circularly polarized fluorescence from freely-rotating CO molecules was studied experimentally and theoretically. For this purpose, carbon monoxide in the gas phase was exposed to circularly polarized soft X-ray synchrotron radiation. The photon energy was tuned across the C 1s→π* resonant excitation, which decayed via the participator Auger transition into the CO+ A 2Π state. The dichroic parameter β1 of the subsequent CO+ (A 2Π → X 2Σ+) visible fluorescence was measured by photon-induced fluorescence spectroscopy. Present experimental results are explained with the ab initio electronic structure and dynamics calculations performed by the single center method. Our results confirm the possibility to perform partial wave analysis of the emitted photoelectrons in closed-shell molecules.
Collapse
Affiliation(s)
- Martin Pitzer
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Philipp Schmidt
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Christian Ozga
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Andreas Hans
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Philipp Reiß
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Ivan D Petrov
- Rostov State Transport University, Narodnogo Opolcheniya Square 2, 344038 Rostov-on-Don, Russia.
- Research Institute of Physics, Southern Federal University, Stachki Avenue 194, 344090 Rostov-on-Don, Russia.
| | - Anton N Artemyev
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Arno Ehresmann
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - André Knie
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Philipp V Demekhin
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| |
Collapse
|
26
|
Müller AD, Artemyev AN, Demekhin PV. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. II. Three- and four-photon ionization of fenchone and camphor. J Chem Phys 2018; 148:214307. [DOI: 10.1063/1.5032295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anne D. Müller
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Anton N. Artemyev
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Philipp V. Demekhin
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
27
|
Tia M, Pitzer M, Kastirke G, Gatzke J, Kim HK, Trinter F, Rist J, Hartung A, Trabert D, Siebert J, Henrichs K, Becht J, Zeller S, Gassert H, Wiegandt F, Wallauer R, Kuhlins A, Schober C, Bauer T, Wechselberger N, Burzynski P, Neff J, Weller M, Metz D, Kircher M, Waitz M, Williams JB, Schmidt LPH, Müller AD, Knie A, Hans A, Ben Ltaief L, Ehresmann A, Berger R, Fukuzawa H, Ueda K, Schmidt-Böcking H, Dörner R, Jahnke T, Demekhin PV, Schöffler M. Observation of Enhanced Chiral Asymmetries in the Inner-Shell Photoionization of Uniaxially Oriented Methyloxirane Enantiomers. J Phys Chem Lett 2017; 8:2780-2786. [PMID: 28582620 DOI: 10.1021/acs.jpclett.7b01000] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most large molecules are chiral in their structure: they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical (neglecting a minuscular effect of the weak interaction), it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer. Indeed, photoionization of randomly oriented enantiomers by left or right circularly polarized light results in a slightly different electron flux parallel or antiparallel with respect to the photon propagation direction-an effect termed photoelectron circular dichroism (PECD). Our comprehensive study demonstrates that the origin of PECD can be found in the molecular frame electron emission pattern connecting PECD to other fundamental photophysical effects such as the circular dichroism in angular distributions (CDAD). Accordingly, distinct spatial orientations of a chiral molecule enhance the PECD by a factor of about 10.
Collapse
Affiliation(s)
- Maurice Tia
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Martin Pitzer
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
- Institut für Physik und CINSaT, Universität Kassel , Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Gregor Kastirke
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Janine Gatzke
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Hong-Keun Kim
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Florian Trinter
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Jonas Rist
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Alexander Hartung
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Daniel Trabert
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Juliane Siebert
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Kevin Henrichs
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Jasper Becht
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Stefan Zeller
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Helena Gassert
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Florian Wiegandt
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Robert Wallauer
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Andreas Kuhlins
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Carl Schober
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Tobias Bauer
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Natascha Wechselberger
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Phillip Burzynski
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Jonathan Neff
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Miriam Weller
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Daniel Metz
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Max Kircher
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Markus Waitz
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Joshua B Williams
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
- Department of Physics, University of Nevada , Reno, Nevada 89557, United States
| | - Lothar Ph H Schmidt
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Anne D Müller
- Institut für Physik und CINSaT, Universität Kassel , Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - André Knie
- Institut für Physik und CINSaT, Universität Kassel , Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Andreas Hans
- Institut für Physik und CINSaT, Universität Kassel , Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Ltaief Ben Ltaief
- Institut für Physik und CINSaT, Universität Kassel , Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Arno Ehresmann
- Institut für Physik und CINSaT, Universität Kassel , Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Robert Berger
- Theoretical Chemistry, Department of Chemistry, Philipps-Universität Marburg , Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Hironobu Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , Sendai 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , Sendai 980-8577, Japan
| | - Horst Schmidt-Böcking
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Till Jahnke
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Philipp V Demekhin
- Institut für Physik und CINSaT, Universität Kassel , Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Markus Schöffler
- Institut für Kernphysik, Goethe Universität Frankfurt , Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
28
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
29
|
Banks HIB, Little DA, Tennyson J, Emmanouilidou A. Interaction of molecular nitrogen with free-electron-laser radiation. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp02345f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecular double core hole contribution to the final atomic ion fragments of N2 when driven by an FEL pulse.
Collapse
Affiliation(s)
- H. I. B. Banks
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
| | - D. A. Little
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
| | - J. Tennyson
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
| | - A. Emmanouilidou
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
| |
Collapse
|
30
|
Sann H, Schober C, Mhamdi A, Trinter F, Müller C, Semenov SK, Stener M, Waitz M, Bauer T, Wallauer R, Goihl C, Titze J, Afaneh F, Schmidt LPH, Kunitski M, Schmidt-Böcking H, Demekhin PV, Cherepkov NA, Schöffler MS, Jahnke T, Dörner R. Delocalization of a Vacancy across Two Neon Atoms Bound by the van der Waals Force. PHYSICAL REVIEW LETTERS 2016; 117:263001. [PMID: 28059541 DOI: 10.1103/physrevlett.117.263001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 06/06/2023]
Abstract
We experimentally study 2p photoionization of neon dimers (Ne_{2}) at a photon energy of hν=36.56 eV. By postselection of ionization events which lead to a dissociation into Ne^{+}+Ne we obtain the photoelectron angular emission distribution in the molecular frame. This distribution is symmetric with respect to the direction of the charged vs neutral fragment. It shows an inverted Cohen-Fano double slit interference pattern of two spherical waves emitted coherently but with opposite phases from the two atoms of the dimer.
Collapse
Affiliation(s)
- H Sann
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - C Schober
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - A Mhamdi
- Institut für Physik und Center for Interdisciplinary Nanostructure Science and Technology, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - F Trinter
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - C Müller
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - S K Semenov
- State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia
| | - M Stener
- Dipartimento di Scienze Chimiche, Universita di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
| | - M Waitz
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - T Bauer
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - R Wallauer
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - C Goihl
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - J Titze
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - F Afaneh
- Physics Department, The Hashemite University, Zarqa 13133, Jordan
| | - L Ph H Schmidt
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - M Kunitski
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - H Schmidt-Böcking
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Ph V Demekhin
- Institut für Physik und Center for Interdisciplinary Nanostructure Science and Technology, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - N A Cherepkov
- State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia
| | - M S Schöffler
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - T Jahnke
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - R Dörner
- Institut für Kernphysik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| |
Collapse
|
31
|
Knie A, Patanen M, Hans A, Petrov ID, Bozek JD, Ehresmann A, Demekhin PV. Angle-Resolved Auger Spectroscopy as a Sensitive Access to Vibronic Coupling. PHYSICAL REVIEW LETTERS 2016; 116:193002. [PMID: 27232020 DOI: 10.1103/physrevlett.116.193002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 06/05/2023]
Abstract
In the angle-averaged excitation and decay spectra of molecules, vibronic coupling may induce the usually weak dipole-forbidden transitions by the excitation intensity borrowing mechanism. The present complementary theoretical and experimental study of the resonant Auger decay of core-to-Rydberg excited CH_{4} and Ne demonstrates that vibronic coupling plays a decisive role in the formation of the angle-resolved spectra by additionally involving the decay rate borrowing mechanism. Thereby, we propose that the angle-resolved Auger spectroscopy can in general provide very insightful information on the strength of the vibronic coupling.
Collapse
Affiliation(s)
- A Knie
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - M Patanen
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur Yvette Cedex, France
| | - A Hans
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - I D Petrov
- Rostov State Transport University, Narodnogo Opolcheniya Square 2, 344038 Rostov-on-Don, Russia
- Research Institute of Physics, Southern Federal University, Stachki Avenue 194, 344090 Rostov-on-Don, Russia
| | - J D Bozek
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur Yvette Cedex, France
| | - A Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- Research Institute of Physics, Southern Federal University, Stachki Avenue 194, 344090 Rostov-on-Don, Russia
| |
Collapse
|
32
|
Gozem S, Gunina AO, Ichino T, Osborn DL, Stanton JF, Krylov AI. Photoelectron wave function in photoionization: plane wave or Coulomb wave? J Phys Chem Lett 2015; 6:4532-4540. [PMID: 26509428 DOI: 10.1021/acs.jpclett.5b01891] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Collapse
Affiliation(s)
- Samer Gozem
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Anastasia O Gunina
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Takatoshi Ichino
- Institute for Theoretical Chemistry, Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories , Livermore, California 94551, United States
| | - John F Stanton
- Institute for Theoretical Chemistry, Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| |
Collapse
|
33
|
Artemyev AN, Müller AD, Hochstuhl D, Demekhin PV. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-potentials. J Chem Phys 2015; 142:244105. [DOI: 10.1063/1.4922690] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Anton N. Artemyev
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-St. 40, 34132 Kassel, Germany
| | - Anne D. Müller
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-St. 40, 34132 Kassel, Germany
| | - David Hochstuhl
- Institute of Theoretical Physics and Astrophysics, Leibnizstrasse 15, 24098 Kiel, Germany
| | - Philipp V. Demekhin
- Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-St. 40, 34132 Kassel, Germany
| |
Collapse
|
34
|
Southworth SH, Wehlitz R, Picón A, Lehmann CS, Cheng L, Stanton JF. Inner-shell photoionization and core-hole decay of Xe and XeF2. J Chem Phys 2015; 142:224302. [PMID: 26071705 DOI: 10.1063/1.4922208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d(5/2), Xe 3d(3/2), and F 1s subshells in the 660-740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F(+) and F(2+) ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe(+) and F(+) ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.
Collapse
Affiliation(s)
- Stephen H Southworth
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Ralf Wehlitz
- Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, Wisconsin 53589, USA
| | - Antonio Picón
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C Stefan Lehmann
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Lan Cheng
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John F Stanton
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
35
|
Galitskiy SA, Artemyev AN, Jänkälä K, Lagutin BM, Demekhin PV. Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters. J Chem Phys 2015; 142:034306. [DOI: 10.1063/1.4905722] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S. A. Galitskiy
- Institut für Physik, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - A. N. Artemyev
- Institut für Physik, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - K. Jänkälä
- Department of Physics, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - B. M. Lagutin
- Research Institute of Physics, Southern Federal University, Stachki Ave. 194, 344090 Rostov-on-Don, Russia
| | - Ph. V. Demekhin
- Institut für Physik, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
- Research Institute of Physics, Southern Federal University, Stachki Ave. 194, 344090 Rostov-on-Don, Russia
| |
Collapse
|
36
|
Inhester L, Groenhof G, Grubmüller H. Core hole screening and decay rates of double core ionized first row hydrides. J Chem Phys 2013; 138:164304. [PMID: 23635135 DOI: 10.1063/1.4801660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Because of the high intensity, X-ray free electron lasers allow one to create and probe double core ionized states in molecules. The decay of these multiple core ionized states crucially determines the evolution of radiation damage in single molecule diffractive imaging experiments. Here we have studied the Auger decay in hydrides of first row elements after single and double core ionization by quantum mechanical ab initio calculations. In our approach the continuum wave function of the emitted Auger electron is expanded into spherical harmonics on a radial grid. The obtained decay rates of double K-shell vacancies were found to be systematically larger than those for the respective single K-shell vacancies, markedly exceeding the expected factor of two. This enhancement is attributed to the screening effects induced by the core hole. We propose a simple model, which is able to predict core hole decay rates in molecules with low Z elements based on the electron density in the vicinity of the core hole.
Collapse
Affiliation(s)
- L Inhester
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | |
Collapse
|
37
|
Inhester L, Burmeister CF, Groenhof G, Grubmüller H. Auger spectrum of a water molecule after single and double core ionization. J Chem Phys 2012; 136:144304. [DOI: 10.1063/1.3700233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- L Inhester
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
38
|
Plésiat E, Decleva P, Martín F. Vibrational branching ratios in the photoelectron spectra of N2 and CO: interference and diffraction effects. Phys Chem Chem Phys 2012; 14:10853-71. [DOI: 10.1039/c2cp40693d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|