1
|
Buszewski B, Błońska D, Kłodzińska E, Konop M, Kubesová A, Šalplachta J. Determination of Pathogens by Electrophoretic and Spectrometric Techniques. Crit Rev Anal Chem 2023; 54:2960-2983. [PMID: 37326587 DOI: 10.1080/10408347.2023.2219748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In modern medical diagnostics, where analytical chemistry plays a key role, fast and accurate identification of pathogens is becoming increasingly important. Infectious diseases pose a growing threat to public health due to population growth, international air travel, bacterial resistance to antibiotics, and other factors. For instance, the detection of SARS-CoV-2 in patient samples is a key tool to monitor the spread of the disease. While there are several techniques for identifying pathogens by their genetic code, most of these methods are too expensive or slow to effectively analyze clinical and environmental samples that may contain hundreds or even thousands of different microbes. Standard approaches (e.g., culture media and biochemical assays) are known to be very time- and labor-intensive. The purpose of this review paper is to highlight the problems associated with the analysis and identification of pathogens that cause many serious infections. Special attention was paid to the description of mechanisms and the explanation of the phenomena and processes occurring on the surface of pathogens as biocolloids (charge distribution). This review also highlights the importance of electromigration techniques and demonstrates their potential for pathogen pre-separation and fractionation and demonstrates the use of spectrometric methods, such as MALDI-TOF MS, for their detection and identification.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University in Toruń, Torun, Poland
| | - Dominika Błońska
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University in Toruń, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Torun, Poland
| | - Ewa Kłodzińska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marek Konop
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Anna Kubesová
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| | - Jiří Šalplachta
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| |
Collapse
|
2
|
Vaghef-Koodehi A, Lapizco-Encinas BH. Microscale electrokinetic-based analysis of intact cells and viruses. Electrophoresis 2021; 43:263-287. [PMID: 34796523 DOI: 10.1002/elps.202100254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022]
Abstract
Miniaturized electrokinetic methods have proven to be robust platforms for the analysis and assessment of intact microorganisms, offering short response times and higher integration than their bench-scale counterparts. The present review article discusses three types of electrokinetic-based methodologies: electromigration or motion-based techniques, electrode-based electrokinetics, and insulator-based electrokinetics. The fundamentals of each type of methodology are discussed and relevant examples from recent reports are examined, to provide the reader with an overview of the state-of-the-art on the latest advancements on the analysis of intact cells and viruses with microscale electrokinetic techniques. The concluding remarks discuss the potential applications and future directions.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
3
|
Choe SW, Kim B, Kim M. Progress of Microfluidic Continuous Separation Techniques for Micro-/Nanoscale Bioparticles. BIOSENSORS 2021; 11:464. [PMID: 34821680 PMCID: PMC8615634 DOI: 10.3390/bios11110464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 05/03/2023]
Abstract
Separation of micro- and nano-sized biological particles, such as cells, proteins, and nucleotides, is at the heart of most biochemical sensing/analysis, including in vitro biosensing, diagnostics, drug development, proteomics, and genomics. However, most of the conventional particle separation techniques are based on membrane filtration techniques, whose efficiency is limited by membrane characteristics, such as pore size, porosity, surface charge density, or biocompatibility, which results in a reduction in the separation efficiency of bioparticles of various sizes and types. In addition, since other conventional separation methods, such as centrifugation, chromatography, and precipitation, are difficult to perform in a continuous manner, requiring multiple preparation steps with a relatively large minimum sample volume is necessary for stable bioprocessing. Recently, microfluidic engineering enables more efficient separation in a continuous flow with rapid processing of small volumes of rare biological samples, such as DNA, proteins, viruses, exosomes, and even cells. In this paper, we present a comprehensive review of the recent advances in microfluidic separation of micro-/nano-sized bioparticles by summarizing the physical principles behind the separation system and practical examples of biomedical applications.
Collapse
Affiliation(s)
- Se-woon Choe
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea;
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea
| | - Bumjoo Kim
- Department of Mechanical Engineering and Automotive Engineering, Kongju National University, Cheonan 1223-24, Korea;
- Department of Future Convergence Engineering, Kongju National University, Cheonan 1223-24, Korea
| | - Minseok Kim
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| |
Collapse
|
4
|
Buszewski B, Maślak E, Złoch M, Railean-Plugaru V, Kłodzińska E, Pomastowski P. A new approach to identifying pathogens, with particular regard to viruses, based on capillary electrophoresis and other analytical techniques. Trends Analyt Chem 2021; 139:116250. [PMID: 34776563 PMCID: PMC8573725 DOI: 10.1016/j.trac.2021.116250] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fast determination, identification and characterization of pathogens is a significant challenge in many fields, from industry to medicine. Standard approaches (e.g., culture media and biochemical tests) are known to be very time-consuming and labor-intensive. Conversely, screening techniques demand a quick and low-cost grouping of microbial isolates, and current analysis call for broad reports of pathogens, involving the application of molecular, microscopy, and electromigration techniques, DNA fingerprinting and also MALDI-TOF methods. The present COVID-19 pandemic is a crisis that affects rich and poor countries alike. Detection of SARS-CoV-2 in patient samples is a critical tool for monitoring disease spread, guiding therapeutic decisions and devising social distancing protocols. The goal of this review is to present an innovative methodology based on preparative separation of pathogens by electromigration techniques in combination with simultaneous analysis of the proteome, lipidome, and genome using laser desorption/ionization analysis.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewa Kłodzińska
- Institute of Sport - National Research Institute, Department of Analytical Chemistry and Instrumental Analysis, 01-982, Warsaw, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| |
Collapse
|
5
|
Preuss JA, Nguyen GN, Berk V, Bahnemann J. Miniaturized free-flow electrophoresis: production, optimization, and application using 3D printing technology. Electrophoresis 2020; 42:305-314. [PMID: 33128392 DOI: 10.1002/elps.202000149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
The increasing resolution of three-dimensional (3D) printing offers simplified access to, and development of, microfluidic devices with complex 3D structures. Therefore, this technology is increasingly used for rapid prototyping in laboratories and industry. Microfluidic free flow electrophoresis (μFFE) is a versatile tool to separate and concentrate different samples (such as DNA, proteins, and cells) to different outlets in a time range measured in mere tens of seconds and offers great potential for use in downstream processing, for example. However, the production of μFFE devices is usually rather elaborate. Many designs are based on chemical pretreatment or manual alignment for the setup. Especially for the separation chamber of a μFFE device, this is a crucial step which should be automatized. We have developed a smart 3D design of a μFFE to pave the way for a simpler production. This study presents (1) a robust and reproducible way to build up critical parts of a μFFE device based on high-resolution MultiJet 3D printing; (2) a simplified insertion of commercial polycarbonate membranes to segregate separation and electrode chambers; and (3) integrated, 3D-printed wells that enable a defined sample fractionation (chip-to-world interface). In proof of concept experiments both a mixture of fluorescence dyes and a mixture of amino acids were successfully separated in our 3D-printed μFFE device.
Collapse
Affiliation(s)
- John-Alexander Preuss
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, Hannover, 30167, Germany
| | - Gia Nam Nguyen
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, Hannover, 30167, Germany
| | - Virginia Berk
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, Hannover, 30167, Germany
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, Hannover, 30167, Germany
| |
Collapse
|
6
|
Drexelius A, Hoellrich A, Jajack A, Gomez E, Brothers M, Hussain S, Kim S, Heikenfeld J. Analysis of pressure-driven membrane preconcentration for point-of-care assays. BIOMICROFLUIDICS 2020; 14:054101. [PMID: 32922588 PMCID: PMC7467750 DOI: 10.1063/5.0013987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Point-of-care diagnostic devices for both physicians and patients themselves are now ubiquitous, but often not sensitive enough for highly dilute analytes (e.g., pre-symptomatic viral detection). Two primary methods to address this challenge include (1) increasing the sensitivity of molecular recognition elements with greater binding affinity to the analyte or (2) increasing the concentration of the analyte being detected in the sample itself (preconcentration). The latter approach, preconcentration, is arguably more attractive if it can be made universally applicable to a wide range of analytes. In this study, pressure-driven membrane preconcentration devices were developed, and their performance was analyzed for detecting target analytes in biofluids in the form of point-of-care lateral-flow assays (LFAs). The demonstrated prototypes utilize negative or positive pressure gradients to move both water and small interferents (salt, pH) through a membrane filter, thereby concentrating the analyte of interest in the remaining sample fluid. Preconcentration up to 33× is demonstrated for influenza A nucleoprotein with a 5 kDa pore polyethersulfone membrane filter. LFA results are obtained within as short as several minutes and device operation is simple (very few user steps), suggesting that membrane preconcentration can be preferable to more complex and slow conventional preconcentration techniques used in laboratory practice.
Collapse
Affiliation(s)
- A. Drexelius
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A. Hoellrich
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A. Jajack
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - E. Gomez
- UES, Inc., Beavercreek, Ohio 45433, USA
| | - M. Brothers
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - S. Hussain
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - S. Kim
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - J. Heikenfeld
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
7
|
Boulade M, Morlay A, Piat F, Roupioz Y, Livache T, Charette PG, Canva M, Leroy L. Early detection of bacteria using SPR imaging and event counting: experiments with Listeria monocytogenes and Listeria innocua. RSC Adv 2019; 9:15554-15560. [PMID: 35514840 PMCID: PMC9064316 DOI: 10.1039/c9ra01466g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Foodborne pathogens are of significant concern in the agrifood industry and the development of associated rapid detection and identification methods are of major importance. This paper describes the novel use of resolution-optimized prism-based surface plasmon resonance imaging (RO-SPRI) and data processing for the detection of the foodborne pathogens Listeria monocytogenes and Listeria innocua. With an imaging spatial resolution on the order of individual bacteria (2.7 ± 0.5 μm × 7.9 ± 0.6 μm) over a field of view 1.5 mm2, the RO-SPRI system enabled accurate counting of individual bacteria on the sensor surface. Using this system, we demonstrate the detection of two species of Listeria at an initial concentration of 2 × 102 CFU mL-1 in less than 7 hours. The surface density of bacteria at the point of positive detection was 15 ± 4 bacteria per mm2. Our approach offers great potential for the development of fast specific detection systems based on affinity monitoring.
Collapse
Affiliation(s)
- Marine Boulade
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, UGA 3000 Boulevard Université J1K OA5 Québec Canada
| | - Alexandra Morlay
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
- Prestodiag 1 Mail du Professeur Georges Mathé F-94800 Villejuif France
| | - Felix Piat
- Prestodiag 1 Mail du Professeur Georges Mathé F-94800 Villejuif France
| | - Yoann Roupioz
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
| | - Thierry Livache
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
- Aryballe Technologies 17 Avenue des Martyrs 38000 Grenoble France
| | - Paul G Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, UGA 3000 Boulevard Université J1K OA5 Québec Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, UGA 3000 Boulevard Université J1K OA5 Québec Canada
| | - Loïc Leroy
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
| |
Collapse
|
8
|
Microfluidics-Based Organism Isolation from Whole Blood: An Emerging Tool for Bloodstream Infection Diagnosis. Ann Biomed Eng 2019; 47:1657-1674. [PMID: 30980291 DOI: 10.1007/s10439-019-02256-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Abstract
The diagnosis of bloodstream infections presents numerous challenges, in part, due to the low concentration of pathogens present in the peripheral bloodstream. As an alternative to existing time-consuming, culture-based diagnostic methods for organism identification, microfluidic devices have emerged as rapid, high-throughput and integrated platforms for bacterial and fungal enrichment, detection, and characterization. This focused review serves to highlight and compare the emerging microfluidic platforms designed for the isolation of sepsis-causing pathogens from blood and suggest important areas for future research.
Collapse
|
9
|
Tien N, Lin TH, Hung ZC, Lin HS, Wang IK, Chen HC, Chang CT. Diagnosis of Bacterial Pathogens in the Urine of Urinary-Tract-Infection Patients Using Surface-Enhanced Raman Spectroscopy. Molecules 2018; 23:molecules23123374. [PMID: 30572659 PMCID: PMC6321215 DOI: 10.3390/molecules23123374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023] Open
Abstract
(1) Background: surface-enhanced Raman spectroscopy (SERS) is a novel method for bacteria identification. However, reported applications of SERS in clinical diagnosis are limited. In this study, we used cylindrical SERS chips to detect urine pathogens in urinary tract infection (UTI) patients. (2) Methods: Urine samples were retrieved from 108 UTI patients. A 10 mL urine sample was sent to conventional bacterial culture as a reference. Another 10 mL urine sample was loaded on a SERS chip for bacteria identification and antibiotic susceptibility. We concentrated the urine specimen if the intensity of the Raman spectrum required enhancement. The resulting Raman spectrum was analyzed by a recognition software to compare with spectrum-form reference bacteria and was further confirmed by principal component analysis (PCA). (3) Results: There were 97 samples with single bacteria species identified by conventional urine culture and, among them, 93 can be successfully identified by using SERS without sample concentration. There were four samples that needed concentration for bacteria identification. Antibiotic susceptibility can also be found by SERS. There were seven mixed flora infections found by conventional culture, which can only be identified by the PCA method. (4) Conclusions: SERS can be used in the diagnosis of urinary tract infection with the aid of the recognition software and PCA.
Collapse
Affiliation(s)
- Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, No. 2 Yu-Der Rd, North district, Taichung 40447, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
| | - Tzu-Hsien Lin
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
| | - Zen-Chao Hung
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
| | - Hsiu-Shen Lin
- Department of Laboratory Medicine, China Medical University Hospital, No. 2 Yu-Der Rd, North district, Taichung 40447, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
| | - I-Kuan Wang
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
- Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North district, Taichung 40447, Taiwan.
| | - Hung-Chih Chen
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
- Division of Nephrology, Asia University Hospital, No. 222, Fuxin Road, Wufeng District, Taichung 41354, Taiwan.
| | - Chiz-Tzung Chang
- College of Medicine, China Medical University, Taiwan, No. 49, Hsueh-Shih Rd, North District, Taichung 40402, Taiwan.
- Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North district, Taichung 40447, Taiwan.
| |
Collapse
|
10
|
AbdelFatah T, Jalali M, Mahshid S. A nanofilter for fluidic devices by pillar-assisted self-assembly microparticles. BIOMICROFLUIDICS 2018; 12:064103. [PMID: 30519372 PMCID: PMC6242779 DOI: 10.1063/1.5048623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/02/2018] [Indexed: 05/17/2023]
Abstract
We present a nanofilter based on pillar-assisted self-assembly microparticles for efficient capture of bacteria. Under an optimized condition, we simply fill the arrays of microscale pillars with submicron scale polystyrene particles to create a filter with nanoscale pore diameter in the range of 308 nm. The design parameters such as the pillar diameter and the inter-pillar spacing in the range of 5 μm-40 μm are optimized using a multi-physics finite element analysis and computational study based on bi-directionally coupled laminar flow and particle tracking solvers. The underlying dynamics of microparticles accumulation in the pillar array region are thoroughly investigated by studying the pillar wall shear stress and the filter pore diameter. The impact of design parameters on the device characteristics such as microparticles entrapment efficiency, pressure drop, and inter-pillar flow velocity is studied. We confirm a bell-curve trend in the capture efficiency versus inter-pillar spacing. Accordingly, the 10 μm inter-pillar spacing offers the highest capture capability (58.8%), with a decreasing entrapping trend for devices with larger inter-pillar spacing. This is the case that the 5 μm inter-pillar spacing demonstrates the highest pillar wall shear stress limiting its entrapping efficiency. As a proof of concept, fluorescently labeled Escherichia coli bacteria (E. coli) were captured using the proposed device. This device provides a simple design, robust operation, and ease of use. All of which are essential attributes for point of care devices.
Collapse
Affiliation(s)
- Tamer AbdelFatah
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
11
|
Hügle M, Dame G, Behrmann O, Rietzel R, Karthe D, Hufert FT, Urban GA. A lab-on-a-chip for preconcentration of bacteria and nucleic acid extraction. RSC Adv 2018; 8:20124-20130. [PMID: 35541671 PMCID: PMC9080779 DOI: 10.1039/c8ra02177e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/27/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022] Open
Abstract
To improve detection sensitivity, molecular diagnostics require preconcentration of low concentrated samples followed by rapid nucleic acid extraction. This is usually achieved by multiple centrifugation, lysis and purification steps, for instance, using chemical reagents, spin columns or magnetic beads. These require extensive infrastructure as well as time consuming manual handling steps and are thus not suitable for point of care testing (POCT). To overcome these challenges, we developed a microfluidic chip combining free-flow electrophoretic (FFE) preconcentration (1 ml down to 5 μl) and thermoelectric lysis of bacteria as well as purification of nucleic acids by gel-electrophoresis. The integration of these techniques in a single chip is unique and enables fast, easy and space-saving sample pretreatment without the need for laboratory facilities, making it ideal for the integration into small POCT devices. A preconcentration efficiency of nearly 100% and a lysis/gel-electrophoresis efficiency of about 65% were achieved for the detection of E. coli. The genetic material was analyzed by RT-qPCR targeting the superfolder Green Fluorescent Protein (sfGFP) transcripts to quantify mRNA recovery and qPCR to determine DNA background. A lab-on-a-chip combining free-flow electrophoretic preconcentration and thermoelectric lysis of bacteria as well as purification of nucleic acids by gel-electrophoresis.![]()
Collapse
Affiliation(s)
- M. Hügle
- Laboratory for Sensors
- Department of Microsystems Engineering (IMTEK)
- University of Freiburg
- Freiburg
- Germany
| | - G. Dame
- Institute of Microbiology and Virology
- Brandenburg Medical School Theodor Fontane
- Neuruppin
- Germany
| | - O. Behrmann
- Laboratory for Sensors
- Department of Microsystems Engineering (IMTEK)
- University of Freiburg
- Freiburg
- Germany
| | - R. Rietzel
- Laboratory for Sensors
- Department of Microsystems Engineering (IMTEK)
- University of Freiburg
- Freiburg
- Germany
| | - D. Karthe
- German-Mongolian Institute of Resources and Technology
- Mongolia
| | - F. T. Hufert
- Institute of Microbiology and Virology
- Brandenburg Medical School Theodor Fontane
- Neuruppin
- Germany
| | - G. A. Urban
- Laboratory for Sensors
- Department of Microsystems Engineering (IMTEK)
- University of Freiburg
- Freiburg
- Germany
| |
Collapse
|
12
|
Fu LM, Hou HH, Chiu PH, Yang RJ. Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review. Electrophoresis 2017; 39:289-310. [DOI: 10.1002/elps.201700340] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Lung-Ming Fu
- Graduate Institute of Materials Engineering; National Pingtung University of Science and Technology; Pingtung Taiwan
- Department of Biomechatronics Engineering; National Pingtung University of Science and Technology; Pingtung Taiwan
| | - Hui-Hsiung Hou
- Department of Engineering Science; National Cheng Kung University; Tainan Taiwan
| | - Ping-Hsien Chiu
- Graduate Institute of Materials Engineering; National Pingtung University of Science and Technology; Pingtung Taiwan
| | - Ruey-Jen Yang
- Department of Engineering Science; National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
13
|
Horká M, Šlais K, Šalplachta J, Růžička F. Preparative isoelectric focusing of microorganisms in cellulose-based separation medium and subsequent analysis by CIEF and MALDI-TOF MS. Anal Chim Acta 2017; 990:185-193. [DOI: 10.1016/j.aca.2017.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/01/2023]
|
14
|
Hyun JC, Choi J, Jung YG, Yang S. Microfluidic cell concentrator with a reduced-deviation-flow herringbone structure. BIOMICROFLUIDICS 2017; 11:054108. [PMID: 29034052 PMCID: PMC5617731 DOI: 10.1063/1.5005612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/19/2017] [Indexed: 05/11/2023]
Abstract
In this study, a microfluidic cell concentrator with a reduced-deviation-flow herringbone structure is proposed. The reduced-deviation-flow herringbone structure reduces the magnitude of deviation flow by a factor of 3.3 compared to the original herringbone structure. This structure shows higher recovery efficiency compared to the original herringbone structure for various particle sizes at high flow rate conditions. Using the reduced-deviation-flow herringbone structure, the experimental results show a recovery efficiency of 98.5% and a concentration factor of 3.4× at a flow rate of 100 ml/h for all particle sizes. An iterative concentration process is performed to achieve a higher concentration factor for 10.2-μm particles and Jurkat cells. With two stages of the concentration process, we were able to achieve over 98% recovery efficiency and a concentration factor of 10-11×. Cell viability was found to be above 96% after iterative concentration. We believe that this device could be used to concentrate cells as a preparatory step for studying low-abundance cells.
Collapse
Affiliation(s)
- Ji-Chul Hyun
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Jongchan Choi
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Yu-Gyung Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | | |
Collapse
|
15
|
Scheler O, Pacocha N, Debski PR, Ruszczak A, Kaminski TS, Garstecki P. Optimized droplet digital CFU assay (ddCFU) provides precise quantification of bacteria over a dynamic range of 6 logs and beyond. LAB ON A CHIP 2017; 17:1980-1987. [PMID: 28480460 DOI: 10.1039/c7lc00206h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Standard digital assays need a large number of compartments for precise quantification of a sample over a broad dynamic range. We address this issue with an optimized droplet digital approach that uses a drastically reduced number of compartments for quantification. We generate serial logarithmic dilutions of an initial bacterial sample as an array of microliter-sized droplet plugs. In a subsequent step, these droplets are split into libraries of nanoliter droplets and pooled together for incubation and analysis. We show that our technology is at par with traditional dilution plate count for quantification of bacteria, but has the advantage of simplifying the experimental setup and reducing the manual workload. The method also has the potential to reduce the assay time significantly.
Collapse
Affiliation(s)
- O Scheler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - N Pacocha
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - P R Debski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - A Ruszczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - T S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - P Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
16
|
Apetrei A, Ciuca A, Lee JK, Seo CH, Park Y, Luchian T. A Protein Nanopore-Based Approach for Bacteria Sensing. NANOSCALE RESEARCH LETTERS 2016; 11:501. [PMID: 27848237 PMCID: PMC5110462 DOI: 10.1186/s11671-016-1715-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria (Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.
Collapse
Affiliation(s)
- Aurelia Apetrei
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Andrei Ciuca
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Jong-Kook Lee
- Research Center for Proteineous Materials, Chosun University, Gwangju, South Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Yoonkyung Park
- Department of Bioinformatics, Kongju National University, Kongju, South Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania.
| |
Collapse
|
17
|
Deformability-Based Electrokinetic Particle Separation. MICROMACHINES 2016; 7:mi7090170. [PMID: 30404343 PMCID: PMC6189855 DOI: 10.3390/mi7090170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/12/2023]
Abstract
Deformability is an effective property that can be used in the separation of colloidal particles and cells. In this study, a microfluidic device is proposed and tested numerically for the sorting of deformable particles of various degrees. The separation process is numerically investigated by a direct numerical simulation of the fluid–particle–electric field interactions with an arbitrary Lagrangian–Eulerian finite-element method. The separation performance is investigated with the shear modulus of particles, the strength of the applied electric field, and the design of the contracted microfluidic devices as the main parameters. The results show that the particles with different shear moduli take different shapes and trajectories when passing through a microchannel contraction, enabling the separation of particles based on their difference in deformability.
Collapse
|
18
|
Tien N, Chen HC, Gau SL, Lin TH, Lin HS, You BJ, Tsai PC, Chen IR, Tsai MF, Wang IK, Chen CJ, Chang CT. Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy. Clin Chim Acta 2016; 461:69-75. [PMID: 27485760 DOI: 10.1016/j.cca.2016.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Bacterial peritonitis is the most common cause of peritoneal dialysis (PD) therapy drop-out. A quick and accurate diagnosis of the bacterial pathogen can reduce the PD drop-out rate. Surface-enhanced Raman spectroscopy (SERS) can rapidly identify bacteria using chips coated with nano-sized metal particles. METHODS Known bacteria were loaded in the SERS-chips and illuminated with laser light to establish a reference Raman spectra library. Dialysate from PD peritonitis patients was concentrated by centrifuge and examined with the same SERS, and the resulting Raman spectra were compared with library spectra for bacteria identification. Principal component analysis was used for further confirmation. The same batches of dialysate were sent to routine culture as a reference bacteria identification method. The results of the 2 identification methods were compared. RESULTS A total of 43 paired-samples were sent for study. There were 37 samples with bacteria identified but 6 were culture-negative by the reference method. 31 bacteria were identified in paired-samples by SERS, among which, 29 bacteria were exactly the same as those identified by the reference method. Bacteria not included in the reference library spectra cannot be identified. CONCLUSIONS SERS techniques can rapidly identify bacterial pathogens in the dialysate of PD peritonitis patients.
Collapse
Affiliation(s)
- Ni Tien
- Department of Laboratory Medicine, China Medical Univeristy Hospital, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - Hung-Chih Chen
- College of Medicine, China Medical University, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan; Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - Shiow-Lan Gau
- Department of Statistics, Feng Chia University, No 100 Wenhua Rd, Seatwen, Taichung 40724, Taiwan
| | - Tzu-Hsien Lin
- Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - Hsiu-Shen Lin
- Department of Laboratory Medicine, China Medical Univeristy Hospital, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - Bang-Jau You
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - Po-Chuan Tsai
- Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - I-Ru Chen
- College of Medicine, China Medical University, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan; Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - Ming-Fan Tsai
- College of Medicine, China Medical University, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - I-Kuan Wang
- College of Medicine, China Medical University, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan; Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan
| | - Chiz-Tzung Chang
- College of Medicine, China Medical University, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan; Division of Nephrology, China Medical University Hospital, No. 2 Yu-Der Rd, North District, Taichung 40447, Taiwan.
| |
Collapse
|
19
|
Cong H, Xu X, Yu B, Liu H, Yuan H. Fabrication of anti-protein-fouling poly(ethylene glycol) microfluidic chip electrophoresis by sandwich photolithography. BIOMICROFLUIDICS 2016; 10:044106. [PMID: 27493702 PMCID: PMC4958108 DOI: 10.1063/1.4959239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Microfluidic chip electrophoresis (MCE) is a powerful separation tool for biomacromolecule analysis. However, adsorption of biomacromolecules, particularly proteins onto microfluidic channels severely degrades the separation performance of MCE. In this paper, an anti-protein-fouling MCE was fabricated using a novel sandwich photolithography of poly(ethylene glycol) (PEG) prepolymers. Photopatterned microchannel with a minimum resolution of 10 μm was achieved. After equipped with a conventional online electrochemical detector, the device enabled baseline separation of bovine serum albumin, lysozyme (Lys), and cytochrome c (Cyt-c) in 53 s under a voltage of 200 V. Compared with a traditional polydimethylsiloxane MCE made by soft lithography, the PEG MCE made by the sandwich photolithography not only eliminated the need of a master mold and the additional modification process of the microchannel but also showed excellent anti-protein-fouling properties for protein separation.
Collapse
Affiliation(s)
| | - Xiaodan Xu
- College of Materials Science and Engineering, Qingdao University , Qingdao 266071, China
| | | | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Hua Yuan
- College of Materials Science and Engineering, Qingdao University , Qingdao 266071, China
| |
Collapse
|
20
|
Cong H, Xu X, Yu B, Liu H, Yuan H. Fabrication of universal serial bus flash disk type microfluidic chip electrophoresis and application for protein analysis under ultra low voltage. BIOMICROFLUIDICS 2016; 10:024107. [PMID: 27042249 PMCID: PMC4798985 DOI: 10.1063/1.4943915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
A simple and effective universal serial bus (USB) flash disk type microfluidic chip electrophoresis (MCE) was developed by using poly(dimethylsiloxane) based soft lithography and dry film based printed circuit board etching techniques in this paper. The MCE had a microchannel diameter of 375 μm and an effective length of 25 mm. Equipped with a conventional online electrochemical detector, the device enabled effectively separation of bovine serum albumin, lysozyme, and cytochrome c in 80 s under the ultra low voltage from a computer USB interface. Compared with traditional capillary electrophoresis, the USB flash disk type MCE is not only portable and inexpensive but also fast with high separation efficiency.
Collapse
Affiliation(s)
| | - Xiaodan Xu
- College of Materials Science and Engineering, Qingdao University , Qingdao 266071, China
| | | | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Hua Yuan
- College of Materials Science and Engineering, Qingdao University , Qingdao 266071, China
| |
Collapse
|
21
|
Jakobsson O, Oh SS, Antfolk M, Eisenstein M, Laurell T, Soh HT. Thousand-Fold Volumetric Concentration of Live Cells with a Recirculating Acoustofluidic Device. Anal Chem 2015; 87:8497-502. [DOI: 10.1021/acs.analchem.5b01944] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ola Jakobsson
- Department
of Biomedical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Seung Soo Oh
- Materials
Department, Department of Chemical Engineering, Department of Mechanical
Engineering, University of California, Santa Barbara, California 93106, United States
| | - Maria Antfolk
- Department
of Biomedical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Michael Eisenstein
- Materials
Department, Department of Chemical Engineering, Department of Mechanical
Engineering, University of California, Santa Barbara, California 93106, United States
| | - Thomas Laurell
- Department
of Biomedical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - H. Tom Soh
- Materials
Department, Department of Chemical Engineering, Department of Mechanical
Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Preconcentration of diluted biochemical samples using microchannel with integrated nanoscale Nafion membrane. Biomed Microdevices 2015; 17:25. [DOI: 10.1007/s10544-015-9940-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Gumuscu B, Bomer JG, van den Berg A, Eijkel JCT. Large scale patterning of hydrogel microarrays using capillary pinning. LAB ON A CHIP 2015; 15:664-7. [PMID: 25512130 DOI: 10.1039/c4lc01350f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Capillary barriers provide a simple and elegant means for autonomous fluid-flow control in microfluidic systems. In this work, we report on the fabrication of periodic hydrogel microarrays in closed microfluidic systems using non-fluorescent capillary barriers. This design strategy enables the fabrication of picoliter-volume patterns of photopolymerized and thermo-gelling hydrogels without any defects and distortions.
Collapse
Affiliation(s)
- Burcu Gumuscu
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Puchberger-Enengl D, van den Driesche S, Krutzler C, Keplinger F, Vellekoop MJ. Hydrogel-based microfluidic incubator for microorganism cultivation and analyses. BIOMICROFLUIDICS 2015; 9:014127. [PMID: 25784966 PMCID: PMC4344467 DOI: 10.1063/1.4913647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/16/2015] [Indexed: 05/05/2023]
Abstract
This work presents an array of microfluidic chambers for on-chip culturing of microorganisms in static and continuous shear-free operation modes. The unique design comprises an in-situ polymerized hydrogel that forms gas and reagent permeable culture wells in a glass chip. Utilizing a hydrophilic substrate increases usability by autonomous capillary priming. The thin gel barrier enables efficient oxygen supply and facilitates on-chip analysis by chemical access through the gel without introducing a disturbing flow to the culture. Trapping the suspended microorganisms inside a gel well allows for a much simpler fabrication than in conventional trapping devices as the minimal feature size does not depend on cell size. Nutrients and drugs are provided on-chip in the gel for a self-contained and user-friendly handling. Rapid antibiotic testing in static cultures with strains of Enterococcus faecalis and Escherichia coli is presented. Cell seeding and diffusive medium supply is provided by phaseguide technology, enabling simple operation of continuous culturing with a great flexibility. Cells of Saccharomyces cerevisiae are utilized as a model to demonstrate continuous on-chip culturing.
Collapse
Affiliation(s)
| | - Sander van den Driesche
- Institute for Microsensors, -actuators and -systems (IMSAS), MCB, University of Bremen , 28359 Bremen, Germany
| | - Christian Krutzler
- Austrian Center for Medical Innovation and Technology (ACMIT) , 2700 Wiener Neustadt, Austria
| | - Franz Keplinger
- Institute of Sensor and Actuator Systems (ISAS), Vienna University of Technology , 1040 Vienna, Austria
| | - Michael J Vellekoop
- Institute for Microsensors, -actuators and -systems (IMSAS), MCB, University of Bremen , 28359 Bremen, Germany
| |
Collapse
|
25
|
Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A 2014; 1382:66-85. [PMID: 25529267 DOI: 10.1016/j.chroma.2014.11.034] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Microchip electrophoresis (MCE) was one of the earliest applications of the micro-total analysis system (μ-TAS) concept, whose aim is to reduce analysis time and reagent and sample consumption while increasing throughput and portability by miniaturizing analytical laboratory procedures onto a microfluidic chip. More than two decades on, electrophoresis remains the most common separation technique used in microfluidic applications. MCE-based instruments have had some commercial success and have found application in many disciplines. This review will consider the present state of MCE including recent advances in technology and both novel and routine applications in the laboratory. We will also attempt to assess the impact of MCE in the scientific community and its prospects for the future.
Collapse
|
26
|
|
27
|
Li Y, Yan X, Feng X, Wang J, Du W, Wang Y, Chen P, Xiong L, Liu BF. Agarose-based microfluidic device for point-of-care concentration and detection of pathogen. Anal Chem 2014; 86:10653-9. [PMID: 25264815 DOI: 10.1021/ac5026623] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preconcentration of pathogens from patient samples represents a great challenge in point-of-care (POC) diagnostics. Here, a low-cost, rapid, and portable agarose-based microfluidic device was developed to concentrate biological fluid from micro- to picoliter volume. The microfluidic concentrator consisted of a glass slide simply covered by an agarose layer with a binary tree-shaped microchannel, in which pathogens could be concentrated at the end of the microchannel due to the capillary effect and the strong water permeability of the agarose gel. The fluorescent Escherichia coli strain OP50 was used to demonstrate the capacity of the agarose-based device. Results showed that 90% recovery efficiency could be achieved with a million-fold volume reduction from 400 μL to 400 pL. For concentration of 1 × 10(3) cells mL(-1) bacteria, approximately ten million-fold enrichment in cell density was realized with volume reduction from 100 μL to 1.6 pL. Urine and blood plasma samples were further tested to validate the developed method. In conjugation with fluorescence immunoassay, we successfully applied the method to the concentration and detection of infectious Staphylococcus aureus in clinics. The agarose-based microfluidic concentrator provided an efficient approach for POC detection of pathogens.
Collapse
Affiliation(s)
- Yiwei Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Carugo D, Octon T, Messaoudi W, Fisher AL, Carboni M, Harris NR, Hill M, Glynne-Jones P. A thin-reflector microfluidic resonator for continuous-flow concentration of microorganisms: a new approach to water quality analysis using acoustofluidics. LAB ON A CHIP 2014; 14:3830-42. [PMID: 25156072 DOI: 10.1039/c4lc00577e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An acoustofluidic device has been developed for concentrating vegetative bacteria in a continuous-flow format. We show that it is possible to overcome the disruptive effects of acoustic streaming which typically dominate for small target particles, and demonstrate flow rates compatible with the testing of drinking water. The device consists of a thin-reflector multi-layered resonator, in which bacteria in suspension are levitated towards a glass surface under the action of acoustic radiation forces. In order to achieve robust device performance over long-term operation, functional tests have been carried out to (i) maintain device integrity over time and stabilise its resonance frequency, (ii) optimise the operational acoustic parameters, and (iii) minimise bacterial adhesion on the inner surfaces. Using the developed device, a significant increase in bacterial concentration has been achieved, up to a maximum of ~60-fold. The concentration performance of thin-reflector resonators was found to be superior to comparable half-wave resonators.
Collapse
Affiliation(s)
- Dario Carugo
- Bioengineering Science Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Phurimsak C, Yildirim E, Tarn MD, Trietsch SJ, Hankemeier T, Pamme N, Vulto P. Phaseguide assisted liquid lamination for magnetic particle-based assays. LAB ON A CHIP 2014; 14:2334-2343. [PMID: 24832933 DOI: 10.1039/c4lc00139g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a magnetic particle-based assay platform in which functionalised magnetic particles are transferred sequentially through laminated volumes of reagents and washing buffers. Lamination of aqueous liquids is achieved via the use of phaseguide technology; microstructures that control the advancing air-liquid interface of solutions as they enter a microfluidic chamber. This allows manual filling of the device, eliminating the need for external pumping systems, and preparation of the system requires only a few minutes. Here, we apply the platform to two on-chip strategies: (i) a one-step streptavidin-biotin binding assay, and (ii) a two-step C-reactive protein immunoassay. With these, we demonstrate how condensing multiple reaction and washing processes into a single step significantly reduces procedural times, with both assay procedures requiring less than 8 seconds.
Collapse
Affiliation(s)
- Chayakom Phurimsak
- Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen Y, Li S, Gu Y, Li P, Ding X, Wang L, McCoy JP, Levine SJ, Huang TJ. Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW). LAB ON A CHIP 2014; 14:924-30. [PMID: 24413889 PMCID: PMC4688895 DOI: 10.1039/c3lc51001h] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cell enrichment is a powerful tool in a variety of cellular studies, especially in applications with low-abundance cell types. In this work, we developed a standing surface acoustic wave (SSAW) based microfluidic device for non-contact, continuous cell enrichment. With a pair of parallel interdigital transducers (IDT) deposited on a piezoelectric substrate, a one-dimensional SSAW field was established along disposable micro-tubing channels, generating numerous pressure nodes (and thus numerous cell-enrichment regions). Our method is able to concentrate highly diluted blood cells by more than 100 fold with a recovery efficiency of up to 99%. Such highly effective cell enrichment was achieved without using sheath flow. The SSAW-based technique presented here is simple, bio-compatible, label-free, and sheath-flow-free. With these advantages, it could be valuable for many biomedical applications.
Collapse
Affiliation(s)
- Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania, State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Puchberger-Enengl D, Krutzler C, Keplinger F, Vellekoop MJ. Single-step design of hydrogel-based microfluidic assays for rapid diagnostics. LAB ON A CHIP 2014; 14:378-83. [PMID: 24270543 DOI: 10.1039/c3lc50944c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
For the first time we demonstrate a microfluidic platform for the preparation of biosensing hydrogels by in situ polymerization of polyethyleneglycol diacrylate (PEG-DA) in a single step. Capillary pressure barriers enable the precise formation of gel microstructures for fast molecule diffusion. Parallel arrangement of these finger structures allows for macroscopic and standard equipment readout methods. The analyte automatically fills the space in between the gel fingers by the hydrophilic nature of the gel. Introducing the functional structures in the chip fabrication allows for rapid assay customization by making surface treatment, gel curing mask alignment and washing steps obsolete. Simple handling and functionality are illustrated by assays for matrix metalloproteinase, an important factor in chronic wound healing. Assays for total protein concentration and cell counts are presented, demonstrating the possibilities for a wide range of fast and simple diagnostics.
Collapse
|
32
|
Trietsch SJ, Israëls GD, Joore J, Hankemeier T, Vulto P. Microfluidic titer plate for stratified 3D cell culture. LAB ON A CHIP 2013; 13:3548-54. [PMID: 23887749 DOI: 10.1039/c3lc50210d] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Human tissues and organs are inherently heterogeneous. Their functionality is determined by the interplay between different cell types, their secondary architecture, vascular system and gradients of signaling molecules and metabolites. Here we propose a stratified 3D cell culture platform, in which adjacent lanes of gels and liquids are patterned by phaseguides to capture this tissue heterogeneity. We demonstrate 3D cell culture of HepG2 hepatocytes under continuous perfusion, a rifampicin toxicity assay and co-culture with fibroblasts. 4T1 breast cancer cells are used to demonstrate invasion and aggregation models. The platform is incorporated in a microtiter plate format that renders it fully compatible with automation and high-content screening equipment. The extended functionality, ease of handling and full compatibility to standard equipment is an important step towards adoption of Organ-on-a-Chip technology for screening in an industrial setting.
Collapse
Affiliation(s)
- Sebastiaan J Trietsch
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Wang YN, Tsai CH, Fu LM, Lin Liou LK. Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump. BIOMICROFLUIDICS 2013; 7:44118. [PMID: 24404051 PMCID: PMC3758359 DOI: 10.1063/1.4818905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/06/2013] [Indexed: 05/07/2023]
Abstract
A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2 m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200 μm and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump.
Collapse
Affiliation(s)
- Yao-Nan Wang
- Department of Vehicle Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chien-Hsiung Tsai
- Department of Vehicle Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Lung-Ming Fu
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Lung-Kai Lin Liou
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
34
|
Vulto P, Kuhn P, Urban GA. Bubble-free electrode actuation for micro-preparative scale electrophoresis of RNA. LAB ON A CHIP 2013; 13:2931-2936. [PMID: 23764936 DOI: 10.1039/c3lc50332a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A microfluidic chip is presented for lysis and one-step RNA purification from bacteria. Bacteria are lysed by joule-heating followed by a gel electrophoresis step for clean-up and subsequent elution of small RNA. Bubble formation during electrophoresis at constant current is suppressed through the use of a silver chloride cathode and a silver anode. To prevent silver chloride sediment in the bulk solution, the anode was immersed in a saturated chloride solution. Salt bridges in the form of polyacrylamide gels are used that could be precisely patterned with the help of phaseguides. Bubble-free actuation could be performed for more than 20 min under a constant current. For longer actuation times, cathodic silver-chloride became depleted and a silver-chloride sediment formed in the anodic microchamber at increasing distance from the anode with time. The chip functioning was verified by extraction of transfer-messenger RNA from Escherichia coli and subsequent amplification using reverse transcription real-time PCR. Incorporation of salt bridges enables effective bubble free actuation of Ag/AgCl electrodes in a microfluidic chip. This opens up new possibilities in a surge towards fully integrated diagnostic cartridges that are miniaturized and disposable.
Collapse
Affiliation(s)
- Paul Vulto
- Leiden Academic Centre for Drug Research (LACDR), Division of Analytical Biosciences, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| | | | | |
Collapse
|
35
|
Skinner JP, Swift KM, Ruan Q, Perfetto S, Gratton E, Tetin SY. Simplified confocal microscope for counting particles at low concentrations. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:074301. [PMID: 23902088 PMCID: PMC3724729 DOI: 10.1063/1.4812782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We describe a compact scanning confocal fluorescence microscope capable of detecting particles concentrations less than 100 particles∕ml in ~15 min. The system mechanically moves a cuvette containing ~3 ml of sample. A relatively large confocal volume is observed within the cuvette using a 1 mm pinhole in front of a detection PMT. Due to the motion of the sample, particles traverse the confocal volume quickly, and analysis by pattern recognition qualifies spikes in the emission intensity data and counts them as events. We show linearity of detection as a function of concentration and also characterize statistical behavior of the instrument. We calculate a detection sensitivity of the system using 3 μm fluorescent microspheres to be 5 particles/ml. Furthermore, to demonstrate biological application, we performed a dilution series to quantify stained E. coli and yeast cells. We counted E. coli cells at a concentration as low as 30 cells∕ml in 10 min/sample.
Collapse
Affiliation(s)
- Joseph P Skinner
- Diagnostics Research, Abbott Diagnostics Division, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | |
Collapse
|
36
|
Xie Y, Zhao C, Zhao Y, Li S, Rufo J, Yang S, Guo F, Huang TJ. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. LAB ON A CHIP 2013; 13:1772-1779. [PMID: 23511348 PMCID: PMC3988908 DOI: 10.1039/c3lc00043e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present a programmable, biocompatible technique for dynamically concentrating and patterning particles and cells in a microfluidic device. Since our technique utilizes opto-thermally generated, acoustically activated, surface bubbles, we name it "optoacoustic tweezers". The optoacoustic tweezers are capable of concentrating particles/cells at any prescribed locations in a microfluidic chamber without the use of permanent structures, rendering it particularly useful for the formation of flexible, complex cell patterns. Additionally, this technique has demonstrated excellent biocompatibility and can be conveniently integrated with other microfluidic units. In our experiments, micro-bubbles were generated by focusing a 405 nm diode laser onto a gold-coated glass chamber. By properly tuning the laser, we demonstrate precise control over the position and size of the generated bubbles. Acoustic waves were then applied to activate the surface bubbles, causing them to oscillate at an optimized frequency. The resulting acoustic radiation force allowed us to locally trap particles/cells, including 15 μm polystyrene beads and HeLa cells, around each bubble. Cell-adhesion tests were also conducted after cell concentrating to confirm the biocompatibility of this technique.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chenglong Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph Rufo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shikuan Yang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
37
|
Gascoyne PRC, Shim S, Noshari J, Becker FF, Stemke-Hale K. Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation. Electrophoresis 2013; 34:1042-50. [PMID: 23172680 PMCID: PMC3754903 DOI: 10.1002/elps.201200496] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/12/2012] [Accepted: 10/17/2012] [Indexed: 11/07/2022]
Abstract
Although dielectrophoresis (DEP) has great potential for addressing clinical cell isolation problems based on cell dielectric differences, a biological basis for predicting the DEP behavior of cells has been lacking. Here, the dielectric properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic (DEP) field-flow fractionation, correlated with the exterior morphologies of the cells during growth, and compared with the dielectric and morphological characteristics of the subpopulations of peripheral blood. In agreement with earlier findings, cell total capacitance varied with both cell size and plasma membrane folding and the dielectric properties of the NCI-60 cell types in suspension reflected the plasma membrane area and volume of the cells at their growth sites. Therefore, the behavior of cells in DEP-based manipulations is largely determined by their exterior morphological characteristics prior to release into suspension. As a consequence, DEP is able to discriminate between cells of similar size having different morphological origins, offering a significant advantage over size-based filtering for isolating circulating tumor cells, for example. The findings provide a framework for anticipating cell dielectric behavior on the basis of structure-function relationships and suggest that DEP should be widely applicable as a surface marker-independent method for sorting cells.
Collapse
Affiliation(s)
- Peter R C Gascoyne
- Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
38
|
Jezierski S, Belder D, Nagl S. Microfluidic free-flow electrophoresis chips with an integrated fluorescent sensor layer for real time pH imaging in isoelectric focusing. Chem Commun (Camb) 2013; 49:904-6. [DOI: 10.1039/c2cc38093e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Kokkinis G, Keplinger F, Giouroudi I. On-chip microfluidic biosensor using superparamagnetic microparticles. BIOMICROFLUIDICS 2013; 7:54117. [PMID: 24396528 PMCID: PMC3820637 DOI: 10.1063/1.4826546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/10/2013] [Indexed: 05/15/2023]
Abstract
In this paper, an integrated solution towards an on-chip microfluidic biosensor using the magnetically induced motion of functionalized superparamagnetic microparticles (SMPs) is presented. The concept of the proposed method is that the induced velocity on SMPs in suspension, while imposed to a magnetic field gradient, is inversely proportional to their volume. Specifically, a velocity variation of suspended functionalized SMPs inside a detection microchannel with respect to a reference velocity, specified in a parallel reference microchannel, indicates an increase in their non-magnetic volume. This volumetric increase of the SMPs is caused by the binding of organic compounds (e.g., biomolecules) to their functionalized surface. The new compounds with the increased non-magnetic volume are called loaded SMPs (LSMPs). The magnetic force required for the manipulation of the SMPs and LSMPs is produced by current currying conducting microstructures, driven by a programmable microcontroller. Experiments were carried out as a proof of concept. A promising decrease in the velocity of the LSMPs in comparison to that of the SMPs was measured. Thus, it is the velocity variation which determines the presence of the organic compounds in the sample fluid.
Collapse
Affiliation(s)
- G Kokkinis
- Institute of Sensor and Actuator Systems, Vienna University of Technology, Gusshausstrasse 27-29/366-ISS, Vienna 1040, Austria
| | - F Keplinger
- Institute of Sensor and Actuator Systems, Vienna University of Technology, Gusshausstrasse 27-29/366-ISS, Vienna 1040, Austria
| | - I Giouroudi
- Institute of Sensor and Actuator Systems, Vienna University of Technology, Gusshausstrasse 27-29/366-ISS, Vienna 1040, Austria
| |
Collapse
|
40
|
Nordin M, Laurell T. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis. LAB ON A CHIP 2012; 12:4610-6. [PMID: 22918416 DOI: 10.1039/c2lc40629b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Concentrating cells is a frequently performed step in cell biological assays and medical diagnostics. The commonly used centrifuge exhibits limitations when dealing with rare cell events and small sample volumes. Here, we present an acoustophoresis microfluidic chip utilising ultrasound to concentrate particles and cells into a smaller volume. The method is label-free, continuous and independent of suspending fluid, allowing for low cost and minimal preparation of the samples. Sequential concentration regions and two-dimensional acoustic standing wave focusing of cells and particles were found critical to accomplish concentration factors beyond one hundred times. Microparticles (5 μm in diameter) used to characterize the system were concentrated up to 194.2 ± 9.6 times with a recovery of 97.1 ± 4.8%. Red blood cells and prostate cancer cells were concentrated 145.0 ± 5.0 times and 195.7 ± 36.2 times, respectively, with recoveries of 97.2 ± 3.3% and 97.9 ± 18.1%. The data demonstrate that acoustophoresis is an effective technique for continuous flow-based concentration of cells and particles, offering a much needed intermediate step between sorting and detection of rare cell samples in lab-on-a-chip systems.
Collapse
Affiliation(s)
- Maria Nordin
- Dept. Measurement Technology and Industrial Electrical Engineering, Div. Nanobiotechnology, Lund University, Lund, Sweden.
| | | |
Collapse
|
41
|
Wang YN, Yang RJ, Ju WJ, Wu MC, Fu LM. Convenient quantification of methanol concentration detection utilizing an integrated microfluidic chip. BIOMICROFLUIDICS 2012; 6:34111. [PMID: 23940501 PMCID: PMC3432083 DOI: 10.1063/1.4746246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/31/2012] [Indexed: 05/23/2023]
Abstract
A rapid and simple technique is proposed for methanol concentration detection using a PMMA (Polymethyl-Methacrylate) microfluidic chip patterned using a commercially available CO2 laser scriber. In the proposed device, methanol and methanol oxidase (MOX) are injected into a three-dimensional circular chamber and are mixed via a vortex stirring effect. The mixture is heated to prompt the formation of formaldehyde and is flowed into a rectangular chamber, to which fuchsin-sulphurous acid is then added. Finally, the microchip is transferred to a UV spectrophotometer for methanol detection purposes. The experimental results show that a correlation coefficient of R(2) = 0.9940 is obtained when plotting the optical density against the methanol concentration for samples and an accuracy as high as 93.1% are compared with the determined by the high quality gas chromatography with concentrations in the range of 2 ∼ 100 ppm. The methanol concentrations of four commercial red wines are successfully detected using the developed device. Overall, the results show that the proposed device provides a rapid and accurate means of detecting the methanol concentration for a variety of applications in the alcoholic beverage inspection and control field.
Collapse
Affiliation(s)
- Yao-Nan Wang
- Department of Vehicle Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Prest JE, Baldock SJ, Fielden PR, Goddard NJ, Goodacre R, O’Connor R, Treves Brown BJ. Miniaturised free flow isotachophoresis of bacteria using an injection moulded separation device. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 903:53-9. [DOI: 10.1016/j.jchromb.2012.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 11/25/2022]
|