1
|
Molugu TR, Thurmond RL, Alam TM, Trouard TP, Brown MF. Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers. Biophys J 2022; 121:4205-4220. [PMID: 36088534 PMCID: PMC9674990 DOI: 10.1016/j.bpj.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Phospholipid bilayers are liquid-crystalline materials whose intermolecular interactions at mesoscopic length scales have key roles in the emergence of membrane physical properties. Here we investigated the combined effects of phospholipid polar headgroups and acyl chains on biophysical functions of membranes with solid-state 2H NMR spectroscopy. We compared the structural and dynamic properties of phosphatidylethanolamine and phosphatidylcholine with perdeuterated acyl chains in the solid-ordered (so) and liquid-disordered (ld) phases. Our analysis of spectral lineshapes of 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-d62) and 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62) in the so (gel) phase indicated an all-trans rotating chain structure for both lipids. Greater segmental order parameters (SCD) were observed in the ld (liquid-crystalline) phase for DPPE-d62 than for DPPC-d62 membranes, while their mixtures had intermediate values irrespective of the deuterated lipid type. Our results suggest the SCD profiles of the acyl chains are governed by methylation of the headgroups and are averaged over the entire system. Variations in the acyl chain molecular dynamics were further investigated by spin-lattice (R1Z) and quadrupolar-order relaxation (R1Q) measurements. The two acyl-perdeuterated lipids showed distinct differences in relaxation behavior as a function of the order parameter. The R1Z rates had a square-law dependence on SCD, implying collective mesoscopic dynamics, with a higher bending rigidity for DPPE-d62 than for DPPC-d62 lipids. Remodeling of lipid average and dynamic properties by methylation of the headgroups thus provides a mechanism to control the actions of peptides and proteins in biomembranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | | | - Todd M Alam
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, New Mexico
| | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
2
|
Smith AA, Vogel A, Engberg O, Hildebrand PW, Huster D. A method to construct the dynamic landscape of a bio-membrane with experiment and simulation. Nat Commun 2022; 13:108. [PMID: 35013165 PMCID: PMC8748619 DOI: 10.1038/s41467-021-27417-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Biomolecular function is based on a complex hierarchy of molecular motions. While biophysical methods can reveal details of specific motions, a concept for the comprehensive description of molecular dynamics over a wide range of correlation times has been unattainable. Here, we report an approach to construct the dynamic landscape of biomolecules, which describes the aggregate influence of multiple motions acting on various timescales and on multiple positions in the molecule. To this end, we use 13C NMR relaxation and molecular dynamics simulation data for the characterization of fully hydrated palmitoyl-oleoyl-phosphatidylcholine bilayers. We combine dynamics detector methodology with a new frame analysis of motion that yields site-specific amplitudes of motion, separated both by type and timescale of motion. In this study, we show that this separation allows the detailed description of the dynamic landscape, which yields vast differences in motional amplitudes and correlation times depending on molecular position.
Collapse
Affiliation(s)
- Albert A Smith
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany.
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Oskar Engberg
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| |
Collapse
|
3
|
Antila HS, Wurl A, Ollila OS, Miettinen MS, Ferreira TM. Rotational decoupling between the hydrophilic and hydrophobic regions in lipid membranes. Biophys J 2022; 121:68-78. [PMID: 34902330 PMCID: PMC8758420 DOI: 10.1016/j.bpj.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
Cells use homeostatic mechanisms to ensure an optimal composition of distinct types of lipids in cellular membranes. The hydrophilic region of biological lipid membranes is mainly composed of several types of phospholipid headgroups that interact with incoming molecules, nanoparticles, and viruses, whereas the hydrophobic region consists of a distribution of acyl chains and sterols affecting membrane fluidity/rigidity related properties and forming an environment for membrane-bound molecules such as transmembrane proteins. A fundamental open question is to what extent the motions of these regions are coupled and, consequently, how strongly the interactions of phospholipid headgroups with other molecules depend on the properties and composition of the membrane hydrophobic core. We combine advanced solid-state nuclear magnetic resonance spectroscopy with high-fidelity molecular dynamics simulations to demonstrate how the rotational dynamics of choline headgroups remain nearly unchanged (slightly faster) with incorporation of cholesterol into a phospholipid membrane, contrasting the well-known extreme slowdown of the other phospholipid segments. Notably, our results suggest a new paradigm in which phospholipid dipole headgroups interact as quasi-freely rotating flexible dipoles at the interface, independent of the properties in the hydrophobic region.
Collapse
Affiliation(s)
- Hanne S. Antila
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany,Corresponding author
| | - Anika Wurl
- NMR Group, Institute for Physics, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Markus S. Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Tiago M. Ferreira
- NMR Group, Institute for Physics, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany,Corresponding author
| |
Collapse
|
4
|
Mallikarjunaiah KJ, Kinnun JJ, Petrache HI, Brown MF. Flexible lipid nanomaterials studied by NMR spectroscopy. Phys Chem Chem Phys 2019; 21:18422-18457. [DOI: 10.1039/c8cp06179c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in solid-state nuclear magnetic resonance spectroscopy inform the emergence of material properties from atomistic-level interactions in membrane lipid nanostructures.
Collapse
Affiliation(s)
- K. J. Mallikarjunaiah
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| | - Jacob J. Kinnun
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Horia I. Petrache
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| |
Collapse
|
5
|
Korb JP. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:12-55. [PMID: 29405980 DOI: 10.1016/j.pnmrs.2017.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
The nuclear magnetic relaxation dispersion (NMRD) technique consists of measurement of the magnetic-field dependence of the longitudinal nuclear-spin-lattice relaxation rate 1/T1. Usually, the acquisition of the NMRD profiles is made using a fast field cycling (FFC) NMR technique that varies the magnetic field and explores a very large range of Larmor frequencies (10 kHz < ω0/(2π) <40 MHz). This allows extensive explorations of the fluctuations to which nuclear spin relaxation is sensitive. The FFC technique thus offers opportunities on multiple scales of both time and distance for characterizing the molecular dynamics and transport properties of complex liquids in bulk or embedded in confined environments. This review presents the principles, theories and applications of NMRD for characterizing fundamental properties such as surface correlation times, diffusion coefficients and dynamical surface affinity (NMR wettability) for various confined liquids. The basic longitudinal and transverse relaxation equations are outlined for bulk liquids. The nuclear relaxation of a liquid confined in pores is considered in detail in order to find the biphasic fast exchange relations for a liquid at proximity of a solid surface. The physical-chemistry of liquids at solid surfaces induces striking differences between NMRD profiles of aprotic and protic (water) liquids embedded in calibrated porous disordered materials. A particular emphasis of this review concerns the extension of FFC NMR relaxation to industrial applications. For instance, it is shown that the FFC technique is sufficiently rapid for following the progressive setting of cement-based materials (plasters, cement pastes, concretes). The technique also allows studies of the dynamics of hydrocarbons in proximity of asphaltene nano-aggregates and macro-aggregates in heavy crude oils as a function of the concentration of asphaltenes. It also gives new information on the wettability of petroleum fluids (brine and oil) embedded in shale oil rocks. It is useful for understanding the relations and correlations between NMR relaxation times T1 and T2, diffusion coefficients D, and viscosity η of heavy crude oils. This is of particular importance for interpreting T1, T2, 2D T1-T2 and D-T2 correlation spectra that could be obtained down-hole, thus giving a valuable tool for investigating in situ the molecular dynamics of petroleum fluids. Another domain of interest concerns biological applications. This is of particular importance for studying the complex dynamical spectrum of a folded polymeric structure that may span many decades in frequency or time. A direct NMRD characterization of water diffusional dynamics is presented at the protein interface. NMR experiments using a shuttle technique give results well above the frequency range accessible via the FFC technique; examples of this show protein dynamics over a range from fast and localized motions to slow and delocalized collective motions involving the whole protein. This review ends by an interpretation of the origin of the proton magnetic field dependence of T1 for different biological tissues of animals; this includes a proposal for interpreting in vivo MRI data from human brain at variable magnetic fields, where the FFC relaxation analysis suggests that brain white-matter is distinct from grey-matter, in agreement with diffusion-weighted MRI imaging.
Collapse
Affiliation(s)
- Jean-Pierre Korb
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Université de Paris Saclay, 91128 Palaiseau Cedex, France; Sorbonne Universités, UPMC Univ. Paris 06, CNRS, PHENIX Laboratory, F-75005 Paris, France.
| |
Collapse
|
6
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Affiliation(s)
- Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
- Department of Physics, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
8
|
Indelicato S, Bongiorno D, Calabrese V, Perricone U, Almerico AM, Ceraulo L, Piazzese D, Tutone M. Micelles, Rods, Liposomes, and Other Supramolecular Surfactant Aggregates: Computational Approaches. Interdiscip Sci 2017; 9:392-405. [PMID: 28478537 DOI: 10.1007/s12539-017-0234-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
Surfactants are an interesting class of compounds characterized by the segregation of polar and apolar domains in the same molecule. This peculiarity makes possible a whole series of microscopic and macroscopic effects. Among their features, their ability to segregate particles (fluids or entire domains) and to reduce the surface/interfacial tension is the utmost important. The interest in the chemistry of surfactants never weakened; instead, waves of increasing interest have occurred every time a new field of application of these molecules has been discovered. All these special characteristics depend largely on the ability of surfactants to self-assemble and constitute supramolecular structures where their chemical properties are amplified. The possibility to obtain structural and energy information and, above all, the possibility of forecast the self-organizing mechanisms of surfactants have had a significant boost via computational chemistry. The molecular dynamics models, initially coarse-grained and subsequently (with the increasing computer power) using more accurate models, allowed, over the years, to better understand different aspects of the processes of dispersion, self-assembly, segregation of surfactant. Moreover, several other aspects have been investigated as the effect of the counterions of many ionic surfactants in defining the final supramolecular structures, the mobility of side chains, and the capacity of some surfactant to envelope entire proteins. This review constitutes a perspective/prospective view of these results. On the other hand, some comparison of in silico results with experimental information recently acquired through innovative analytical techniques such as ion mobility mass spectrometry which have been introduced.
Collapse
Affiliation(s)
- Serena Indelicato
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Valentina Calabrese
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Ugo Perricone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Daniela Piazzese
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy.
| |
Collapse
|
9
|
Combining NMR Spectroscopy and Molecular Dynamics Simulation to Investigate the Structure and Dynamics of Membrane-Associated Proteins. SPRINGER SERIES IN BIOPHYSICS 2017. [DOI: 10.1007/978-3-319-66601-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Leftin A, Molugu TR, Job C, Beyer K, Brown MF. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy. Biophys J 2015; 107:2274-86. [PMID: 25418296 DOI: 10.1016/j.bpj.2014.07.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Constantin Job
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Klaus Beyer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
11
|
Kinnun JJ, Mallikarjunaiah KJ, Petrache HI, Brown MF. Elastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:246-59. [PMID: 24946141 DOI: 10.1016/j.bbamem.2014.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Abstract
This article reviews the application of solid-state ²H nuclear magnetic resonance (NMR) spectroscopy for investigating the deformation of lipid bilayers at the atomistic level. For liquid-crystalline membranes, the average structure is manifested by the segmental order parameters (SCD) of the lipids. Solid-state ²H NMR yields observables directly related to the stress field of the lipid bilayer. The extent to which lipid bilayers are deformed by osmotic pressure is integral to how lipid-protein interactions affect membrane functions. Calculations of the average area per lipid and related structural properties are pertinent to bilayer remodeling and molecular dynamics (MD) simulations of membranes. To establish structural quantities, such as area per lipid and volumetric bilayer thickness, a mean-torque analysis of ²H NMR order parameters is applied. Osmotic stress is introduced by adding polymer solutions or by gravimetric dehydration, which are thermodynamically equivalent. Solid-state NMR studies of lipids under osmotic stress probe membrane interactions involving collective bilayer undulations, order-director fluctuations, and lipid molecular protrusions. Removal of water yields a reduction of the mean area per lipid, with a corresponding increase in volumetric bilayer thickness, by up to 20% in the liquid-crystalline state. Hydrophobic mismatch can shift protein states involving mechanosensation, transport, and molecular recognition by G-protein-coupled receptors. Measurements of the order parameters versus osmotic pressure yield the elastic area compressibility modulus and the corresponding bilayer thickness at an atomistic level. Solid-state ²H NMR thus reveals how membrane deformation can affect protein conformational changes within the stress field of the lipid bilayer.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | - Horia I Petrache
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael F Brown
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
12
|
Blume A, Hübner W, Müller M, Bäuerle HD. Structure and Dynamics of Lipid Model Membranes: FT-IR- and2H-NMR-Spectroscopic Studies. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/bbpc.198800242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Molecular dynamics simulations of lipid membranes with lateral force: Rupture and dynamic properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:994-1002. [DOI: 10.1016/j.bbamem.2013.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023]
|
14
|
Knoll W, Peters J, Kursula P, Gerelli Y, Ollivier J, Demé B, Telling M, Kemner E, Natali F. Structural and dynamical properties of reconstituted myelin sheaths in the presence of myelin proteins MBP and P2 studied by neutron scattering. SOFT MATTER 2014; 10:519-529. [PMID: 24651633 DOI: 10.1039/c3sm51393a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The myelin sheath is a tightly packed, multilayered membrane structure wrapped around selected nerve axons in the central and the peripheral nervous system. Because of its electrical insulation of the axons, which allows fast, saltatory nerve impulse conduction, myelin is crucial for the proper functioning of the vertebrate nervous system. A subset of myelin-specific proteins is well-defined, but their influence on membrane dynamics, i.e. myelin stability, has not yet been explored in detail. We investigated the structure and the dynamics of reconstituted myelin membranes on a pico- to nanosecond timescale, influenced by myelin basic protein (MBP) and myelin protein 2 (P2), using neutron diffraction and quasi-elastic neutron scattering. A model for the scattering function describing molecular lipid motions is suggested. Although dynamical properties are not affected significantly by MBP and P2 proteins, they act in a highly synergistic manner influencing the membrane structure.
Collapse
Affiliation(s)
- Wiebke Knoll
- University Joseph Fourier UFR PhITEM, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee CC, Petersen NO. The Triple Layer Model: A Different Perspective on Lipid Bilayers. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200400174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:824-33. [DOI: 10.1016/j.bbamem.2012.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 02/06/2023]
|
17
|
Leftin A, Brown MF. An NMR database for simulations of membrane dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:818-39. [PMID: 21134351 PMCID: PMC5176272 DOI: 10.1016/j.bbamem.2010.11.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
18
|
Thompson TE, Sankaram MB, Huang C. Organization and Dynamics of the Lipid Components of Biological Membranes. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Enders A, Nimtz G. Dielectric Relaxation Study of Dynamic Properties of Hydrated Phospholipid Bilayers. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19840880603] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Paul A, Samanta A. Free Volume Dependence of the Internal Rotation of a Molecular Rotor Probe in Room Temperature Ionic Liquids. J Phys Chem B 2008; 112:16626-32. [DOI: 10.1021/jp8060575] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aniruddha Paul
- School of Chemistry, University of Hyderabad, Hyderabad, Hyderabad 500 046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
21
|
Page RC, Kim S, Cross TA. Transmembrane helix uniformity examined by spectral mapping of torsion angles. Structure 2008; 16:787-97. [PMID: 18462683 DOI: 10.1016/j.str.2008.02.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/13/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
The environment and unique balance of molecular forces within lipid bilayers has a profound impact upon the structure, dynamics, and function of membrane proteins. We describe the biophysical foundations for the remarkable uniformity of many transmembrane helices that result from the molecular interactions within lipid bilayers. In fact, the characteristic uniformity of transmembrane helices leads to unique spectroscopic opportunities allowing for phi,psi torsion angles to be mapped directly onto solid state nuclear magnetic resonance (NMR) PISEMA spectra. Results from spectral simulations, the solid state NMR-derived structure of the influenza A M2 proton channel transmembrane domain, and high-resolution crystal structures of 27 integral membrane proteins demonstrate that transmembrane helices tend to be more uniform than previously thought. The results are discussed through the definition of a preferred range of backbone varphi,psi torsion angles for transmembrane alpha helices and are presented with respect to improving biophysical characterizations of integral membrane proteins.
Collapse
Affiliation(s)
- Richard C Page
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | | | |
Collapse
|
22
|
de Lima VR, Caro MSB, Tavares MIB, Creczynski-Pasa TB. Melatonin location in egg phosphatidylcholine liposomes: possible relation to its antioxidant mechanisms. J Pineal Res 2007; 43:276-82. [PMID: 17803525 DOI: 10.1111/j.1600-079x.2007.00474.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although it is known that the antioxidant properties of melatonin can be modulated by its effect on membrane fluidity, there are few studies on this subject reported in the literature and they are controversial. In this study, viscosimetry and nuclear magnetic resonance (NMR) techniques were used to determine melatonin's effect and location on egg phosphatidylcholine bilayers mobility. Melatonin decreases the dynamic viscosity of the lipid dispersion. (31)P-NMR line width analysis indicated that melatonin induces a slight but uniform restriction of the lipid motional freedom in the polar head. However, melatonin changes in choline (13)C dynamics was only observed through chemical shift analysis. On the other hand, melatonin can induce an increase in the lipid nonpolar chain mobility, as observed by (13)C and (1)H relaxation time analysis. These results suggest the interfacial location of melatonin in the membrane. Additionally, the results of the analysis of the lipid (1)H-fitted exponential relaxation times suggest that melatonin promotes a molecular rearrangement of the bilayers. The melatonin effect and location in the lipid membrane may explain its antioxidant properties against lipid peroxidation induced by reactive species.
Collapse
Affiliation(s)
- Vânia Rodrigues de Lima
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, Brazil
| | | | | | | |
Collapse
|
23
|
Pitman MC, Suits F, Gawrisch K, Feller SE. Molecular dynamics investigation of dynamical properties of phosphatidylethanolamine lipid bilayers. J Chem Phys 2007; 122:244715. [PMID: 16035801 DOI: 10.1063/1.1899153] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe the dynamic behavior of a 1-stearoyl-2-oleoyl-phosphatidylethanolamine (SOPE) bilayer from a 20 ns molecular dynamics simulation. The dynamics of individual molecules are characterized in terms of (2)H spin-lattice relaxation rates, nuclear overhauser enhancement spectroscopy (NOESY) cross-relaxation rates, and lateral diffusion coefficients. Additionally, we describe the dynamics of hydrogen bonding through an analysis of hydrogen bond lifetimes and the time evolution of clusters of hydrogen bonded lipids. The simulated trajectory is shown to be consistent with experimental measures of internal, intermolecular, and diffusive motion. Consistent with our analysis of SOPE structure in the companion paper, we see hydrogen bonding dominating the dynamics of the interface region. Comparison of (2)H T(1) relaxation rates for chain methylene segments in phosphatidylcholine and phosphatidylethanolamine bilayers indicates that slower motion resulting from hydrogen bonding extends at least three carbons into the hydrophobic core. NOESY cross-relaxation rates compare well with experimental values, indicating the observed hydrogen bonding dynamics are realistic. Calculated lateral diffusion rates (4 +/ -1 x 10(-8) cm(2)s) are comparable, though somewhat lower than, those determined by pulsed field gradient NMR methods.
Collapse
Affiliation(s)
- Michael C Pitman
- IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA
| | | | | | | |
Collapse
|
24
|
Loura LMS, Ramalho JPP. Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:467-78. [PMID: 17141730 DOI: 10.1016/j.bbamem.2006.10.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/09/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
100-ns molecular dynamics simulations of fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, both pure and containing 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl-chain labeled fluorescent analogs (C6-NBD-PC and C12-NBD-PC), are described. These molecules are widely used as probes for lipid structure and dynamics. The results obtained here for pure DPPC agree with both experimental and theoretical published works. We verified that the NBD fluorophore of both derivatives loops to a transverse location closer to the interface than to the center of the bilayer. Whereas this was observed previously in experimental literature works, conflicting transverse locations were proposed for the NBD group. According to our results, the maximum of the transverse distribution of NBD is located around the glycerol backbone/carbonyl region, and the nitro group is the most external part of the fluorophore. Hydrogen bonds from the NH group of NBD (mostly to glycerol backbone lipid O atoms) and to the nitro O atoms of NBD (from water OH groups) are continuously observed. Rotation of NBD occurs with approximately 2.5-5 ns average correlation time for these probes, but very fast, unresolved reorientation motions occur in <20 ps, in agreement with time-resolved fluorescence anisotropy measurements. Finally, within the uncertainty of the analysis, both probes show lateral diffusion dynamics identical to DPPC.
Collapse
Affiliation(s)
- Luís M S Loura
- Centro de Química and Departamento de Química, Universidade de Evora, Rua Romão Ramalho, 59, 7000-671 Evora, Portugal.
| | | |
Collapse
|
25
|
Wong TC, Jeffrey KR. Molecular motion in a magnetically aligned lyotropic liquid crystal system. Mol Phys 2006. [DOI: 10.1080/00268978200101021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tuck C. Wong
- a Department of Chemistry , University of Missouri , Columbia , Missouri , 65211 , U.S.A
| | - Kenneth R. Jeffrey
- b Department of Physics , University of Guelph , Guelph , Ontario , Canada , N1G 2W1
| |
Collapse
|
26
|
Heikelä M, Vattulainen I, Hyvönen MT. Atomistic simulation studies of cholesteryl oleates: model for the core of lipoprotein particles. Biophys J 2006; 90:2247-57. [PMID: 16399839 PMCID: PMC1403197 DOI: 10.1529/biophysj.105.069849] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have conducted molecular dynamics simulations to gain insight into the atomic-scale properties of an isotropic system of cholesteryl oleate (CO) molecules. Cholesteryl esters are major constituents of low density lipoprotein particles, the key players in the formation of atherosclerosis, as well as the storage form of cholesterol. Here the aim is to clarify structural and dynamical properties of CO molecules under conditions, which are suggestive of those in the core of low density lipoprotein particles. The simulations in the fluid phase indicate that the system of CO molecules is characterized by an absence of translational order, as expected, while the orientational order between distinct CO molecules is significant at short distances, persisting over a molecular size. As for intramolecular properties, the bonds along the oleate chain are observed to be weakly ordered with respect to the sterol structure, unlike the bonds along the short hydrocarbon chain of cholesterol where the ordering is significant. The orientational distribution of the oleate chain as a whole with respect to the sterol moiety is of broad nature, having a major amount of extended and a less considerable proportion of bended structures. Distinct transient peaks at specific angles also appear. The diffusion of CO molecules is found to be a slow process and characterized by a diffusion coefficient of the order of 2x10(-9) cm2/s. This is considerably slower than diffusion, e.g., in ordered domains of lipid membranes rich in sphingomyelin and cholesterol. Analysis of the rotational diffusion rates and trans-to-gauche transition rates yield results consistent with experiments.
Collapse
Affiliation(s)
- Mikko Heikelä
- Laboratory of Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland
| | | | | |
Collapse
|
27
|
Repáková J, Holopainen JM, Morrow MR, McDonald MC, Capková P, Vattulainen I. Influence of DPH on the structure and dynamics of a DPPC bilayer. Biophys J 2005; 88:3398-410. [PMID: 15722435 PMCID: PMC1305487 DOI: 10.1529/biophysj.104.055533] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 02/02/2005] [Indexed: 12/24/2022] Open
Abstract
We have conducted extensive molecular dynamics (MD) simulations together with differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) experiments to quantify the influence of free 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescent probes on the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer. Atomistic MD simulations show that in the membrane-water interface the influence of DPH is minor, whereas in the acyl-chain region DPH gives rise to major perturbations. In the latter case, DPH is found to influence a wide range of membrane properties, such as the packing and ordering of hydrocarbon tails and the lateral diffusion of lipid molecules. The effects are prominent but of local nature, i.e., the changes observed in the properties of lipid molecules are significant in the vicinity of DPH, but reduce rapidly as the distance from the probe increases. Long-range perturbations due to DPH are hence not expected. Detailed DSC and (2)H NMR measurements support this view. DSC shows only subtle perturbation to the cooperative behavior of the membrane system in the presence of DPH, and (2)H NMR shows that DPH gives rise to a slight increase in the lipid chain order, in agreement with MD simulations. Potential effects of other probes such as pyrene are briefly discussed.
Collapse
Affiliation(s)
- Jarmila Repáková
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
28
|
Wachowicz M, Jurga S, Vilfan M. Collective and local molecular dynamics in the lyotropic mesophases of decylammonium chloride: 1H and 2H NMR study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:031701. [PMID: 15524537 DOI: 10.1103/physreve.70.031701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 06/17/2004] [Indexed: 05/24/2023]
Abstract
The collective and individual dynamics of decylammonium chloride (DACl) molecules in water environment were investigated as a function of surfactant concentration and temperature. In the presence of water the DACl forms a variety of self-assembled structures, ranging from isotropic micellar systems to lyotropic liquid crystalline phases of hexagonal, nematic, and lamellar types. In order to characterize the complex molecular dynamics that occur in the DACl-water system, we applied 1H and 2H NMR techniques that cover the whole frequency range between 1 kHz and 30 MHz. The slow molecular dynamics were studied by 1H NMR fast-field-cycling T1 measurements and pulse-frequency dependence of 2H NMR transverse relaxation time, performed by means of the Carr-Purcell-Meiboom-Gill sequence. We detected a well-expressed contribution of order director fluctuations, i.e., layer undulations, with characteristic omega(-1)(L) frequency dependence of T(-1)(1) in the lamellar phase. Its presence indicates a relatively weak impact of interactions between neighboring DACl layers. The frequency dependence of proton T(-1)(1) in the hexagonal phase exhibits a different type of frequency dispersion, T(-1)(1) approximately omega(-1.32)(L). The increase in the exponent is explained with the quasi-one-dimensional character of fluctuations in elongated cylinders. Further, the T1 and T2 relaxation times of deuterons selectively attached to the C2 and C7 segments of the hydrocarbon chains of DACl were measured at a Larmor frequency of 30.7 MHz, providing quantitative information about local molecular dynamics.
Collapse
Affiliation(s)
- Marcin Wachowicz
- Institute of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | | | | |
Collapse
|
29
|
Niemelä P, Hyvönen MT, Vattulainen I. Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine. Biophys J 2004; 87:2976-89. [PMID: 15315947 PMCID: PMC1304771 DOI: 10.1529/biophysj.104.048702] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sphingomyelin, one of the main lipid components of biological membranes, is actively involved in various cellular processes such as protein trafficking and signal transduction. In particular, specific lateral domains enriched in sphingomyelin and cholesterol have been proposed to play an important functional role in biomembranes, although their precise characteristics have remained unclear. A thorough understanding of the functional role of membranes requires detailed knowledge of their individual lipid components. Here, we employ molecular dynamics simulations to conduct a systematic comparison of a palmitoylsphingomyelin (PSM, 16:0-SM) bilayer with a membrane that comprises dipalmitoylphosphatidylcholine (DPPC) above the main phase transition temperature. We clarify atomic-scale properties that are specific to sphingomyelin due to its sphingosine moiety, and further discuss their implications for SM-rich membranes. We find that PSM bilayers, and in particular the dynamics of PSM systems, are distinctly different from those of a DPPC bilayer. When compared with DPPC, the strong hydrogen bonding properties characteristic to PSM are observed to lead to considerable structural changes in the polar headgroup and interface regions. The strong ordering of PSM acyl chains and specific ordering effects in the vicinity of a PSM-water interface reflect this issue clearly. The sphingosine moiety and related hydrogen bonding further play a crucial role in the dynamics of PSM bilayers, as most dynamic properties, such as lateral and rotational diffusion, are strongly suppressed. This is most evident in the rotational motion characterized by spin-lattice relaxation times and the decay of hydrogen bond autocorrelation functions that are expected to be important in complexation of SM with other lipids in many-component bilayers. A thorough understanding of SM bilayers would greatly benefit from nuclear magnetic resonance experiments for acyl chain ordering and dynamics, allowing full comparison of these simulations to experiments.
Collapse
Affiliation(s)
- Perttu Niemelä
- Laboratory of Physics and Helsinki Institute of Physics, Helsinki University of Technology, FI-02015 HUT, Finland
| | | | | |
Collapse
|
30
|
Falck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I. Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J 2004; 87:1076-91. [PMID: 15298912 PMCID: PMC1304448 DOI: 10.1529/biophysj.104.041368] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 05/12/2004] [Indexed: 11/18/2022] Open
Abstract
We employ 100-ns molecular dynamics simulations to study the influence of cholesterol on structural and dynamic properties of dipalmitoylphosphatidylcholine bilayers in the fluid phase. The effects of the cholesterol content on the bilayer structure are considered by varying the cholesterol concentration between 0 and 50%. We concentrate on the free area in the membrane and investigate quantities that are likely to be affected by changes in the free area and free volume properties. It is found that cholesterol has a strong impact on the free area properties of the bilayer. The changes in the amount of free area are shown to be intimately related to alterations in molecular packing, ordering of phospholipid tails, and behavior of compressibility moduli. Also the behavior of the lateral diffusion of both dipalmitoylphosphatidylcholine and cholesterol molecules with an increasing amount of cholesterol can in part be understood in terms of free area. Summarizing, our results highlight the central role of free area in comprehending the structural and dynamic properties of membranes containing cholesterol.
Collapse
Affiliation(s)
- Emma Falck
- Laboratory of Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland and Wihuri Research Institute, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
31
|
Bemporad D, Luttmann C, Essex JW. Computer simulation of small molecule permeation across a lipid bilayer: dependence on bilayer properties and solute volume, size, and cross-sectional area. Biophys J 2004; 87:1-13. [PMID: 15240439 PMCID: PMC1304332 DOI: 10.1529/biophysj.103.030601] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 02/04/2004] [Indexed: 11/18/2022] Open
Abstract
Cell membrane permeation is required for most drugs to reach their biological target, and understanding this process is therefore crucial for rational drug design. Recent molecular dynamics simulations have studied the permeation of eight small molecules through a phospholipid bilayer. Unlike experiments, atomistic simulations allow the direct calculation of diffusion and partition coefficients of solutes at different depths inside a lipid membrane. Further analyses of the simulations suggest that solute diffusion is less size-dependent and solute partitioning more size-dependent than was commonly thought.
Collapse
Affiliation(s)
- D Bemporad
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | | | | |
Collapse
|
32
|
Shinoda W, Mikami M, Baba T, Hato M. Molecular Dynamics Study on the Effect of Chain Branching on the Physical Properties of Lipid Bilayers: Structural Stability. J Phys Chem B 2003. [DOI: 10.1021/jp035493j] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wataru Shinoda
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Umezono 1-1-1, Tsukuba 305-8568, Japan, and Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-5, Higashi 1-1-1, Tsukuba 305-8565, Japan
| | - Masuhiro Mikami
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Umezono 1-1-1, Tsukuba 305-8568, Japan, and Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-5, Higashi 1-1-1, Tsukuba 305-8565, Japan
| | - Teruhiko Baba
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Umezono 1-1-1, Tsukuba 305-8568, Japan, and Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-5, Higashi 1-1-1, Tsukuba 305-8565, Japan
| | - Masakatsu Hato
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Umezono 1-1-1, Tsukuba 305-8568, Japan, and Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-5, Higashi 1-1-1, Tsukuba 305-8565, Japan
| |
Collapse
|
33
|
Patra M, Karttunen M, Hyvönen MT, Falck E, Lindqvist P, Vattulainen I. Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 2003; 84:3636-45. [PMID: 12770872 PMCID: PMC1302948 DOI: 10.1016/s0006-3495(03)75094-2] [Citation(s) in RCA: 333] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Accepted: 02/21/2003] [Indexed: 11/21/2022] Open
Abstract
We study the influence of truncating the electrostatic interactions in a fully hydrated pure dipalmitoylphosphatidylcholine (DPPC) bilayer through 20 ns molecular dynamics simulations. The computations in which the electrostatic interactions were truncated are compared to similar simulations using the particle-mesh Ewald (PME) technique. All examined truncation distances (1.8-2.5 nm) lead to major effects on the bilayer properties, such as enhanced order of acyl chains together with decreased areas per lipid. The results obtained using PME, on the other hand, are consistent with experiments. These artifacts are interpreted in terms of radial distribution functions g(r) of molecules and molecular groups in the bilayer plane. Pronounced maxima or minima in g(r) appear exactly at the cutoff distance indicating that the truncation gives rise to artificial ordering between the polar phosphatidyl and choline groups of the DPPC molecules. In systems described using PME, such artificial ordering is not present.
Collapse
Affiliation(s)
- M Patra
- Biophysics and Statistical Mechanics Group, Laboratory of Computational Engineering, Helsinki University of Technology, FIN-02015 HUT, Finland
| | | | | | | | | | | |
Collapse
|
34
|
Microviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation. Biochemistry 2002. [DOI: 10.1021/bi00368a042] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Mashl RJ, Scott HL, Subramaniam S, Jakobsson E. Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration. Biophys J 2001; 81:3005-15. [PMID: 11720971 PMCID: PMC1301765 DOI: 10.1016/s0006-3495(01)75941-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The structure and dynamics of the lipid and water components of dioleoylphosphatidylcholine bilayers at various levels of hydration were studied using molecular dynamics (MD) simulations. Equilibration of these systems proceeded by use of a hybrid MD and configurational-bias Monte Carlo technique using one atmosphere of pressure normal to the membrane and a set point for the lateral area derived from experimental Bragg spacings, combined with experimentally derived specific volumes for each of the system components. Membrane surface tensions were observed to be of the order of tens of dyn/cm. The transbilayer molecular fragment peak positions at low hydration were found to agree with experimental neutron and x-ray scattering profiles and previously published simulations. For hydration levels of 5.4, 11.4, and 16 waters/lipid, molecular fragment distributions and order parameters for the headgroup, lipid chains, and water were quantified. Spin-lattice relaxation rates and lateral self-diffusion coefficients of water agreed well with results from experimental nuclear magnetic resonance studies. Relaxation rates of the choline segments and chemical shift anisotropies for the phosphate and carbonyls were computed. Headgroup orientation, as measured by the P-N vector, showed enhanced alignment with the membrane surface at low hydration. The sign of the membrane dipole potential reversed at low hydration, with the membrane interior negative relative to the interlamellar region. Calculation of the number of water molecules in the headgroup hydration shell, as a function of hydration level, supports the hypothesis that the break point in the curve of Bragg spacing versus hydration level near 12 waters/lipid, observed experimentally by Hristova and White (1988. Biophys. J. 74:2419-2433), marks the completion of the first hydration shell.
Collapse
Affiliation(s)
- R J Mashl
- Center for Biophysics and Computational Biology, National Center for Supercomputing Applications, Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
36
|
Chupin V, Boots JW, Killian JA, Demel RA, de Kruijff B. Lipid organization and dynamics of the monostearoylglycerol-water system. A 2H NMR study. Chem Phys Lipids 2001; 109:15-28. [PMID: 11163341 DOI: 10.1016/s0009-3084(00)00206-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Deuterium labeled monostearoylglycerols with fully ([2H(35)]-MSG) and selectively ([11-(2)H(2)]-MSG) deuterated chains have been synthesized and used as a probe for 2H NMR. At low temperature monoglyceride-water systems form the coagel or crystalline phase, which transforms with increasing temperature subsequently into the gel, liquid crystalline and cubic phase. The 2H NMR spectra exhibit characteristic features representative of these phases. The gel phase is metastable and gradually transforms into the coagel at temperatures below 40 degrees C. The undercooled cubic phase transforms into the liquid crystalline phase during days. In the liquid crystalline phase, the chain order profile indicates an increase of the chain flexibility towards the methyl group. In the liquid crystalline phase, bilayers spontaneously align in a magnetic field with their normal perpendicular to the field. The results demonstrate that 2H NMR can serve as a convenient tool to study both structure and dynamics of different monoglyceride-water phases.
Collapse
Affiliation(s)
- V Chupin
- Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Utrecht University, Padualaan 8, 3584 Utrecht CH, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The physico-chemical properties of short-chain phosphatidylcholine are reviewed to the extent that its biological activity as a mild detergent can be rationalized. Long-chain diacylphosphatidylcholines are typical membrane phospholipids that form preferentially smectic lamellar phases (bilayers) when dispersed in water. In contrast, the preferred phase of the short-chain analogues dispersed in excess water is the micellar phase. The preferred conformation and the dynamics of short-chain phosphatidylcholines in the monomeric and micellar state present in H(2)O are discussed. The motionally averaged conformation of short-chain phosphatidylcholines is then compared to the single-crystal structures of membrane lipids. The main conclusion emerging is that in terms of preferred conformation and motional averaging short-chain phosphatidylcholines closely resemble their long-chain analogues. The dispersing power of short-chain phospholipids is emphasized in the second part of the review. Evidence is presented to show that this class of compounds is superior to most other detergents used in the solubilization of membrane proteins and the reconstitution of the solubilized proteins to artificial membrane systems (proteoliposomes). The prominent feature of the solubilization/reconstitution of integral membrane proteins by short-chain PC is the retention of the native protein structure and hence the protein function. Due to their special detergent-like properties, short-chain PC lend themselves very well not only to membrane solubilization but also to the purification of integral membrane proteins. The retention of the native protein structure in the solubilized state, i.e. in mixed micelles consisting of the integral membrane protein, intrinsic membrane lipids and short-chain PC, is rationalized. It is hypothesized that short-chain PC interacts primarily with the lipid bilayer of a membrane and very little if at all with the membrane proteins. In this way, the membrane protein remains associated with its preferred intrinsic membrane lipids and retains its native structure and its function.
Collapse
Affiliation(s)
- H Hauser
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH Centre, Universitätsstrasse 16, CH-8092, Zurich, Switzerland.
| |
Collapse
|
38
|
Mihailescu D, Smith JC. Atomic detail peptide-membrane interactions: molecular dynamics simulation of gramicidin S in a DMPC bilayer. Biophys J 2000; 79:1718-30. [PMID: 11023880 PMCID: PMC1301066 DOI: 10.1016/s0006-3495(00)76424-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Molecular dynamics simulations have been performed of the sequence-symmetric cyclic decapeptide antibiotic gramicidin S (GS), in interaction with a hydrated dimyristoylphosphatidylcholine (DMPC) bilayer, and the results compared with a "control" simulation of the system in the absence of GS. Following experimental evidence, the GS was initially set in a single antiparallel beta-sheet conformation with two Type II' beta-turns in an amphiphilic interaction with the membrane. This conformation and position remained in the 6.5 ns simulation. Main-chain dihedrals are on average approximately 26 degrees from those determined by NMR experiment on GS in dimethylsulfoxide (DMSO) solution. Sequence-symmetric main-chain and side-chain dihedral angle pairs converge to within approximately 5 degrees and approximately 10 degrees, respectively. The area per lipid, lipid tail order parameters, and quadrupole spin-lattice relaxation times of the control simulation are mostly in good agreement with corresponding experiments. The GS has little effect on the membrane dipole potential or water permeability. However, it is found to have a disordering effect (in agreement with experiment) and a fluidifying effect on lipids directly interacting with it, and an ordering effect on those not directly interacting.
Collapse
Affiliation(s)
- D Mihailescu
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | | |
Collapse
|
39
|
|
40
|
Trouard TP, Nevzorov AA, Alam TM, Job C, Zajicek J, Brown MF. Influence of cholesterol on dynamics of dimyristoylphosphatidylcholine bilayers as studied by deuterium NMR relaxation. J Chem Phys 1999. [DOI: 10.1063/1.478787] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Nevzorov AA, Brown MF. Dynamics of lipid bilayers from comparative analysis of 2H and 13C nuclear magnetic resonance relaxation data as a function of frequency and temperature. J Chem Phys 1997. [DOI: 10.1063/1.474169] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Tieleman DP, Marrink SJ, Berendsen HJ. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1331:235-70. [PMID: 9512654 DOI: 10.1016/s0304-4157(97)00008-7] [Citation(s) in RCA: 557] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- D P Tieleman
- Department of BioPhys. Chem., University of Groningen, The Netherlands.
| | | | | |
Collapse
|
43
|
Shinoda W, Namiki N, Okazaki S. Molecular dynamics study of a lipid bilayer: Convergence, structure, and long-time dynamics. J Chem Phys 1997. [DOI: 10.1063/1.473592] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Trouard TP, Alam TM, Brown MF. Angular dependence of deuterium spin‐lattice relaxation rates of macroscopically oriented dilauroylphosphatidylcholine in the liquid‐crystalline state. J Chem Phys 1994. [DOI: 10.1063/1.467378] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Gilpin R. Conformational changes and molecular dynamics of simple silica immobilized systems. J Chromatogr A 1993. [DOI: 10.1016/0021-9673(93)80803-g] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Trouard TP, Alam TM, Zajicek J, Brown MF. Angular anisotropy of 2H NMR spectral densities in phospholipid bilayers containing cholesterol. Chem Phys Lett 1992. [DOI: 10.1016/0009-2614(92)85154-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Stohrer J, Gröbner G, Reimer D, Weisz K, Mayer C, Kothe G. Collective lipid motions in bilayer membranes studied by transverse deuteron spin relaxation. J Chem Phys 1991. [DOI: 10.1063/1.461417] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Milik M, Kolinski A, Skolnick J. Monte Carlo dynamics of a dense system of chain molecules constrained to lie near an interface. A simplified membrane model. J Chem Phys 1990. [DOI: 10.1063/1.458726] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Simatos GA, Forward KB, Morrow MR, Keough KM. Interaction between perdeuterated dimyristoylphosphatidylcholine and low molecular weight pulmonary surfactant protein SP-C. Biochemistry 1990; 29:5807-14. [PMID: 2383558 DOI: 10.1021/bi00476a023] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A low molecular weight hydrophobic protein was isolated from porcine lung lavage fluid using silicic acid and Sephadex LH-20 chromatography. The protein migrated with an apparent molecular weight of 5000-6000 on SDS-PAGE under reducing and nonreducing conditions. Gels run under reducing conditions also showed a minor band migrating with a molecular weight of 12,000. Amino acid compositional analysis and sequencing data suggest that this protein preparation contains intact surfactant protein SP-C and about 30% of truncated SP-C (N-terminal leucine absent). The surfactant protein was combined with perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) in multilamellar vesicles. The protein enhanced the rate of adsorption of the lipid at air-water interfaces. The ability of the protein to alter normal lipid organization was examined by using high-sensitivity differential scanning calorimetry (DSC) and 2H nuclear magnetic resonance spectroscopy (2H NMR). The calorimetric measurements indicated that the protein caused a decrease in the temperature maximum (Tm) and a broadening of the phase transition. At a protein concentration of 8% (w/w), the enthalpy change of transition was reduced to 4.4 kcal/mol compared to 6.3 kcal/mol determined for the pure lipid. NMR spectral moment studies indicated that protein had no effect on lipid chain order in the liquid-crystal phase but reduced orientational order in the gel phase. Two-phase coexistence in the presence of protein was observed over a small temperature range below the pure lipid transition temperature. Spin-lattice relaxation times (T1) were not substantially affected by the protein. Transverse relaxation time (T2e) studies suggest that the protein influences slow lipid motions.
Collapse
Affiliation(s)
- G A Simatos
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | | | | | | |
Collapse
|
50
|
de Kroon AI, Timmermans JW, Killian JA, de Kruijff B. The pH dependence of headgroup and acyl chain structure and dynamics of phosphatidylserine, studied by 2H-NMR. Chem Phys Lipids 1990; 54:33-42. [PMID: 2163285 DOI: 10.1016/0009-3084(90)90057-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By varying the pH, the influence of the ionization degree on the structure and dynamics of aqueous dispersions of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) was studied, using 2H-NMR methods. For this purpose DOPS was synthesized with deuterium labels incorporated either stereospecifically at the beta-position of the serine headgroup ([2-2H]DOPS) or at the 11-position of both acyl chains ([11,11-2H2]DOPS), allowing the effects of pH on headgroup and acyl chains to be measured in parallel. A large scale synthesis procedure of stereospecific 1,2-dioleoyl-sn-glycero-3-phospho-[2-2H]-L- serine is described. The quadrupolar splitting (delta nu q) of [2-2H]DOPS is shown to be a sensitive sensor for the degree of protonation of the molecule. Whereas the delta nu q of [2-2H]DOPS decreases upon lowering the pH, that of [11,11-2H2]DOPS gradually increases, indicating an increase in acyl chain ordering. In the pH range below the pKa value, DOPS exhibits a temperature-dependent bilayer to hexagonal HII phase transition, apparent from the 31P-NMR spectra and the occurrence of a second component in the [11,11-2H2]DOPS 2H-NMR spectrum, with a much smaller delta nu q. The HII phase component in spectra from [2-2H]DOPS coincides with the isotropic position and has no defined delta nu q. In the bilayer organization delta nu q and spin-lattice relaxation time (T1) values for the acyl chain deuterated DOPS are similar to those obtained for other lipid systems. In contrast the PS headgroup region displays a relatively rigid structure as evidenced by a large delta nu q and very small T1 values. Upon adopting the HII phase the T1 values of the acyl chain deuterons are hardly affected. The uniqueness of the PS headgroup with respect to structure and motional properties is reinforced by the occurrence of a T1 minimum at 45 degrees C in the measurement of the temperature dependence of T1 for [2-2H]DOPS in the hexagonal HII configuration. Quantitative analysis yields a correlation time (tau c) for the motions determining T1 under these conditions, of 3.45 ns.
Collapse
Affiliation(s)
- A I de Kroon
- Centre for Biomembranes and Lipid Enzymology, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|