1
|
Schilz JD, Bodenstein E, Brack FE, Horst F, Irman A, Kroll F, Pawelke J, Prencipe I, Rehwald M, Reimold M, Schöbel S, Schramm U, Zeil K, Metzkes-Ng J. Absolute energy-dependent scintillating screen calibration for real-time detection of laser-accelerated proton bunches. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:073303. [PMID: 39058268 DOI: 10.1063/5.0206931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Laser-plasma accelerators (LPAs) can deliver pico- to nanosecond long proton bunches with ≳100 nC of charge dispersed over a broad energy spectrum. Increasing the repetition rates of today's LPAs is a necessity for their practical application. This, however, creates a need for real-time proton bunch diagnostics. Scintillating screens are one detector solution commonly applied in the field of electron LPAs for spatially resolved particle and radiation detection. Yet their establishment for LPA proton detection is only slowly taking off, also due to the lack of available calibrations. In this paper, we present an absolute proton number calibration for the scintillating screen type DRZ High (Mitsubishi Chemical Corporation, Düsseldorf, Germany), one of the most sensitive screens according to calibrations for relativistic electrons and x rays. The presented absolute light yield calibration shows an uncertainty of the proton number of 10% and can seamlessly be applied at other LPA facilities. For proton irradiation of the DRZ High screen, we find an increase in light yield of >60% compared to reference calibration data for relativistic electrons. Moreover, we investigate the scintillating screen light yield dependence on proton energy since many types of scintillators (e.g., plastic, liquid, and inorganic) show a reduced light yield for increased local energy deposition densities, an effect termed ionization quenching. The ionization quenching can reduce the light yield for low-energy protons by up to ∼20%. This work provides all necessary data for absolute spectral measurements of LPA protons with DRZ High scintillating screens, e.g., when used in the commonly applied Thomson parabola spectrometers.
Collapse
Affiliation(s)
- J D Schilz
- Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - E Bodenstein
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - F-E Brack
- Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
| | - F Horst
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - A Irman
- Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
| | - F Kroll
- Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
| | - J Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - I Prencipe
- Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
| | - M Rehwald
- Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
| | - M Reimold
- Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
| | - S Schöbel
- TUD Dresden University of Technology, 01062 Dresden, Germany
| | - U Schramm
- TUD Dresden University of Technology, 01062 Dresden, Germany
| | - K Zeil
- Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
| | - J Metzkes-Ng
- Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
| |
Collapse
|
2
|
Salgado-López C, Apiñaniz JI, Henares JL, Pérez-Hernández JA, de Luis D, Volpe L, Gatti G. Angular-Resolved Thomson Parabola Spectrometer for Laser-Driven Ion Accelerators. SENSORS 2022; 22:s22093239. [PMID: 35590929 PMCID: PMC9104512 DOI: 10.3390/s22093239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
This article reports the development, construction, and experimental test of an angle-resolved Thomson parabola (TP) spectrometer for laser-accelerated multi-MeV ion beams in order to distinguish between ionic species with different charge-to-mass ratio. High repetition rate (HHR) compatibility is guaranteed by the use of a microchannel plate (MCP) as active particle detector. The angular resolving power, which is achieved due to an array of entrance pinholes, can be simply adjusted by modifying the geometry of the experiment and/or the pinhole array itself. The analysis procedure allows for different ion traces to cross on the detector plane, which greatly enhances the flexibility and capabilities of the detector. A full characterization of the TP magnetic field is implemented into a relativistic code developed for the trajectory calculation of each pinhole beamlet. We describe the first test of the spectrometer at the 1PW VEGA 3 laser facility at CLPU, Salamanca (Spain), where up to 15MeV protons and carbon ions from a 3μm laser-irradiated Al foil are detected.
Collapse
|
3
|
Schwind KM, Aktan E, Prasad R, Cerchez M, Eversheim D, Willi O, Aurand B. An online beam profiler for laser-accelerated protons. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:053307. [PMID: 31153256 DOI: 10.1063/1.5086248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
The design and operation of an online energy and spatially resolving detector based on three different scintillators for laser-driven protons are described. The device can be used for a multi-Hertz recording rate. The spatial resolution is <0.5 mm, allowing to retrieve details of the proton beam which is of interest, e.g., for radiographic applications. At the same time, the particle energy is divided into three energy bands between 1 MeV and 5 MeV to retrieve the proton energy spectrum. The absolute response of the detector was calibrated at a conventional proton accelerator.
Collapse
Affiliation(s)
- K M Schwind
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - E Aktan
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - R Prasad
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - M Cerchez
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - D Eversheim
- Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms Universität, 53115 Bonn, Germany
| | - O Willi
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - B Aurand
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
I-BEAT: Ultrasonic method for online measurement of the energy distribution of a single ion bunch. Sci Rep 2019; 9:6714. [PMID: 31040311 PMCID: PMC6491586 DOI: 10.1038/s41598-019-42920-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/10/2019] [Indexed: 11/08/2022] Open
Abstract
The shape of a wave carries all information about the spatial and temporal structure of its source, given that the medium and its properties are known. Most modern imaging methods seek to utilize this nature of waves originating from Huygens' principle. We discuss the retrieval of the complete kinetic energy distribution from the acoustic trace that is recorded when a short ion bunch deposits its energy in water. This novel method, which we refer to as Ion-Bunch Energy Acoustic Tracing (I-BEAT), is a refinement of the ionoacoustic approach. With its capability of completely monitoring a single, focused proton bunch with prompt readout and high repetition rate, I-BEAT is a promising approach to meet future requirements of experiments and applications in the field of laser-based ion acceleration. We demonstrate its functionality at two laser-driven ion sources for quantitative online determination of the kinetic energy distribution in the focus of single proton bunches.
Collapse
|
5
|
Zhang Y, Zhang Z, Zhu B, Jiang W, Cheng L, Zhao L, Zhang X, Zhao X, Yuan X, Tong B, Zhong J, He S, Lu F, Wu Y, Zhou W, Zhang F, Zhou K, Xie N, Huang Z, Gu Y, Weng S, Xu M, Li Y, Li Y. An angular-resolved multi-channel Thomson parabola spectrometer for laser-driven ion measurement. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093302. [PMID: 30278712 DOI: 10.1063/1.5042424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
A multi-channel Thomson parabola spectrometer was designed and employed to diagnose ion beams driven by intense laser pulses. Angular-resolved energy spectra for different ion species can be measured in a single shot. It contains parallel dipole magnets and wedged electrodes to fit ion dispersion of different charge-to-mass ratios. The diameter and separation of the entrance pinhole channels were designed properly to provide sufficient resolution and avoid overlapping of dispersed ion beams. To obtain a precise energy spectral resolving, three-dimensional distributions of the electric and magnetic fields were simulated. Experimental measurement of energy-dependent angular distributions of target normal sheath accelerated protons and deuterons was demonstrated. This novel compact design provides a comprehensive characterization for ion beams.
Collapse
Affiliation(s)
- Yihang Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhe Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Baojun Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Weiman Jiang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Cheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Zhao
- Department of Physics, College of Science, China University of Mining and Technology, Beijing 100083, China
| | - Xiaopeng Zhang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Zhao
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Yuan
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowei Tong
- Department of Astronomy, Beijing Normal University, Beijing 100875, China
| | - Jiayong Zhong
- Collaborative Innovation Centre of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shukai He
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900, China
| | - Feng Lu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900, China
| | - Yuchi Wu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900, China
| | - Weimin Zhou
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900, China
| | - Faqiang Zhang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900, China
| | - Kainan Zhou
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900, China
| | - Na Xie
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900, China
| | - Zheng Huang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900, China
| | - Yuqiu Gu
- Collaborative Innovation Centre of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Suming Weng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaohua Xu
- Department of Physics, College of Science, China University of Mining and Technology, Beijing 100083, China
| | - Yingjun Li
- Department of Physics, College of Science, China University of Mining and Technology, Beijing 100083, China
| | - Yutong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Lindner FH, Bin JH, Englbrecht F, Haffa D, Bolton PR, Gao Y, Hartmann J, Hilz P, Kreuzer C, Ostermayr TM, Rösch TF, Speicher M, Parodi K, Thirolf PG, Schreiber J. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:013301. [PMID: 29390656 DOI: 10.1063/1.5001990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.
Collapse
Affiliation(s)
- F H Lindner
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - J H Bin
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - F Englbrecht
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - D Haffa
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - P R Bolton
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Y Gao
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - J Hartmann
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - P Hilz
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - C Kreuzer
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - T M Ostermayr
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - T F Rösch
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - M Speicher
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - K Parodi
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - P G Thirolf
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - J Schreiber
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| |
Collapse
|
7
|
Fernández JC, Cort Gautier D, Huang C, Palaniyappan S, Albright BJ, Bang W, Dyer G, Favalli A, Hunter JF, Mendez J, Roth M, Swinhoe M, Bradley PA, Deppert O, Espy M, Falk K, Guler N, Hamilton C, Hegelich BM, Henzlova D, Ianakiev KD, Iliev M, Johnson RP, Kleinschmidt A, Losko AS, McCary E, Mocko M, Nelson RO, Roycroft R, Santiago Cordoba MA, Schanz VA, Schaumann G, Schmidt DW, Sefkow A, Shimada T, Taddeucci TN, Tebartz A, Vogel SC, Vold E, Wurden GA, Yin L. Laser-plasmas in the relativistic-transparency regime: Science and applications. PHYSICS OF PLASMAS 2017; 24:056702. [PMID: 28652684 PMCID: PMC5449275 DOI: 10.1063/1.4983991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at "table-top" scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (∼104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (∼0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2-8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ∼2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed.
Collapse
Affiliation(s)
- Juan C Fernández
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - D Cort Gautier
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Chengkung Huang
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | | | - Brian J Albright
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | | | - Gilliss Dyer
- Physics Department, University of Texas at Austin, Austin, Texas 78712, USA
| | - Andrea Favalli
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - James F Hunter
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Jacob Mendez
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Markus Roth
- Institute for Nuclear Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Martyn Swinhoe
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Paul A Bradley
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Oliver Deppert
- Institute for Nuclear Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Michelle Espy
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Katerina Falk
- Institute of Physics of the ASCR, ELI-Beamlines, 182 21 Prague 8, Czech Republic
| | | | - Christopher Hamilton
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | | | - Daniela Henzlova
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Kiril D Ianakiev
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Metodi Iliev
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Randall P Johnson
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Annika Kleinschmidt
- Institute for Nuclear Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Adrian S Losko
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Edward McCary
- Physics Department, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michal Mocko
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Ronald O Nelson
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Rebecca Roycroft
- Physics Department, University of Texas at Austin, Austin, Texas 78712, USA
| | | | - Victor A Schanz
- Institute for Nuclear Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Gabriel Schaumann
- Institute for Nuclear Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Derek W Schmidt
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | | | - Tsutomu Shimada
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Terry N Taddeucci
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Alexandra Tebartz
- Institute for Nuclear Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Sven C Vogel
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Erik Vold
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Glen A Wurden
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Lin Yin
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
8
|
Ostermayr TM, Haffa D, Hilz P, Pauw V, Allinger K, Bamberg KU, Böhl P, Bömer C, Bolton PR, Deutschmann F, Ditmire T, Donovan ME, Dyer G, Gaul E, Gordon J, Hegelich BM, Kiefer D, Klier C, Kreuzer C, Martinez M, McCary E, Meadows AR, Moschüring N, Rösch T, Ruhl H, Spinks M, Wagner C, Schreiber J. Proton acceleration by irradiation of isolated spheres with an intense laser pulse. Phys Rev E 2016; 94:033208. [PMID: 27739766 DOI: 10.1103/physreve.94.033208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 11/07/2022]
Abstract
We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3×10^{20}Wcm^{-2}. With a laser focal spot size of 10 μm full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 μm. Maximum proton energies of ∼25 MeV are achieved for targets matching the focal spot size of 10 μm in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.
Collapse
Affiliation(s)
- T M Ostermayr
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany.,Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
| | - D Haffa
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - P Hilz
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - V Pauw
- Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
| | - K Allinger
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - K-U Bamberg
- Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
| | - P Böhl
- Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
| | - C Bömer
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - P R Bolton
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - F Deutschmann
- Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
| | - T Ditmire
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - M E Donovan
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - G Dyer
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - E Gaul
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - J Gordon
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - B M Hegelich
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - D Kiefer
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - C Klier
- Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
| | - C Kreuzer
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - M Martinez
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - E McCary
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - A R Meadows
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - N Moschüring
- Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
| | - T Rösch
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - H Ruhl
- Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
| | - M Spinks
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - C Wagner
- Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712, USA
| | - J Schreiber
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany.,Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
| |
Collapse
|
9
|
Palaniyappan S, Huang C, Gautier DC, Hamilton CE, Santiago MA, Kreuzer C, Sefkow AB, Shah RC, Fernández JC. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas. Nat Commun 2015; 6:10170. [PMID: 26657147 PMCID: PMC4682178 DOI: 10.1038/ncomms10170] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022] Open
Abstract
Table-top laser-plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼10(12) V m(-1)) and magnetic (∼10(4) T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.
Collapse
Affiliation(s)
| | - Chengkun Huang
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Donald C Gautier
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | - Adam B Sefkow
- Sandia National Laboratory, Albuquerque, New Mexico 87185, USA
| | - Rahul C Shah
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Juan C Fernández
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
Bang W, Albright BJ, Bradley PA, Vold EL, Boettger JC, Fernández JC. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063101. [PMID: 26764832 DOI: 10.1103/physreve.92.063101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 06/05/2023]
Abstract
In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E∼20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.
Collapse
Affiliation(s)
- W Bang
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - B J Albright
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - P A Bradley
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - E L Vold
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J C Boettger
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J C Fernández
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
11
|
Bang W, Albright BJ, Bradley PA, Gautier DC, Palaniyappan S, Vold EL, Cordoba MAS, Hamilton CE, Fernández JC. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams. Sci Rep 2015; 5:14318. [PMID: 26392208 PMCID: PMC4585717 DOI: 10.1038/srep14318] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/26/2015] [Indexed: 11/15/2022] Open
Abstract
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.
Collapse
Affiliation(s)
- W. Bang
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - B. J. Albright
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - P. A. Bradley
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D. C. Gautier
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S. Palaniyappan
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - E. L. Vold
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - C. E. Hamilton
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J. C. Fernández
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
12
|
Jung D, Senje L, McCormack O, Yin L, Albright BJ, Letzring S, Gautier DC, Dromey B, Toncian T, Fernandez JC, Zepf M, Hegelich BM. On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:033303. [PMID: 25832219 DOI: 10.1063/1.4914845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.
Collapse
Affiliation(s)
- D Jung
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - L Senje
- Lund University, P.O. Box 118, S-221 00 Lund, Sweden
| | - O McCormack
- Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - L Yin
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - B J Albright
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S Letzring
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D C Gautier
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - B Dromey
- Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - T Toncian
- University of Texas, Austin, Texas 78712, USA
| | - J C Fernandez
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M Zepf
- Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | | |
Collapse
|
13
|
Senje L, Yeung M, Aurand B, Kuschel S, Rödel C, Wagner F, Li K, Dromey B, Bagnoud V, Neumayer P, Roth M, Wahlström CG, Zepf M, Kuehl T, Jung D. Diagnostics for studies of novel laser ion acceleration mechanisms. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:113302. [PMID: 25430105 DOI: 10.1063/1.4900626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.
Collapse
Affiliation(s)
- Lovisa Senje
- Department of Physics, Lund University, P. O. Box 118, S-221 00 Lund, Sweden
| | - Mark Yeung
- Helmholtz-Institut Jena, D-07743 Jena, Germany
| | - Bastian Aurand
- Department of Physics, Lund University, P. O. Box 118, S-221 00 Lund, Sweden
| | | | | | - Florian Wagner
- Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - Kun Li
- ExtreMe Matter Institut, D-64291 Darmstadt, Germany
| | - Brendan Dromey
- Department of Physics and Astronomy, Queen's University, Belfast BT7 1NN, United Kingdom
| | | | | | - Markus Roth
- Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | | | | | - Thomas Kuehl
- ExtreMe Matter Institut, D-64291 Darmstadt, Germany
| | - Daniel Jung
- Department of Physics and Astronomy, Queen's University, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
14
|
Pomerantz I, McCary E, Meadows AR, Arefiev A, Bernstein AC, Chester C, Cortez J, Donovan ME, Dyer G, Gaul EW, Hamilton D, Kuk D, Lestrade AC, Wang C, Ditmire T, Hegelich BM. Ultrashort pulsed neutron source. PHYSICAL REVIEW LETTERS 2014; 113:184801. [PMID: 25396373 DOI: 10.1103/physrevlett.113.184801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 06/04/2023]
Abstract
We report on a novel compact laser-driven neutron source with an unprecedented short pulse duration (<50 ps) and high peak flux (>10(18) n/cm(2)/s), an order of magnitude higher than any existing source. In our experiments, high-energy electron jets are generated from thin (<3 μm) plastic targets irradiated by a petawatt laser. These intense electron beams are employed to generate neutrons from a metal converter. Our method opens venues for enhancing neutron radiography contrast and for creating astrophysical conditions of heavy element synthesis in the laboratory.
Collapse
Affiliation(s)
- I Pomerantz
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - E McCary
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - A R Meadows
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - A Arefiev
- Institute for Fusion Studies, The University of Texas, Austin, Texas 78712, USA
| | - A C Bernstein
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - C Chester
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - J Cortez
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - M E Donovan
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - G Dyer
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - E W Gaul
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - D Hamilton
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - D Kuk
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - A C Lestrade
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - C Wang
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - T Ditmire
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| | - B M Hegelich
- Center for High Energy Density Science, C1510, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
15
|
Roth M, Jung D, Falk K, Guler N, Deppert O, Devlin M, Favalli A, Fernandez J, Gautier D, Geissel M, Haight R, Hamilton CE, Hegelich BM, Johnson RP, Merrill F, Schaumann G, Schoenberg K, Schollmeier M, Shimada T, Taddeucci T, Tybo JL, Wagner F, Wender SA, Wilde CH, Wurden GA. Bright laser-driven neutron source based on the relativistic transparency of solids. PHYSICAL REVIEW LETTERS 2013; 110:044802. [PMID: 25166169 DOI: 10.1103/physrevlett.110.044802] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Indexed: 06/03/2023]
Abstract
Neutrons are unique particles to probe samples in many fields of research ranging from biology to material sciences to engineering and security applications. Access to bright, pulsed sources is currently limited to large accelerator facilities and there has been a growing need for compact sources over the recent years. Short pulse laser driven neutron sources could be a compact and relatively cheap way to produce neutrons with energies in excess of 10 MeV. For more than a decade experiments have tried to obtain neutron numbers sufficient for applications. Our recent experiments demonstrated an ion acceleration mechanism based on the concept of relativistic transparency. Using this new mechanism, we produced an intense beam of high energy (up to 170 MeV) deuterons directed into a Be converter to produce a forward peaked neutron flux with a record yield, on the order of 10(10) n/sr. We present results comparing the two acceleration mechanisms and the first short pulse laser generated neutron radiograph.
Collapse
Affiliation(s)
- M Roth
- Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt, Germany and Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D Jung
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - K Falk
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - N Guler
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - O Deppert
- Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt, Germany
| | - M Devlin
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - A Favalli
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Fernandez
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D Gautier
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M Geissel
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - R Haight
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C E Hamilton
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - B M Hegelich
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - R P Johnson
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - F Merrill
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - G Schaumann
- Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt, Germany
| | - K Schoenberg
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M Schollmeier
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - T Shimada
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - T Taddeucci
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J L Tybo
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - F Wagner
- Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt, Germany
| | - S A Wender
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C H Wilde
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - G A Wurden
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
16
|
Yin L, Albright BJ, Bowers KJ, Jung D, Fernández JC, Hegelich BM. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. PHYSICAL REVIEW LETTERS 2011; 107:045003. [PMID: 21867015 DOI: 10.1103/physrevlett.107.045003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Indexed: 05/31/2023]
Abstract
Breakout afterburner (BOA) laser-ion acceleration has been demonstrated for the first time in the laboratory. In the BOA, an initially solid-density target undergoes relativistically induced transparency, initiating a period of enhanced ion acceleration. First-ever kinetic simulations of the BOA in three dimensions show that the ion beam forms lobes in the direction orthogonal to laser polarization and propagation. Analytic theory presented for the electron dynamics in the laser ponderomotive field explains how azimuthal symmetry breaks even for a symmetric laser intensity profile; these results are consistent with recent experiments at the Trident laser facility.
Collapse
Affiliation(s)
- L Yin
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | |
Collapse
|