1
|
Tayal A, Coburn DS, Abel D, Rakitin M, Ivashkevych O, Wlodek J, Wierzbicki D, Xu W, Nazaretski E, Stavitski E, Leshchev D. Five-analyzer Johann spectrometer for hard X-ray photon-in/photon-out spectroscopy at the Inner Shell Spectroscopy beamline at NSLS-II: design, alignment and data acquisition. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1609-1621. [PMID: 39475836 PMCID: PMC11542649 DOI: 10.1107/s1600577524009342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Here, a recently commissioned five-analyzer Johann spectrometer at the Inner Shell Spectroscopy beamline (8-ID) at the National Synchrotron Light Source II (NSLS-II) is presented. Designed for hard X-ray photon-in/photon-out spectroscopy, the spectrometer achieves a resolution in the 0.5-2 eV range, depending on the element and/or emission line, providing detailed insights into the local electronic and geometric structure of materials. It serves a diverse user community, including fields such as physical, chemical, biological, environmental and materials sciences. This article details the mechanical design, alignment procedures and data-acquisition scheme of the spectrometer, with a particular focus on the continuous asynchronous data-acquisition approach that significantly enhances experimental efficiency.
Collapse
Affiliation(s)
- Akhil Tayal
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - David Scott Coburn
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Donald Abel
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Max Rakitin
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Oksana Ivashkevych
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Jakub Wlodek
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Dominik Wierzbicki
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
- AGH University of Science and Technology, Faculty of Energy and Fuels, Al. A. Mickiewicza 30, 30-059Cracow, Poland
| | - Weihe Xu
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Evgeny Nazaretski
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Eli Stavitski
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Denis Leshchev
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| |
Collapse
|
2
|
Hwang IH, Kelly SD, Chan MKY, Stavitski E, Heald SM, Han SW, Schwarz N, Sun CJ. The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:923-933. [PMID: 37526993 PMCID: PMC10481262 DOI: 10.1107/s1600577523005684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kβ XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d-3p electron exchange force and Kβ emission core-hole lifetime.
Collapse
Affiliation(s)
- In-Hui Hwang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Shelly D. Kelly
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Maria K. Y. Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, NY 11973, USA
| | - Steve M. Heald
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sang-Wook Han
- Department of Physics Education and Institute of Fusion Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nicholas Schwarz
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
3
|
Sahle CJ, Gerbon F, Henriquet C, Verbeni R, Detlefs B, Longo A, Mirone A, Lagier MC, Otte F, Spiekermann G, Petitgirard S. A compact von Hámos spectrometer for parallel X-ray Raman scattering and X-ray emission spectroscopy at ID20 of the European Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:251-257. [PMID: 36601944 PMCID: PMC9814058 DOI: 10.1107/s1600577522011171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A compact spectrometer for medium-resolution resonant and non-resonant X-ray emission spectroscopy in von Hámos geometry is described. The main motivation for the design and construction of the spectrometer is to allow for acquisition of non-resonant X-ray emission spectra while measuring non-resonant X-ray Raman scattering spectra at beamline ID20 of the European Synchrotron Radiation Facility. Technical details are provided and the performance and possible use of the spectrometer are demonstrated by presenting results of several X-ray spectroscopic methods on various compounds.
Collapse
Affiliation(s)
- Ch. J. Sahle
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - F. Gerbon
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - C. Henriquet
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - R. Verbeni
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - B. Detlefs
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - A. Longo
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - A. Mirone
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - M.-C. Lagier
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - F. Otte
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany
- The Rossendorf Beamline at ESRF – The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - G. Spiekermann
- Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - S. Petitgirard
- Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland
| |
Collapse
|
4
|
Hwang IH, Solovyev MA, Han SW, Chan MKY, Hammonds JP, Heald SM, Kelly SD, Schwarz N, Zhang X, Sun CJ. AXEAP: a software package for X-ray emission data analysis using unsupervised machine learning. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1309-1317. [PMID: 36073891 PMCID: PMC9455206 DOI: 10.1107/s1600577522006786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.
Collapse
Affiliation(s)
- In-Hui Hwang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Mikhail A. Solovyev
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Sang-Wook Han
- Department of Physics Education and Institute of Fusion Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Maria K. Y. Chan
- Center for Nanoscale Nanomaterials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - John P. Hammonds
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Steve M. Heald
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Shelly D. Kelly
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Nicholas Schwarz
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Xiaoyi Zhang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
5
|
Solovyev M, Kucheryavy P, Lockard JV. Local Coordination and Electronic Structure Ramifications of Guest-Dependent Spin Crossover in a Metal-Organic Framework: A Combined X-ray Absorption and Emission Spectroscopy Study. Inorg Chem 2022; 61:9213-9223. [PMID: 35678726 DOI: 10.1021/acs.inorgchem.2c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The porous Hoffman-type 3D lattice Fe(pz)[NiII(CN)4] exhibits thermally induced spin-crossover (SCO) behavior that is dependent on the solvent guest species occupying the pores. Here, in situ Fe K-edge X-ray absorption spectroscopy (XAS) and both non-resonant and resonant Kβ X-ray emission spectroscopy (XES) methods are used to probe this framework under two solvent environments that yield different extremes of spin crossover temperature: acetonitrile and toluene. While the acetonitrile pore environment engenders an SCO response around room temperature, toluene guests stabilize the high spin state and effectively suppress SCO behavior throughout the ambient temperature range. The multipronged X-ray spectroscopy approach simultaneously confirmed this spin crossover behavior and provided new local coordination and electronic structural insights of the framework under these two solvent environments. Extended X-ray absorption fine structure analysis revealed spin state and solvent guest-dependent differences in coordination bond lengths and structural disorder. Resonant XES measurements produced high-resolution XAS spectra with distinct pre-edge and edge features, whose assignment was established using both simple ligand field theory and time-dependent density-functional theory calculations and further supported by their observed resonance behavior in the 2D RXES plane. Edge feature variation with the Fe spin state was interpreted to reveal changes in specific metal-linker bond covalency.
Collapse
Affiliation(s)
- Mikhail Solovyev
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Pavel Kucheryavy
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jenny V Lockard
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Strain and ligand effects in Pt-Ni alloys studied by valence-to-core X-ray emission spectroscopy. Sci Rep 2021; 11:13698. [PMID: 34211031 PMCID: PMC8249455 DOI: 10.1038/s41598-021-93068-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Experimental detection of the Pt 5d densities of states in the valence band is conducted on a series of Pt-Ni alloys by high energy resolution valence-to-core X-ray emission spectroscopy (VTC-XES) at the Pt L3-edge. VTC-XES measurements reveal that the Pt d-band centroid shifts away from the Fermi level upon dilution, accompanied by concentration-dependent Pt d-band width. The competition between the strain effect and ligand effect is observed experimentally for the first time. It is found that the d-band widths in Pt3Ni and PtNi are broader than that of Pt metal due to compressive strain which overcompensates the effect of dilution, while it is narrower in PtNi3 where the ligand effect dominates. VTC-XES is demonstrated to be a powerful tool to study the Pt d-band contribution to the valence band of Pt-based bimetallic. The implication for the enhanced activity of Pt-Ni catalysts in oxygen reduction reaction is discussed.
Collapse
|
7
|
Solovyev MA, Lockard JV, Huang X, Heald SM, Sun CJ. High resolution x-ray emission spectrometer for multiple hard x-ray emission lines: Demonstration for Cu Kα and Kβ emissions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:073105. [PMID: 34340408 DOI: 10.1063/5.0048726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
We present a compact 3D printed x-ray emission spectrometer based on the von Hamos geometry that represents a significant upgrade to the existing von Hamos geometry-based miniature x-ray emission spectrometer (miniXES) [Mattern et al., Rev. Sci. Instrum. 83(2), 023901 (2012)]. The upgrades include the incorporation of a higher pixel density 500K detector for improved energy resolution and an enlarged sample area to accommodate a wider range of sample formats. The versatile spectrometer houses removable crystal holders that can be easily exchanged, as well as movable alignment eyelets that give flexibility in Bragg angle selection. Designed for ease of manufacture, all the components, except for the apertures, can be 3D printed and readily assembled. We describe its implementation in measurements of resonant and non-resonant Cu Kα and Kβ x-ray emission and report the theoretical and measured energy resolution and collected solid angle of the emission.
Collapse
Affiliation(s)
- Mikhail A Solovyev
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | - XianRong Huang
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Steve M Heald
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Cheng-Jun Sun
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
8
|
Miaja-Avila L, O’Neil GC, Joe YI, Morgan KM, Fowler JW, Doriese WB, Ganly B, Lu D, Ravel B, Swetz DS, Ullom JN. Valence-to-core X-ray emission spectroscopy of titanium compounds using energy dispersive detectors. X-RAY SPECTROMETRY : XRS 2021; 50:10.1002/xrs.3183. [PMID: 39391149 PMCID: PMC11465483 DOI: 10.1002/xrs.3183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/26/2020] [Indexed: 10/12/2024]
Abstract
X-ray emission spectroscopy (XES) of transition metal compounds is a powerful tool for investigating the spin and oxidation state of the metal centers. Valence-to-core (vtc) XES is of special interest, as it contains information on the ligand nature, hybridization, and protonation. To date, most vtc-XES studies have been performed with high-brightness sources, such as synchrotrons, due to the weak fluorescence lines from vtc transitions. Here, we present a systematic study of the vtc-XES for different titanium compounds in a laboratory setting using an X-ray tube source and energy dispersive microcalorimeter sensors. With a full-width at half-maximum energy resolution of approximately 4 eV at the Ti Kβ lines, we measure the XES features of different titanium compounds and compare our results for the vtc line shapes and energies to previously published and newly acquired synchrotron data as well as to new theoretical calculations. Finally, we report simulations of the feasibility of performing time-resolved vtc-XES studies with a laser-based plasma source in a laboratory setting. Our results show that microcalorimeter sensors can already perform high-quality measurements of vtc-XES features in a laboratory setting under static conditions and that dynamic measurements will be possible in the future after reasonable technological developments.
Collapse
Affiliation(s)
- Luis Miaja-Avila
- National Institute of Standards and Technology, Boulder, Colorado
| | - Galen C. O’Neil
- National Institute of Standards and Technology, Boulder, Colorado
| | - Young Il Joe
- National Institute of Standards and Technology, Boulder, Colorado
| | - Kelsey M. Morgan
- National Institute of Standards and Technology, Boulder, Colorado
| | - Joseph W. Fowler
- National Institute of Standards and Technology, Boulder, Colorado
| | | | | | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York
| | - Bruce Ravel
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Daniel S. Swetz
- National Institute of Standards and Technology, Boulder, Colorado
| | - Joel N. Ullom
- National Institute of Standards and Technology, Boulder, Colorado
| |
Collapse
|
9
|
Jensen SC, Sullivan B, Hartzler DA, Pushkar Y. DIY XES - development of an inexpensive, versatile, and easy to fabricate XES analyzer and sample delivery system. X-RAY SPECTROMETRY : XRS 2019; 48:336-344. [PMID: 32606482 PMCID: PMC7326317 DOI: 10.1002/xrs.3005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/18/2018] [Indexed: 06/11/2023]
Abstract
The application of X-ray emission spectroscopy (XES) has grown substantially with the development of X-ray free electron lasers, third and fourth generation synchrotron sources and high-power benchtop sources. By providing the high X-ray flux required for XES, these sources broaden the availability and application of this method of probing electronic structure. As the number of sources increase, so does the demand for X-ray emission detection and sample delivery systems that are cost effective and customizable. Here, we present a detailed fabrication protocol for von Hamos X-ray optics and give details for a 3D-printed spectrometer design. Additionally, we outline an automated, externally triggered liquid sample delivery system that can be used to repeatedly deliver nanoliter droplets onto a plastic substrate for measurement. These systems are both low cost, efficient and easy to recreate or modify depending on the application. A low cost multiple X-ray analyzer system enables measurement of dilute samples, whereas the sample delivery limits sample loss and replaces spent sample with fresh sample in the same position. While both systems can be used in a wide range of applications, the design addresses several challenges associated specifically with time-resolved XES (TRXES). As an example application, we show results from TRXES measurements of photosystem II, a dilute, photoactive protein.
Collapse
Affiliation(s)
- Scott C Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Brendan Sullivan
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel A Hartzler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Davis KM, Sullivan BT, Palenik MC, Yan L, Purohit V, Robison G, Kosheleva I, Henning RW, Seidler GT, Pushkar Y. Rapid evolution of the Photosystem II electronic structure during water splitting. PHYSICAL REVIEW. X 2018; 8:041014. [PMID: 31231592 PMCID: PMC6588194 DOI: 10.1103/physrevx.8.041014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Photosynthetic water oxidation is a fundamental process that sustains the biosphere. A Mn4Ca cluster embedded in the photosystem II protein environment is responsible for the production of atmospheric oxygen. Here, time-resolved x-ray emission spectroscopy (XES) was used to observe the process of oxygen formation in real time. These experiments reveal that the oxygen evolution step, initiated by three sequential laser flashes, is accompanied by rapid (within 50 μs) changes to the Mn Kβ XES spectrum. However, no oxidation of the Mn4Ca core above the all MnIV state was detected to precede O-O bond formation, and the observed changes were therefore assigned to O-O bond formation dynamics. We propose that O-O bond formation occurs prior to the transfer of the final (4th) electron from the Mn4Ca cluster to the oxidized tyrosine YZ residue. This model resolves the kinetic limitations associated with O-O bond formation, and suggests an evolutionary adaptation to avoid releasing of harmful peroxide species.
Collapse
Affiliation(s)
- Katherine M. Davis
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Brendan T. Sullivan
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lifen Yan
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Vatsal Purohit
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Gregory Robison
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Robert W. Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Gerald T. Seidler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Lima FA, Saleta ME, Pagliuca RJS, Eleotério MA, Reis RD, Fonseca Júnior J, Meyer B, Bittar EM, Souza-Neto NM, Granado E. XDS: a flexible beamline for X-ray diffraction and spectroscopy at the Brazilian synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1538-1549. [PMID: 27787261 DOI: 10.1107/s160057751601403x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage-ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X-ray spectrum (above ∼10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi-purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X-ray absorption spectroscopy at energies above 18 keV and high-resolution diffraction experiments. More recently, new setups and photon-hungry experiments such as total X-ray scattering, X-ray diffraction under high pressures, resonant X-ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.
Collapse
Affiliation(s)
- F A Lima
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - M E Saleta
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - R J S Pagliuca
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - M A Eleotério
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - R D Reis
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - J Fonseca Júnior
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - B Meyer
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - E M Bittar
- Centro Brasileiro de Pesquisas Físicas, Rua Doutor Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro (RJ), Brazil
| | - N M Souza-Neto
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - E Granado
- Instituto de Física `Gleb Wataghin', Universidade de Campinas, CEP 13083-859, Campinas (SP), Brazil
| |
Collapse
|
12
|
Schwalenstocker K, Paudel J, Kohn AW, Dong C, Van Heuvelen KM, Farquhar ER, Li F. Cobalt Kβ valence-to-core X-ray emission spectroscopy: a study of low-spin octahedral cobalt(iii) complexes. Dalton Trans 2016; 45:14191-202. [PMID: 27533922 PMCID: PMC5021618 DOI: 10.1039/c6dt02413k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kβ valence-to-core (V2C) X-emission spectroscopy (XES) has gained prominence as a tool for molecular inorganic chemists to probe the occupied valence orbitals of coordination complexes, as illustrated by recent evaluation of Kβ V2C XES ranging from titanium to iron. However, cobalt Kβ V2C XES has not been studied in detail, limiting the application of this technique to probe cobalt coordination in molecular catalysts and bioinorganic systems. In addition, the community still lacks a complete understanding of all factors that dictate the V2C peak area. In this manuscript, we report experimental cobalt Kβ V2C XES spectra of low-spin octahedral Co(iii) complexes with different ligand donors, in conjunction with DFT calculations. Cobalt Kβ V2C XES was demonstrated to be sensitive to cobalt-ligand coordination environments. Notably, we recognize here for the first time that there is a linear correlation between the V2C area and the spectrochemical series for low-spin octahedral cobalt(iii) complexes, with strong field π acceptor ligands giving rise to the largest V2C area. This unprecedented correlation is explained by invoking different levels of π-interaction between cobalt p orbitals and ligand orbitals that modulate the percentage of cobalt p orbital character in donor MOs, in combination with changes in the average cobalt-ligand distance.
Collapse
Affiliation(s)
| | - Jaya Paudel
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces NM 88003
| | | | - Chao Dong
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces NM 88003
| | | | - Erik R. Farquhar
- CWRU Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, NY 11973
| | - Feifei Li
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces NM 88003
| |
Collapse
|
13
|
A Practical Guide to High-resolution X-ray Spectroscopic Measurements and their Applications in Bioinorganic Chemistry. Isr J Chem 2016. [DOI: 10.1002/ijch.201600037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Hoidn OR, Seidler GT. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:086107. [PMID: 26329247 DOI: 10.1063/1.4929713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2-6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform's useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.
Collapse
Affiliation(s)
- Oliver R Hoidn
- Physics Department, University of Washington, Seattle, Washington 98195, USA
| | - Gerald T Seidler
- Physics Department, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
15
|
Heald SM. Strategies and limitations for fluorescence detection of XAFS at high flux beamlines. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:436-45. [PMID: 25723945 PMCID: PMC4786056 DOI: 10.1107/s1600577515001320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/21/2015] [Indexed: 05/31/2023]
Abstract
The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 10(13) photons s(-1). Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter-slit system with a solid state detector is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 10(7) Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved.
Collapse
Affiliation(s)
- Steve M. Heald
- X-ray Science Division, Advanced Photon Source, Argonne, IL 60439, USA
| |
Collapse
|
16
|
Sham T, Gordon R. RIXS at the cerium L3-edge of Ce(III) and Ce(IV) systems: some observations. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report recent observations of resonant inelastic X-ray scattering (RIXS) at the cerium L3-edge of CePO4, CeO2, and Ce3+ ion in aqueous solution. The intensity of the emission spectrum, including the dispersive Raman below the edge and the emerging nondispersive fluorescence above the edge, was recorded with a solid-state detector with low-energy resolution and a WDX detector with modestly high-energy resolution. The yield of the emission was used to monitor the cerium L3-edge X-ray absorption near edge structures (XANES) in a constant initial state (CIS) mode as the photon energy sweeps across the cerium L3-edge. The CIS XANES is compared with the XANES recorded using the nondispersive fluorescence yield, Lα, in a constant final state (CFI) mode. It is found that the Raman yield dominates the total emission in the pre-edge region and diminishes rapidly at threshold. The RIXS of Ce3+ in aqueous solution exhibits similar behavior as CePO4. The post-whiteline RIXS intensity of CePO4 exhibits a correlation with excitation energy. CeO2 also exhibits a less intense whiteline in CIS XANES compared with the XANES detected with normal fluorescence. The implications of these observations with improved instrumental resolution are noted.
Collapse
Affiliation(s)
- T.K. Sham
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - R.A. Gordon
- PNC-XSD, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N 5A1, Canada
| |
Collapse
|
17
|
Seidler GT, Mortensen DR, Remesnik AJ, Pacold JI, Ball NA, Barry N, Styczinski M, Hoidn OR. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:113906. [PMID: 25430123 DOI: 10.1063/1.4901599] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/03/2014] [Indexed: 05/22/2023]
Abstract
We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.
Collapse
Affiliation(s)
- G T Seidler
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - D R Mortensen
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - A J Remesnik
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - J I Pacold
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - N A Ball
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - N Barry
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - M Styczinski
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - O R Hoidn
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| |
Collapse
|
18
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Diaz B, Gomez A, Meyer B, Duffy A, Hallin E, Kycia S. Undulator beamline of the Brockhouse sector at the Canadian Light Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:085104. [PMID: 25173309 DOI: 10.1063/1.4890815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Brockhouse project at the Canadian Light Source plans the construction of three beamlines, two wiggler beamlines, and one undulator beamline, that will be dedicated to x-ray diffraction and scattering. In this work, we will describe the undulator beamline main components and performance parameters, obtained from ray tracing using XOP-SHADOW codes. The undulator beamline will operate from 4.95 to 21 keV, using a 20 mm period hybrid undulator placed upstream of the wiggler in the same straight section. The beamline optics design was developed in cooperation with the Brazilian Synchrotron - LNLS. The beamline will have a double crystal monochromator with the options of Si(111) or Si(311) crystal pairs followed by two mirrors in the KB configuration to focus the beam at the sample position. The high brilliance of the undulator source will produce a very high flux of ~10(13) photons/s and high energy resolution into a small focus of 170 μm horizontal and 20-60 μm vertical, depending on the optical configuration and energy chosen. Two multi-axis goniometer experimental stations with area detectors and analyzers are foreseen to enable diffraction, resonant and inelastic scattering experiments, and SAXS/WAXS experiments with high resolution and time resolving capabilities.
Collapse
Affiliation(s)
- B Diaz
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - A Gomez
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - B Meyer
- Brazilian Synchrotron, 11000 Giuseppe Maximo Scolfaro, Campinas, SP 13085-903, Brazil
| | - A Duffy
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - E Hallin
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - S Kycia
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
20
|
Honkanen AP, Verbeni R, Simonelli L, Moretti Sala M, Monaco G, Huotari S. Study on the reflectivity properties of spherically bent analyser crystals. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:104-110. [PMID: 24365923 DOI: 10.1107/s160057751302242x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/09/2013] [Indexed: 06/03/2023]
Abstract
Theoretical and experimental studies are presented on properties of spherically bent analyser crystals for high-resolution X-ray spectrometry. A correction to the bent-crystal strain field owing to its finite surface area is derived. The results are used to explain the reflectivity curves and anisotropic properties of Si(660) and Si(553) analysers in near-backscattering geometry. The results from the calculation agree very well with experimental results obtained using an inelastic X-ray scattering synchrotron beamline.
Collapse
Affiliation(s)
| | - Roberto Verbeni
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - Laura Simonelli
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - Marco Moretti Sala
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - Giulio Monaco
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - Simo Huotari
- Department of Physics, PO Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
21
|
Mortensen DR, Seidler GT, Bradley JA, Lipp MJ, Evans WJ, Chow P, Xiao YM, Boman G, Bowden ME. A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:083908. [PMID: 24007080 DOI: 10.1063/1.4819257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer.
Collapse
Affiliation(s)
- D R Mortensen
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Davis KM, Kosheleva I, Henning RW, Seidler GT, Pushkar Y. Kinetic modeling of the X-ray-induced damage to a metalloprotein. J Phys Chem B 2013; 117:9161-9. [PMID: 23815809 DOI: 10.1021/jp403654n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is well-known that biological samples undergo X-ray-induced degradation. One of the fastest occurring X-ray-induced processes involves redox modifications (reduction or oxidation) of redox-active cofactors in proteins. Here we analyze room-temperature data on the photoreduction of Mn ions in the oxygen-evolving complex (OEC) of photosystem II, one of the most radiation damage-sensitive proteins and a key constituent of natural photosynthesis in plants, green algae, and cyanobacteria. Time-resolved X-ray emission spectroscopy with wavelength-dispersive detection was used to collect data on the progression of X-ray-induced damage. A kinetic model was developed to fit experimental results, and the rate constant for the reduction of OEC Mn(III) and Mn(IV) ions by solvated electrons was determined. From this model, the possible kinetics of X-ray-induced damage at a variety of experimental conditions, such as different rates of dose deposition as well as different excitation wavelengths, can be inferred. We observed a trend of increasing dosage threshold prior to the onset of X-ray-induced damage with increasing rates of dose deposition. This trend suggests that experimentation with higher rates of dose deposition is beneficial for measurements of biological samples sensitive to radiation damage, particularly at pink beam and X-ray free electron laser sources.
Collapse
Affiliation(s)
- Katherine M Davis
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
23
|
Sokaras D, Weng TC, Nordlund D, Alonso-Mori R, Velikov P, Wenger D, Garachtchenko A, George M, Borzenets V, Johnson B, Rabedeau T, Bergmann U. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:053102. [PMID: 23742527 PMCID: PMC4108715 DOI: 10.1063/1.4803669] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/18/2013] [Indexed: 05/22/2023]
Abstract
We present a multicrystal Johann-type hard x-ray spectrometer (~5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators--Si(111) and Si(311)--as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°-74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of E/ΔE ~ 10,000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.
Collapse
Affiliation(s)
- D Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bordage A, Pápai M, Sas NS, Szlachetko J, Nachtegaal M, Vankó G. On the sensitivity of hard X-ray spectroscopies to the chemical state of Br. Phys Chem Chem Phys 2013; 15:11088-98. [DOI: 10.1039/c3cp50367d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Szlachetko J, Nachtegaal M, de Boni E, Willimann M, Safonova O, Sa J, Smolentsev G, Szlachetko M, van Bokhoven JA, Dousse JC, Hoszowska J, Kayser Y, Jagodzinski P, Bergamaschi A, Schmitt B, David C, Lücke A. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:103105. [PMID: 23126749 DOI: 10.1063/1.4756691] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.
Collapse
Affiliation(s)
- J Szlachetko
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Davis KM, Mattern BA, Pacold JI, Zakharova T, Brewe D, Kosheleva I, Henning RW, Graber TJ, Heald SM, Seidler GT, Pushkar Y. Fast Detection Allows Analysis of the Electronic Structure of Metalloprotein by X-ray Emission Spectroscopy at Room Temperature. J Phys Chem Lett 2012; 3:1858-1864. [PMID: 22919444 PMCID: PMC3423219 DOI: 10.1021/jz3006223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The paradigm of "detection-before-destruction" was tested for a metalloprotein complex exposed at room temperature to the high x-ray flux typical of third generation synchrotron sources. Following the progression of the x-ray induced damage by Mn Kβ x-ray emission spectroscopy, we demonstrated the feasibility of collecting room temperature data on the electronic structure of native Photosystem II, a trans-membrane metalloprotein complex containing a Mn(4)Ca cluster. The determined non-damaging observation timeframe (about 100 milliseconds using continuous monochromatic beam, deposited dose 1*10(7) photons/µm(2) or 1.3*10(4) Gy, and 66 microseconds in pulsed mode using pink beam, deposited dose 4*10(7) photons/µm(2) or 4.2*10(4) Gy) is sufficient for the analysis of this protein's electron dynamics and catalytic mechanism at room temperature. Reported time frames are expected to be representative for other metalloproteins. The described instrumentation, based on the short working distance dispersive spectrometer, and experimental methodology is broadly applicable to time-resolved x-ray emission analysis at synchrotron and x-ray free-electron laser light sources.
Collapse
Affiliation(s)
| | - Brian A. Mattern
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Joseph I. Pacold
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Dale Brewe
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Robert W. Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Timothy J. Graber
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Steve M. Heald
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Gerald T. Seidler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
27
|
Liu L, Sham TK, Hayashi H, Kanai N, Takehara Y, Kawamura N, Mizumaki M, Gordon RA. Resonant inelastic x-ray scattering of CeB6 at the Ce L1- and L3-edges. J Chem Phys 2012; 136:194501. [DOI: 10.1063/1.4716180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|