1
|
Bao YF, Zhu MY, Zhao XJ, Chen HX, Wang X, Ren B. Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy. Chem Soc Rev 2024; 53:10044-10079. [PMID: 39229965 DOI: 10.1039/d4cs00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Materials and their interfaces are the core for the development of a large variety of fields, including catalysis, energy storage and conversion. In this case, tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with plasmon-enhanced Raman spectroscopy, is a powerful technique that can simultaneously obtain the morphological information and chemical fingerprint of target samples at nanometer spatial resolution. It is an ideal tool for the nanoscale chemical characterization of materials and interfaces, correlating their structures with chemical performances. In this review, we begin with a brief introduction to the nanoscale characterization of materials and interfaces, followed by a detailed discussion on the recent theoretical understanding and technical improvements of TERS, including the origin of enhancement, TERS instruments, TERS tips and the application of algorithms in TERS. Subsequently, we list the key experimental issues that need to be addressed to conduct successful TERS measurements. Next, we focus on the recent progress of TERS in the study of various materials, especially the novel low-dimensional materials, and the progresses of TERS in studying different interfaces, including both solid-gas and solid-liquid interfaces. Finally, we provide an outlook on the future developments of TERS in the study of materials and interfaces.
Collapse
Affiliation(s)
- Yi-Fan Bao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Meng-Yuan Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Jiao Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hong-Xuan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
2
|
Singh A, Dayton D, Ladd DM, Reuveni G, Paluch P, Montagne L, Mars J, Yaffe O, Toney M, Manjunatha Reddy GN, Mitzi DB. Local Structure in Crystalline, Glass and Melt States of a Hybrid Metal Halide Perovskite. J Am Chem Soc 2024; 146:25656-25668. [PMID: 39230963 DOI: 10.1021/jacs.4c07411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The pursuit of structure-property relationships in crystalline metal halide perovskites (MHPs) has yielded an unprecedented combination of advantageous characteristics for wide-ranging optoelectronic applications. While crystalline MHP structures are readily accessible through diffraction-based structure refinements, providing a clear view of associated long-range ordering, the local structures in more recently discovered glassy MHP states remain unexplored. Herein, we utilize a combination of Raman spectroscopy, solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy, in situ X-ray diffraction (XRD) and pair distribution function (PDF) analysis to investigate the coordination environment in crystalline, glass and melt states of the 2D MHP [(S)-(-)-1-(1-naphthyl)ethylammonium]2PbBr4. While crystalline SNPB shows polarization-dependent Raman spectra, the glassy and melt states exhibit broad features and lack polarization dependence. Solid-state NMR reveals disordering at the organic-inorganic interface of the glass due to significant spatial disruption in the tethering ammonium groups and the corresponding dihedral bond angles connecting the naphthyl and ammonium groups, while still preserving substantial naphthyl group registry and remnants of the layering from the crystalline state (deduced from XRD analysis). Moreover, PDF analysis demonstrates the persistence of corner-sharing PbBr6 octahedra in the inorganic framework of the melt/glass phases, but with a loss of structural coherence over length scales exceeding approximately one octahedron due to disorder in the inter- and intraoctahedra bond angles/lengths. These findings deepen our understanding of diverse MHP structural motifs and how structural alterations within the MHP glass affect properties, offering potential for advancing next-generation phase change materials and devices.
Collapse
Affiliation(s)
- Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Damara Dayton
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Dylan M Ladd
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Guy Reuveni
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., Lodz 90-363, Poland
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Lionel Montagne
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Julian Mars
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Omer Yaffe
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Toney
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado─Boulder, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
3
|
Rossi B, Tommasini M, Ossi PM, Paolantoni M. Pre-resonance effects in deep UV Raman spectra of normal and deuterated water. Phys Chem Chem Phys 2024; 26:22023-22030. [PMID: 39109787 DOI: 10.1039/d4cp01320d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We have investigated the shape of the OH/OD stretching Raman band of water as a function of the excitation wavelength in the deep UV region (200-266 nm). By analyzing the spectral profiles, we highlighted selective pre-resonance effects in the high wavenumber component of the OH/OD stretching band, associated to distorted H-bonded water configurations. A van't Hoff treatment of the temperature-dependent Raman spectra provides an estimate of the thermal energy associated to the change from ordered (ice-like) to disordered configurations that agrees with values obtained by related methods based on a two-state model of water. These results open the possibility of exploiting the observed pre-resonance deep-UV signal enhancement to investigate H-bonding properties in aqueous media.
Collapse
Affiliation(s)
- B Rossi
- Elettra Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - M Tommasini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy
| | - P M Ossi
- Dipartimento di Chimica, Biologia, Farmacia, Scienze Ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 131, 98166 Messina, Italy.
| | - M Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto, 8 - 06123 Perugia (PG), Italy
| |
Collapse
|
4
|
Mozhdehei A, Mercury L, Slodczyk A. Ubiquity of the Micrometer-Thick Interface along a Quartz-Water Boundary. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13025-13041. [PMID: 38870148 DOI: 10.1021/acs.langmuir.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Water-rock interactions determine how the geochemical cycles revolve from the Earth's surface to the deep interior (large T-P intervals). The underlying mechanisms interweave the fluxes of matter, time, and reactivity between fluid phases and solids. The deformation processes of crustal rocks are also known to be significantly affected by the presence or absence of water, typically with the hydrolytic weakening of quartz, olivine, and other silicate minerals. In fact, fluid-rock interactions mechanistically unfold along their interfaces, developing over a certain thickness within the two phases. Diffraction-limited mid-infrared microspectroscopy was employed to monitor the thermodynamic characteristics of liquid water along a quartz boundary. The hyperspectral Fourier transform infrared data set displayed a very strong distance-dependent signature for water over a 1 ± 0.5 μm thickness, while quartz appears unmodified, which is consistent with recent studies. This unexpected thick interface is tested against the geometry of the inclusion, the chemistry of the occluded liquid (especially pH), and the thermal conditions ranging from room temperature to 155 °C. Throughout this range of physicochemical conditions, the micrometer-thick interface is characterized by a ubiquitous, significant shift in the Gibbs free energy of water inside the interfacial layer. This conclusion suggests that the interface-imprinting phenomenon driving this microthick layer has thermodynamic roots that give rise to specific properties along the quartz-water interface. This finding questions the systematic use of the bulk phase data sets to evaluate how water-rock interactions progress in porous media.
Collapse
Affiliation(s)
- Armin Mozhdehei
- Institut des Sciences de la Terre d'Orléans (ISTO) - UMR 7327 Université d'Orléans, CNRS, BRGM, 45071 Orléans Cedex, France
| | - Lionel Mercury
- Institut des Sciences de la Terre d'Orléans (ISTO) - UMR 7327 Université d'Orléans, CNRS, BRGM, 45071 Orléans Cedex, France
| | - Aneta Slodczyk
- Institut des Sciences de la Terre d'Orléans (ISTO) - UMR 7327 Université d'Orléans, CNRS, BRGM, 45071 Orléans Cedex, France
- CEMHTI, UPR 3079 CNRS - Université d'Orléans, F-45071 Orléans, France
| |
Collapse
|
5
|
Lang X, Shi L, Zhao Z, Min W. Probing the structure of water in individual living cells. Nat Commun 2024; 15:5271. [PMID: 38902250 PMCID: PMC11190263 DOI: 10.1038/s41467-024-49404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Water regulates or even governs a wide range of biological processes. Despite its fundamental importance, surprisingly little is known about the structure of intracellular water. Herein we employ a Raman micro-spectroscopy technique to uncover the composition, abundance and vibrational spectra of intracellular water in individual living cells. In three different cell types, we show a small but consistent population (~3%) of non-bulk-like water. It exhibits a weakened hydrogen-bonded network and a more disordered tetrahedral structure. We attribute this population to biointerfacial water located in the vicinity of biomolecules. Moreover, our whole-cell modeling suggests that all soluble (globular) proteins inside cells are surrounded by, on average, one full molecular layer (about 2.6 Angstrom) of biointerfacial water. Furthermore, relative invariance of biointerfacial water is observed among different single cells. Overall, our study not only opens up experimental possibilities of interrogating water structure in vivo but also provides insights into water in life.
Collapse
Affiliation(s)
- Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
6
|
Ong CY, Lee CS, Gao XY, Zhai Q, Yu Z, Shi R, Deng HY, Lam CH. Relating fragile-to-strong transition to fragile glass via lattice model simulations. Phys Rev E 2024; 109:054124. [PMID: 38907442 DOI: 10.1103/physreve.109.054124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/11/2024] [Indexed: 06/24/2024]
Abstract
Glass formers are, in general, classified as strong or fragile depending on whether their relaxation rates follow Arrhenius or super-Arrhenius temperature dependence. There are, however, notable exceptions, such as water, which exhibit a fragile-to-strong (FTS) transition and behave as fragile and strong, respectively, at high and low temperatures. In this work, the FTS transition is studied using a distinguishable-particle lattice model previously demonstrated to be capable of simulating both strong and fragile glasses [C.-S. Lee, M. Lulli, L.-H. Zhang, H.-Y. Deng, and C.-H. Lam, Phys. Rev. Lett. 125, 265703 (2020)0031-900710.1103/PhysRevLett.125.265703]. Starting with a bimodal pair-interaction distribution appropriate for fragile glasses, we show that by narrowing down the energy dispersion in the low-energy component of the distribution, a FTS transition is observed. The transition occurs at a temperature at which the stretching exponent of the relaxation is minimized, in agreement with previous molecular dynamics simulations.
Collapse
Affiliation(s)
- Chin-Yuan Ong
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China
| | - Chun-Shing Lee
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xin-Yuan Gao
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China
| | - Qiang Zhai
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenhao Yu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Rui Shi
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hai-Yao Deng
- School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff CF24 3AA, Wales, United Kingdom
| | - Chi-Hang Lam
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
7
|
Hoffmann MM, Too MD, Paddock NA, Horstmann R, Kloth S, Vogel M, Buntkowsky G. Molecular Dynamics Study of the Green Solvent Polyethylene Glycol with Water Impurities. Molecules 2024; 29:2070. [PMID: 38731561 PMCID: PMC11085543 DOI: 10.3390/molecules29092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as di-, tetra-, and hexaethylene glycol are presented to study the effect of added water impurities up to a weight fraction of 0.020, which covers the typical range of water impurities due to water absorption from the atmosphere. Each system was simulated a total of four times using different combinations of two force fields for the water (SPC/E and TIP4P/2005) and two force fields for the PEG and oligomer (OPLS-AA and modified OPLS-AA). The observed trends in the effects of water addition were qualitatively quite robust with respect to these force field combinations and showed that the water does not aggregate but forms hydrogen bonds at most between two water molecules. In general, the added water causes overall either no or very small and nuanced effects in the simulation results. Specifically, the obtained water RDFs are mostly identical regardless of the water content. The added water reduces oligomer hydrogen bonding interactions overall as it competes and forms hydrogen bonds with the oligomers. The loss of intramolecular oligomer hydrogen bonding is in part compensated by oligomers switching from inter- to intramolecular hydrogen bonding. The interplay of the competing hydrogen bonding interactions leads to the presence of shallow extrema with respect to the water weight fraction dependencies for densities, viscosities, and self-diffusion coefficients, in contrast to experimental measurements, which show monotonous dependencies. However, these trends are very small in magnitude and thus confirm the experimentally observed insensitivity of these physical properties to the presence of water impurities.
Collapse
Affiliation(s)
- Markus M. Hoffmann
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| | - Matthew D. Too
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| | - Nathaniel A. Paddock
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| | - Robin Horstmann
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany (M.V.)
| | - Sebastian Kloth
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany (M.V.)
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany (M.V.)
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
8
|
Ye Z, Gygi F, Galli G. Raman Spectra of Electrified Si-Water Interfaces: First-Principles Simulations. J Phys Chem Lett 2024; 15:51-58. [PMID: 38128587 DOI: 10.1021/acs.jpclett.3c03122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We investigate the Raman spectra of liquid water in contact with a semiconductor surface using first-principles molecular dynamics simulations. We focus on a hydrogenated silicon-water interface and compute the Raman spectra from time correlation functions of the polarizability. We establish a relationship between Raman spectral signatures and structural properties of the liquid at the interface, and we identify the vibrational impacts of an applied electric field. We show that negative bias leads to a reduction of the number of hydrogen bonds (HBs) formed between the surface and the topmost water layer and an enhancement of the HB interactions between water molecules. Instead, positive bias leads to an enhancement of both the HB interactions between water and the surface and between water molecules, creating a semi-ordered interfacial layer. Our work provides molecular-level insights into electrified semiconductor/water interfaces and the identification of specific structural features through Raman spectroscopy.
Collapse
Affiliation(s)
- Zifan Ye
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Francois Gygi
- Department of Computer Science, University of California, Davis, Davis, California 95616, United States
| | - Giulia Galli
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
9
|
Chen Z, Nie H, Benmore CJ, Smith PA, Du Y, Byrn S, Templeton AC, Su Y. Probing Molecular Packing of Amorphous Pharmaceutical Solids Using X-ray Atomic Pair Distribution Function and Solid-State NMR. Mol Pharm 2023; 20:5763-5777. [PMID: 37800667 DOI: 10.1021/acs.molpharmaceut.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The structural investigation of amorphous pharmaceuticals is of paramount importance in comprehending their physicochemical stability. However, it has remained a relatively underexplored realm primarily due to the limited availability of high-resolution analytical tools. In this study, we utilized the combined power of X-ray pair distribution functions (PDFs) and solid-state nuclear magnetic resonance (ssNMR) techniques to probe the molecular packing of amorphous posaconazole and its amorphous solid dispersion at the molecular level. Leveraging synchrotron X-ray PDF data and employing the empirical potential structure refinement (EPSR) methodology, we unraveled the existence of a rigid conformation and discerned short-range intermolecular C-F contacts within amorphous posaconazole. Encouragingly, our ssNMR 19F-13C distance measurements offered corroborative evidence supporting these findings. Furthermore, employing principal component analysis on the X-ray PDF and ssNMR data sets enabled us to gain invaluable insights into the chemical nature of the intermolecular interactions governing the drug-polymer interplay. These outcomes not only furnish crucial structural insights facilitating the comprehension of the underlying mechanisms governing the physicochemical stability but also underscore the efficacy of synergistically harnessing X-ray PDF and ssNMR techniques, complemented by robust modeling strategies, to achieve a high-resolution exploration of amorphous structures.
Collapse
Affiliation(s)
- Zhenxuan Chen
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chris J Benmore
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pamela A Smith
- Improved Pharma, West Lafayette, Indiana 47906, United States
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephen Byrn
- Improved Pharma, West Lafayette, Indiana 47906, United States
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
10
|
Penkov NV. Terahertz spectroscopy as a method for investigation of hydration shells of biomolecules. Biophys Rev 2023; 15:833-849. [PMID: 37974994 PMCID: PMC10643733 DOI: 10.1007/s12551-023-01131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
The hydration of biomolecules is one of the fundamental processes underlying the construction of living matter. The formation of the native conformation of most biomolecules is possible only in an aqueous environment. At the same time, not only water affects the structure of biomolecules, but also biomolecules affect the structure of water, forming hydration shells. However, the study of the structure of biomolecules is given much more attention than their hydration shells. A real breakthrough in the study of hydration occurred with the development of the THz spectroscopy method, which showed that the hydration shell of biomolecules is not limited to 1-2 layers of strongly bound water, but also includes more distant areas of hydration with altered molecular dynamics. This review examines the fundamental features of the THz frequency range as a source of information about the structural and dynamic characteristics of water that change during hydration. The applied approaches to the study of hydration shells of biomolecules based on THz spectroscopy are described. The data on the hydration of biomolecules of all main types obtained from the beginning of the application of THz spectroscopy to the present are summarized. The emphasis is placed on the possible participation of extended hydration shells in the realization of the biological functions of biomolecules and at the same time on the insufficient knowledge of their structural and dynamic characteristics.
Collapse
Affiliation(s)
- Nikita V. Penkov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics RAS, 142290 Pushchino, Russia
| |
Collapse
|
11
|
Ishigaki M, Kato Y, Chatani E, Ozaki Y. Variations in the Protein Hydration and Hydrogen-Bond Network of Water Molecules Induced by the Changes in the Secondary Structures of Proteins Studied through Near-Infrared Spectroscopy. J Phys Chem B 2023; 127:7111-7122. [PMID: 37477646 DOI: 10.1021/acs.jpcb.3c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
This study investigated how the secondary structural changes of proteins in aqueous solutions affect their hydration and the hydrogen-bond network of water molecules using near-infrared (NIR) spectroscopy. The aqueous solutions of three types of proteins, i.e., ovalbumin, β-lactoglobulin, and bovine serum albumin, were denatured by heating, and changes in the NIR bands of water reflecting the states of hydrogen bonds induced via protein secondary structural changes were investigated. On heating, the intermolecular hydrogen bonds between water molecules as well as between water and protein molecules were broken, and protein molecules were no longer strongly bound by the surrounding water molecules. Consequently, the denaturation was observed to proceed depending on the thermodynamic properties of the proteins. When the aqueous solutions of proteins were cooled after denaturation, the hydrogen-bond network was reformed. However, the state of protein hydration was changed owing to the secondary structural changes of proteins, and the variation patterns were different depending on the protein species. These changes in protein hydration may be derived from the differences in the surface charges of proteins. The elucidation of the mechanism of protein hydration and the formation of the hydrogen-bond network of water molecules will afford a comprehensive understanding of the protein functioning and dysfunctioning derived from the structural changes in proteins.
Collapse
Affiliation(s)
- Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yoshiki Kato
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
12
|
Neal CAP, Kresge GV, Quan MC, León V, Chibambo NO, Calabrese MA. Effect of nanoparticle loading and magnetic field application on the thermodynamic, optical, and rheological behavior of thermoresponsive polymer solutions. JOURNAL OF VINYL & ADDITIVE TECHNOLOGY 2023; 29:795-812. [PMID: 37546292 PMCID: PMC10403256 DOI: 10.1002/vnl.21968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/22/2022] [Indexed: 08/08/2023]
Abstract
Although processing via external stimuli is a promising technique to tune the structure and properties of polymeric materials, the impact of magnetic fields on phase transitions in thermoresponsive polymer solutions is not well-understood. As nanoparticle (NP) addition is also known to impact these thermodynamic and optical properties, synergistic effects from combining magnetic fields with NP incorporation provide a novel route for tuning material properties. Here, the thermodynamic, optical, and rheological properties of aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions are examined in the presence of hydrophilic silica NPs and magnetic fields, individually and jointly, via Fourier-transform infrared spectroscopy (FTIR), magneto-turbidimetry, differential scanning calorimetry (DSC), and magneto-rheology. While NPs and magnetic fields both reduce the phase separation energy barrier and lower optical transition temperatures by altering hydrogen bonding (H-bonding), infrared spectra demonstrate that the mechanism by which these changes occur is distinct. Magnetic fields primarily alter solvent polarization while NPs provide PNIPAM-NP H-bonding sites. Combining NP addition with field application uniquely alters the solution environment and results in field-dependent rheological behavior that is unseen in polymer-only solutions. These investigations provide fundamental understanding on the interplay of magnetic fields and NP addition on PNIPAM thermoresponsivity which can be harnessed for increasingly complex stimuli-responsive materials.
Collapse
Affiliation(s)
- Christopher A. P. Neal
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Grace V. Kresge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Michelle C. Quan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Valeria León
- Mechanical Engineering Department, University of Texas Rio Grande Valley, Texas, United States of America
| | - Nondumiso O. Chibambo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Michelle A. Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minnesota, United States of America
| |
Collapse
|
13
|
Pastorczak M, Duk K, Shahab S, Kananenka AA. Combinational Vibration Modes in H 2O/HDO/D 2O Mixtures Detected Thanks to the Superior Sensitivity of Femtosecond Stimulated Raman Scattering. J Phys Chem B 2023. [PMID: 37201478 DOI: 10.1021/acs.jpcb.3c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Overtones and combinational modes frequently play essential roles in ultrafast vibrational energy relaxation in liquid water. However, these modes are very weak and often overlap with fundamental modes, particularly in isotopologues mixtures. We measured VV and HV Raman spectra of H2O and D2O mixtures with femtosecond stimulated Raman scattering (FSRS) and compared the results with calculated spectra. Specifically, we observed the mode at around 1850 cm-1 and assigned it to H-O-D bend + rocking libration. Second, we found that the H-O-D bend overtone band and the OD stretch + rocking libration combination band contribute to the band located between 2850 and 3050 cm-1. Furthermore, we assigned the broad band located between 4000 and 4200 cm-1 to be composed of combinational modes of high-frequency OH stretching modes with predominantly twisting and rocking librations. These results should help in a proper interpretation of Raman spectra of aqueous systems as well as in the identification of vibrational relaxation pathways in isotopically diluted water.
Collapse
Affiliation(s)
- Marcin Pastorczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Laser Centre, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Katsiaryna Duk
- Institute of Physical Chemistry, Polish Academy of Sciences, Laser Centre, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Samaneh Shahab
- Institute of Physical Chemistry, Polish Academy of Sciences, Laser Centre, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Dobrynina EA, Zykova VA, Adichtchev SV, Surovtsev NV. Gigahertz elastic modulus and OH stretching frequency correlate with Jones-Dole's B-coefficient in aqueous solutions of the Hofmeister series. J Chem Phys 2023; 158:034504. [PMID: 36681647 DOI: 10.1063/5.0130490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ability of salts to change the macroscopic viscosity of their aqueous solutions is described by the Jones-Dole equation with B-coefficient for the linear concentration term. The sign and value of this coefficient are often considered as a measure of the salt's structure-making/breaking ability, while the validity of this assignment is still under discussion. Here, by applying Raman and Brillouin scattering spectroscopy to various salts from the Hofmeister series, we studied a possible relation between macroscopic Jones-Dole's B-coefficient and the microscopic dynamic response. Raman spectroscopy provides information about molecular vibrations and Brillouin spectroscopy about acoustic phonons with wavelengths of hundreds of nanometers. It has been found that Jones-Dole's B-coefficient correlates linearly with the coefficients, describing the concentration dependences of the average OH stretching frequency, real and imaginary parts of gigahertz elastic modulus. These relationships have been interpreted to mean that the OH stretching frequency is a measure of the ion-induced changes in the water network that cause changes in both viscosity and gigahertz relaxation. Depolarized inelastic light scattering revealed that the addition of structure-making ions not only changes the frequency of the relaxation peak but also increases the low-frequency part of the relaxation susceptibility. It was shown that the ion-induced increase in the gigahertz elastic modulus can be described by changes in the relaxational susceptibility without a noticeable change in the instantaneous elastic modulus. The isotropic Raman contribution associated with the tetrahedral-like environment of H2O molecule does not correlate with Jones-Dole's B-coefficient, suggesting a minor influence of these tetrahedral-like configurations on viscosity.
Collapse
Affiliation(s)
- E A Dobrynina
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - V A Zykova
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - S V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Suzuki M, Tsuchiko A, Tanaka Y, Matubayasi N, Mogami G, Uozumi N, Takahashi S. Hyper-mobile Water and Raman 2900 cm -1 Peak Band of Water Observed around Backbone Phosphates of Double Stranded DNA by High-Resolution Spectroscopies and MD Structural Feature Analysis of Water. J Phys Chem B 2023; 127:285-299. [PMID: 36573838 DOI: 10.1021/acs.jpcb.2c06952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-resolution measurements of microwave dielectric relaxation and Raman spectroscopies for waters in double-stranded (ds) 10-mer DNA solution revealed the presence of hyper-mobile water (HMW) and a marked OH stretching band appearing in the range from 2500 to 3100 cm-1, here called the LA band, at the low wavenumber tail of the major OH stretching band of water. Quantitation of the Raman scattering intensity for ds 10-mer DNA in phosphate or tris(hydroxymethyl)aminomethane (TRIS) buffers showed that the LA band was formed by 2000-3000 water molecules per ds 10-mer DNA, indicating collective OH stretching vibrations of water molecules around the backbone phosphate oxygen atoms. The LA band intensity of ds 10-mer DNA in 10 mM TRIS increased and decreased by 30% with the addition of 2 mM MgCl2 and 2 mM CaCl2, respectively. The LA band intensity and the effect of adding Mg(II) or Ca(II) ions to the band intensity were maintained in the presence of 0.14 M KCl; however, the changes induced by the divalent cations were reduced by half. Molecular dynamics calculations of water molecules around the backbone phosphate groups of ds 10-mer DNA indicate the presence of high-density water and broad regions of fluctuating water density, suggesting that they correspond to HMW and the LA band, respectively.
Collapse
Affiliation(s)
- Makoto Suzuki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira Aobaku, Sendai980-8577, Japan.,Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Akira Tsuchiko
- Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji Yamashirocho, Tokushima770-8514, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka560-8531, Japan
| | - George Mogami
- Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira Aobaku, Sendai980-8577, Japan
| |
Collapse
|
16
|
Degradation by hydrolysis of three triphenylmethane dyes: DFT and TD-DFT study. Theor Chem Acc 2023. [DOI: 10.1007/s00214-022-02950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Mizutani Y, Mizuno M. Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale. J Chem Phys 2022; 157:240901. [PMID: 36586981 DOI: 10.1063/5.0116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vibrational energy exchange between various degrees of freedom is critical to barrier-crossing processes in proteins. Hemeproteins are well suited for studying vibrational energy exchange in proteins because the heme group is an efficient photothermal converter. The released energy by heme following photoexcitation shows migration in a protein moiety on a picosecond timescale, which is observed using time-resolved ultraviolet resonance Raman spectroscopy. The anti-Stokes ultraviolet resonance Raman intensity of a tryptophan residue is an excellent probe for the vibrational energy in proteins, allowing the mapping of energy flow with the spatial resolution of a single amino acid residue. This Perspective provides an overview of studies on vibrational energy flow in proteins, including future perspectives for both methodologies and applications.
Collapse
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
18
|
Asher M, Jouclas R, Bardini M, Diskin-Posner Y, Kahn N, Korobko R, Kennedy AR, Silva de Moraes L, Schweicher G, Liu J, Beljonne D, Geerts Y, Yaffe O. Chemical Modifications Suppress Anharmonic Effects in the Lattice Dynamics of Organic Semiconductors. ACS MATERIALS AU 2022; 2:699-708. [PMID: 36397874 PMCID: PMC9650719 DOI: 10.1021/acsmaterialsau.2c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lattice dynamics of organic semiconductors has a significant role in determining their electronic and mechanical properties. A common technique to control these macroscopic properties is to chemically modify the molecular structure. These modifications are known to change the molecular packing, but their effect on the lattice dynamics is relatively unexplored. Therefore, we investigate how chemical modifications to a core [1]benzothieno[3,2-b]benzothiophene (BTBT) semiconducting crystal affect the evolution of the crystal structural dynamics with temperature. Our study combines temperature-dependent polarization-orientation (PO) low-frequency Raman measurements with first-principles calculations and single-crystal X-ray diffraction measurements. We show that chemical modifications can indeed suppress specific expressions of vibrational anharmonicity in the lattice dynamics. Specifically, we detect in BTBT a gradual change in the PO Raman response with temperature, indicating a unique anharmonic expression. This anharmonic expression is suppressed in all examined chemically modified crystals (ditBu-BTBT and diC8-BTBT, diPh-BTBT, and DNTT). In addition, we observe solid-solid phase transitions in the alkyl-modified BTBTs. Our findings indicate that π-conjugated chemical modifications are the most effective in suppressing these anharmonic effects.
Collapse
Affiliation(s)
- Maor Asher
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Rémy Jouclas
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Marco Bardini
- Laboratory
for Chemistry of Novel Materials, University
of Mons, 7000 Mons, Belgium
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Nitzan Kahn
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Roman Korobko
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Alan R. Kennedy
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - Lygia Silva de Moraes
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Guillaume Schweicher
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Jie Liu
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, University
of Mons, 7000 Mons, Belgium
| | - Yves Geerts
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- International
Solvay Institutes for Physics and Chemistry, 1050 Brussels, Belgium
| | - Omer Yaffe
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
19
|
Volkov AA, Chuchupal SV. Dielectric spectra of liquid water: Ultrabroadband modeling and interpretation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Voloshin VP, Naberukhin YI. Autocorrelation Functions of the Translational and Rotational Velocities of Water. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422070342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Goldbrunner M, Karl J, Hein D. Concentration and temperature measurements by means of Raman spectroscopy in case of condensation with non-condensable gas. KERNTECHNIK 2022. [DOI: 10.1515/kern-2003-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Condensation in presence of non-condensable gas is safety relevant in case of loss-of-coolant accidents in pressurised water reactors. Non-condensable gas reduces the heat and mass transfer in the vapour phase, especially with low steam velocities. Insufficient heated emergency core cooling water can cause thermal shocks at the reactor pressure vessel for example. Within the scope of a research project supported by the Bundesministerium für Wirtschaft (BMWI) experiments have been performed to study the effect of non condensable gases on direct contact condensation at horizontal stratified steam/water flow. The paper presents the laser-optical measurement technique linear Raman spectroscopy for determination of concentration profiles in the vapour phase and temperature profiles in the liquid phase with high local resolution. The film theory, described in this paper, allows the approximation of these measured concentration profiles and therefore the calculation of local heat and mass transfer. If homogenous condensation occurs, the fog density in the vapour phase can also be estimated by means of Raman spectroscopy. Steady state and transient experiments are presented.
Collapse
Affiliation(s)
- M. Goldbrunner
- TU München, Lehrstuhl Thermische Kraftanlagen, Boltzmannstr. 15, 85748 , Garching , Germany
| | - J. Karl
- TU München, Lehrstuhl Thermische Kraftanlagen, Boltzmannstr. 15, 85748 , Garching , Germany
| | - D. Hein
- TU München, Lehrstuhl Thermische Kraftanlagen, Boltzmannstr. 15, 85748 , Garching , Germany
| |
Collapse
|
22
|
Leresche F, Vialykh EA, Rosario-Ortiz FL. Computational Calculation of Dissolved Organic Matter Absorption Spectra. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:491-500. [PMID: 34905334 DOI: 10.1021/acs.est.1c06252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The absorption spectrum of dissolved organic matter (DOM) is a topic of interest to environmental scientists and engineers as it can be used to assess both the concentration and physicochemical properties of DOM. In this study, the UV-vis spectra for DOM model compounds were calculated using time-dependent density functional theory. Summing these individual spectra, it was possible to re-create the observed exponential shape of the DOM absorption spectra. Additionally, by predicting the effects of sodium borohydride reduction on the model compounds and then calculating the UV-vis absorbance spectra of the reduced compounds, it was also possible to correctly predict the effects of borohydride reduction on DOM absorbance spectra with a relatively larger decrease in absorbance at longer wavelengths. The contribution of charge-transfer (CT) interactions to DOM absorption was also evaluated, and the calculations showed that intra-molecular CT interactions could take place, while inter-molecular CT interactions were proposed to be less likely to contribute.
Collapse
Affiliation(s)
- Frank Leresche
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Elena A Vialykh
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
23
|
Rogers BA, Okur HI, Yan C, Yang T, Heyda J, Cremer PS. Weakly hydrated anions bind to polymers but not monomers in aqueous solutions. Nat Chem 2022; 14:40-45. [PMID: 34725491 DOI: 10.1038/s41557-021-00805-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Abstract
Weakly hydrated anions help to solubilize hydrophobic macromolecules in aqueous solutions, but small molecules comprising the same chemical constituents precipitate out when exposed to these ions. Here, this apparent contradiction is resolved by systematically investigating the interactions of NaSCN with polyethylene oxide oligomers and polymers of varying molecular weight. A combination of spectroscopic and computational results reveals that SCN- accumulates near the surface of polymers, but is excluded from monomers. This occurs because SCN- preferentially binds to the centre of macromolecular chains, where the local water hydrogen-bonding network is disrupted. These findings suggest a link between ion-specific effects and theories addressing how hydrophobic hydration is modulated by the size and shape of a hydrophobic entity.
Collapse
Affiliation(s)
- Bradley A Rogers
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Halil I Okur
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry and National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Chuanyu Yan
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Tinglu Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Dejvice, Czech Republic
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA. .,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
24
|
Chen Z, Huang C, Yao X, Benmore CJ, Yu L. Structures of glass-forming liquids by x-ray scattering: Glycerol, xylitol, and D-sorbitol. J Chem Phys 2021; 155:244508. [PMID: 34972382 DOI: 10.1063/5.0073986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synchrotron x-ray scattering has been used to investigate three liquid polyalcohols of different sizes (glycerol, xylitol, and D-sorbitol) from above the glass transition temperatures Tg to below. We focus on two structural orders: the association of the polar OH groups by hydrogen bonds (HBs) and the packing of the non-polar hydrocarbon groups. We find that the two structural orders evolve very differently, reflecting the different natures of bonding. Upon cooling from 400 K, the O⋯O correlation at 2.8 Å increases significantly in all three systems, indicating more HBs, until kinetic arrests at Tg; the increase is well described by an equilibrium between bonded and non-bonded OH with ΔH = 9.1 kJ/mol and ΔS = 13.4 J/mol/K. When heated above Tg, glycerol loses the fewest HBs per OH for a given temperature rise scaled by Tg, followed by xylitol and by D-sorbitol, in the same order the number of OH groups per molecule increases (3, 5, and 6). The pair correlation functions of all three liquids show exponentially damped density modulations of wavelength 4.5 Å, which are associated with the main scattering peak and with the intermolecular C⋯C correlation. In this respect, glycerol is the most ordered with the most persistent density ripples, followed by D-sorbitol and by xylitol. Heating above Tg causes faster damping of the density ripples with the rate of change being the slowest in xylitol, followed by glycerol and by D-sorbitol. Given the different dynamic fragility of the three liquids (glycerol being the strongest and D-sorbitol being the most fragile), we relate our results to the current theories of the structural origin for the difference. We find that the fragility difference is better understood on the basis of the thermal stability of HB clusters than that of the structure associated with the main scattering peak.
Collapse
Affiliation(s)
- Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chengbin Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Xin Yao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chris J Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
25
|
Li Y, Li Y, Liu X, He Y, Guan T. Protein and Water Distribution Across Visual Axis in Mouse Lens: A Confocal Raman MicroSpectroscopic Study for Cold Cataract. Front Chem 2021; 9:767696. [PMID: 34869210 PMCID: PMC8636111 DOI: 10.3389/fchem.2021.767696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: The aims of the study were to investigate cellular mechanisms of cold cataract in young lenses of wild-type C57BL/6J (B6WT) mice treated at different temperatures and to test a hypothesis that cold cataract formation is associated with the changes in lens protein and water distribution at different regions across lens fiber cells by Raman spectroscopy (RS). Methods: RS was utilized to scan the mouse lens at different regions with/without cold cataract. Three regions with various opacification along the equatorial axis in the anterior–posterior lens section were scanned. The intensity ratio of Raman bands at 2,935 and 3,390 cm−1 (Ip/Iw) were used to evaluate lens protein and water distribution. We further determined water molecular changes through Gaussian profiles of water Raman spectra. Results: Three specific regions 1, 2, and 3, located at 790–809, 515–534, and 415–434 μm away from the lens center, of postnatal day 14 B6WT lenses, were subjected to RS analysis. At 37°C, all three regions were transparent. At 25°C, only region 3 became opaque, while at 4°C, both regions 2 and 3 showed opacity. The sum of the difference between Ip/Iw and the value of linear fitting line from scattered-line at each scanning point was considered as fluctuation degree (FD) in each region. Among different temperatures, opaque regions showed relatively higher FD values (0.63 and 0.79 for regions 2 and 3, respectively, at 4°C, and 0.53 for region 3 at 25°C), while transparent regions provided lower FD values (less than 0.27). In addition, the decrease in Gaussian peak II and the rising of Gaussian peak III and IV from water Raman spectra indicated the instability of water molecule structure in the regions with cold cataract. Conclusion: Fluctuation degrees of RS data reveal new mechanistic information about cold cataract formation, which is associated with uneven distribution of lens proteins and water across lens fiber cells. It is possible that RS data partly reveals cold temperature-induced redistribution of lens proteins such as intermediate filaments in inner fiber cells. This lens protein redistribution might be related to unstable structure of water molecules according to Gaussian profiles of water RS.
Collapse
Affiliation(s)
- Yao Li
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| | - Yuxing Li
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| | - Xi Liu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yonghong He
- Department of Life and Health, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Tian Guan
- Department of Life and Health, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| |
Collapse
|
26
|
Zainol MKM, Linforth RJC, Winzor DJ, Scott DJ. Thermodynamics of semi-specific ligand recognition: the binding of dipeptides to the E.coli dipeptide binding protein DppA. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:1103-1110. [PMID: 34611772 PMCID: PMC8566422 DOI: 10.1007/s00249-021-01572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 09/18/2021] [Indexed: 12/04/2022]
Abstract
This investigation of the temperature dependence of DppA interactions with a subset of three dipeptides (AA. AF and FA) by isothermal titration calorimetry has revealed the negative heat capacity (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta {C}_{p}^{o}$$\end{document}ΔCpo) that is a characteristic of hydrophobic interactions. The observation of enthalpy–entropy compensation is interpreted in terms of the increased structuring of water molecules trapped in a hydrophobic environment, the enthalpic energy gain from which is automatically countered by the entropy decrease associated with consequent loss of water structure flexibility. Specificity for dipeptides stems from appropriate spacing of designated DppA aspartate and arginine residues for electrostatic interaction with the terminal amino and carboxyl groups of a dipeptide, after which the binding pocket closes to become completely isolated from the aqueous environment. Any differences in chemical reactivity of the dipeptide sidechains are thereby modulated by their occurrence in a hydrophobic environment where changes in the structural state of entrapped water molecules give rise to the phenomenon of enthalpy–entropy compensation. The consequent minimization of differences in the value of ΔG0 for all DppA–dipeptide interactions thus provides thermodynamic insight into the biological role of DppA as a transporter of all dipeptides across the periplasmic membrane.
Collapse
Affiliation(s)
- Mohamad K M Zainol
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK.,Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Mengabang Telipot, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Robert J C Linforth
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - Donald J Winzor
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK. .,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, OX11 0FA, UK.
| |
Collapse
|
27
|
Corezzi S, Bracco B, Sassi P, Paolantoni M, Comez L. Protein Hydration in a Bioprotecting Mixture. Life (Basel) 2021; 11:life11100995. [PMID: 34685367 PMCID: PMC8537178 DOI: 10.3390/life11100995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
We combined broad-band depolarized light scattering and infrared spectroscopies to study the properties of hydration water in a lysozyme-trehalose aqueous solution, where trehalose is present above the concentration threshold (30% in weight) relevant for biopreservation. The joint use of the two different techniques, which were sensitive to inter-and intra-molecular degrees of freedom, shed new light on the molecular mechanism underlying the interaction between the three species in the mixture. Thanks to the comparison with the binary solution cases, we were able to show that, under the investigated conditions, the protein, through preferential hydration, remains strongly hydrated even in the ternary mixture. This supported the water entrapment scenario, for which a certain amount of water between protein and sugar protects the biomolecule from damage caused by external agents.
Collapse
Affiliation(s)
- Silvia Corezzi
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia, Italy;
| | - Brenda Bracco
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy; (B.B.); (P.S.)
| | - Paola Sassi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy; (B.B.); (P.S.)
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy; (B.B.); (P.S.)
- Correspondence: (M.P.); (L.C.)
| | - Lucia Comez
- CNR-IOM at Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia, Italy
- Correspondence: (M.P.); (L.C.)
| |
Collapse
|
28
|
Dai Q, Zhao Z, Shi M, Deng C, Zhang H, Li X. Ion conductive membranes for flow batteries: Design and ions transport mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Rohman N, Mohiuddin T. Dielectric Relaxation of Decyltrimethylammonium Bromide-Water-Styrene Oil-in-Water Microemulsion. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Donor-acceptor structure and dynamics: Molecular dynamics simulation study of TIP4P/2005 water model. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
|
32
|
Filipczak P, Hałagan K, Ulański J, Kozanecki M. Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:497-506. [PMID: 34136325 PMCID: PMC8182675 DOI: 10.3762/bjnano.12.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The resonance Raman effect (RRE) is a phenomenon which results in a strong selective enhancement of Raman signals from the samples. Previous studies showed that the RRE in liquid water directly corresponds to its supramolecular structure. It was also reported that the electric-field-induced orientation of water molecules on the electrode surface results in the surface-enhanced Raman scattering (SERS) effect. In this work, we show the SERS effect for water molecules in the dispersion of silver nanoparticles (AgNPs) without any external electrical field. An enhancement factor was estimated to be (4.8 ± 0.8) × 106 for an excitation wavelength of 514.5 nm and for AgNPs with an average size of 34 ± 14 nm. The temperature experiment results showed a higher enhancement with temperature increase. Performed simulation studies revealed a slowdown of the mobility of the water molecules close to the surface of AgNPs.
Collapse
Affiliation(s)
- Paulina Filipczak
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Krzysztof Hałagan
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Ulański
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marcin Kozanecki
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
33
|
Plastinin IV, Burikov SA, Dolenko TA. Laser diagnostics of reverse microemulsions: Influence of the size and shape of reverse micelles on the Raman spectrum on the example of water/AOT/cyclohexane system. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
|
35
|
Penkov NV, Yashin VA, Belosludtsev KN. Hydration Shells of DPPC Liposomes from the Point of View of Terahertz Time-Domain Spectroscopy. APPLIED SPECTROSCOPY 2021; 75:189-198. [PMID: 32705897 DOI: 10.1177/0003702820949285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Analysis of structural and dynamic properties of water in suspensions of liposomes composed from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in three phase states (gel, rippled gel, liquid crystalline phase) by means of terahertz time-domain spectroscopy in 0.3-3.3 THz range was conducted in the current work. Fraction of free water molecules in DPPC liposome suspension was shown to decrease with temperature (compared to the analogous aqueous solution without liposomes), and intermolecular water binding was enhanced. The most crucial changes occur during gel-rippled gel phase transition (pretransition): at temperatures below pretransition point, liposomes alleviate water binding degree, while at temperatures above the transition point, they enhance water binding. This study has demonstrated the high information content of the terahertz time-domain spectroscopy method for exploring the hydration properties of phospholipids in water.
Collapse
Affiliation(s)
- Nikita V Penkov
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Valery A Yashin
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Konstantin N Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Mari State University, Yoshkar-Ola, Russia
| |
Collapse
|
36
|
Sun P, Hastings JB, Ishikawa D, Baron AQR, Monaco G. Two-Component Dynamics and the Liquidlike to Gaslike Crossover in Supercritical Water. PHYSICAL REVIEW LETTERS 2020; 125:256001. [PMID: 33416384 DOI: 10.1103/physrevlett.125.256001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Molecular-scale dynamics in sub- to supercritical water is studied with inelastic x-ray scattering and molecular dynamics simulations. The obtained longitudinal current correlation spectra can be decomposed into two main components: a low-frequency (LF), gaslike component and a high-frequency (HF) component arising from the O-O stretching mode between hydrogen-bonded molecules, reminiscent of the longitudinal acoustic mode in ambient water. With increasing temperature, the hydrogen-bond network diminishes and the spectral weight shifts from HF to LF, leading to a transition from liquid- to gaslike dynamics with rapid changes around the Widom line.
Collapse
Affiliation(s)
- Peihao Sun
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - J B Hastings
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Daisuke Ishikawa
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Alfred Q R Baron
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Giulio Monaco
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| |
Collapse
|
37
|
Cao C, Serita K, Kitagishi K, Murakami H, Zhang ZH, Tonouchi M. Terahertz Spectroscopy Tracks Proteolysis by a Joint Analysis of Absorptance and Debye Model. Biophys J 2020; 119:2469-2482. [PMID: 33189688 DOI: 10.1016/j.bpj.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 01/06/2023] Open
Abstract
Terahertz waves have attracted great attention in biomolecule research because of the fact that they cover the range of energy levels of weak interactions, skeleton vibrations, and dipole rotations during inter- and intramolecular interactions in biomacromolecules. In this study, we validated the feasibility of employing terahertz time-domain spectroscopy (THz-TDS) for the nondestructive and label-free monitoring of protein digestion. The acid protease, pepsin, was used at its optimal pH to hydrolyze bovine serum albumin. Correspondingly, the control group experiment was also conducted by adjusting the pH value to inactivate pepsin. The progress of these two experiments was tracked by a compact commercial THz-TDS for 1 h. On one hand, the reaction-time-dependent absorption coefficient was calculated, and a direct absorption coefficient analysis was completed. The results indicate that protein hydrolysis can be easily monitored over time by focusing on the variation tendency of the absorption coefficient from a macroscopic perspective. On the other hand, we explored the use of the Debye model to analyze the dielectric properties of the solution during protein hydrolysis. The results of the Debye analysis prove that it is possible to investigate in detail the microscopic dynamics of biomacromolecule solutions at the molecular level by THz-TDS. Our research examined the process of protein hydrolysis by a combination of absorption spectra and Debye analysis and demonstrated that terahertz spectroscopy is a powerful technology for the investigation of biomolecular reactions, with potential applications in variety of fields.
Collapse
Affiliation(s)
- Can Cao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China; Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
| | - Kazunori Serita
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
| | - Keiko Kitagishi
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
| | - Hironaru Murakami
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
| | - Zhao-Hui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | | |
Collapse
|
38
|
Laser diagnostics of self-organization of amphiphiles in aqueous solutions on the example of sodium octanoate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Abstract
The origin of water's anomalies has been a matter of long-standing debate. A two-state model, dating back to Röntgen, relies on the dynamical coexistence of two types of local structures-locally favored tetrahedral structure (LFTS) and disordered normal-liquid structure (DNLS)-in liquid water. Phenomenologically, this model not only explains water's thermodynamic anomalies but also can rationalize the existence of a liquid-liquid critical point (LLCP) if there is a cooperative formation of LFTS. We recently found direct evidence for the coexistence of LFTS and DNLS in the experimental structure factor of liquid water. However, the existence of the LLCP and its impact on water's properties has remained elusive, leaving the origin of water's anomalies unclear. Here we propose a unique strategy to locate the LLCP of liquid water. First, we make a comprehensive analysis of a large set of experimental structural, thermodynamic, and dynamic data based on our hierarchical two-state model. This model predicts that the two thermodynamic and dynamical fluctuation maxima lines should cross at the LLCP if it exists, which we confirm by hundred-microsecond simulations for model waters. Based on recent experimental results of the compressibility and diffusivity measurements in the no man's land, we reveal that the two lines cross around 184 K and 173 MPa for real water, suggesting the presence of the LLCP around there. Nevertheless, we find that the criticality is almost negligible in the experimentally accessible region of liquid water because it is too far from the LLCP. Our findings would provide a clue to settle the long-standing debate.
Collapse
|
40
|
Piskulich ZA, Thompson WH. Temperature Dependence of the Water Infrared Spectrum: Driving Forces, Isosbestic Points, and Predictions. J Phys Chem Lett 2020; 11:7762-7768. [PMID: 32852956 DOI: 10.1021/acs.jpclett.0c02301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The temperature derivative of the infrared (IR) spectrum of HOD/D2O is directly calculated from simulations at a single temperature using a fluctuation theory approach. It is demonstrated, on the basis of an energetic decomposition of the derivative, that the blue shift with increasing temperature is associated with the competition between electrostatic and Lennard-Jones interactions. The same competition gives rise, where their contributions cancel, to a near isosbestic point. The derivative is further used to define an effective internal energy (and entropy) associated with the IR spectrum, and it is shown how a van't Hoff relation can be used to accurately predict the spectrum over a wide range of temperatures. These predictions also explain why a precise isosbestic point is not observed.
Collapse
Affiliation(s)
- Zeke A Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
41
|
Guo J, Cao D, Chen J, Bian K, Xu LM, Wang EG, Jiang Y. Probing the intermolecular coupled vibrations in a water cluster with inelastic electron tunneling spectroscopy. J Chem Phys 2020; 152:234301. [PMID: 32571057 DOI: 10.1063/5.0009385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hydrogen-bonding networks of water have strong intra- and intermolecular vibrational coupling which influences the energy dissipation and proton transfer in water. Disentangling and quantitative characterization of different coupling effects in water at a single-molecular level still remains a great challenge. Using tip-enhanced inelastic electron tunneling spectroscopy (IETS) based on low-temperature scanning tunneling microscopy, we report the direct quantitative assessment of the intermolecular coupling constants of the OH-stretch vibrational bands of an isolated water tetramer adsorbed on a Au(111)-supported NaCl(001) bilayer film. This is achieved by distinguishing various coupled modes of the H-bonded O-H stretching vibrations through tip-height dependent IET spectra. In contrast, such vibrational coupling is negligible in the half-deuterated water tetramer owing to the large energy mismatch between the OH and OD stretching modes. Not only do these findings advance our understanding on the effects of local environment on the intermolecular vibrational coupling in water, but also open up a new route for vibrational spectroscopic studies of extended H-bonded network at the single-molecular level.
Collapse
Affiliation(s)
- Jing Guo
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Duanyun Cao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ji Chen
- School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ke Bian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Li-Mei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - En-Ge Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
42
|
Ishigaki M, Yasui Y, Kajita M, Ozaki Y. Assessment of Embryonic Bioactivity through Changes in the Water Structure Using Near-Infrared Spectroscopy and Imaging. Anal Chem 2020; 92:8133-8141. [PMID: 32407102 DOI: 10.1021/acs.analchem.0c00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We explored the influence of embryonic bioactivity on the water structure using near-infrared (NIR) spectroscopy and imaging. Four groups of Japanese medaka fish (Oryzias latipes) eggs were studied: (a) one group of eggs was activated by fertilization, and (b-d) three groups of eggs were not activated because embryogenesis was stopped or not started by (b) culturing under cold temperature, (c) instant freezing, or (d) lack of fertilization. The yolks of the activated eggs contained higher proportions of weakly hydrogen bonded water than those of nonactivated eggs. A possible factor responsible for the significant changes in the water structure was revealed to be a protein secondary structural change from an α-helix to a β-sheet in the activated eggs. NIR images of the activated eggs successfully visualized the water structural variation in the yolk with a higher proportion of weak hydrogen bonds due to the activation of embryonic development. The embryogenic activity could be assessed through the water hydrogen bond network, which is affected by newly generated proteins with different secondary structures.
Collapse
Affiliation(s)
- Mika Ishigaki
- Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.,Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yui Yasui
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Misato Kajita
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
43
|
Sánchez-García I, Bonales LJ, Galán H, Perlado JM, Cobos J. Advanced direct method to quantify the kinetics of acetohydroxamic acid (AHA) by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117877. [PMID: 31846854 DOI: 10.1016/j.saa.2019.117877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
The ligand acetohydroxamic acid (AHA) suffers hydrolysis at acidic conditions. This reaction has been studied for a long time, due to its implications in different applications, by using indirect colorimetric methods. This work shows how Raman spectroscopy can be very useful as a direct technique for measuring the hydrolysis kinetics of AHA, faster, more versatile and easier compared with the indirect traditional UV-Vis method which needs a complex formation with Fe. Thereby, we present a detailed study of the qualitative and quantitative Raman spectra of 1 mol/L AHA and its hydrolysis products. These results enabled us to perform a complete kinetic study of this molecule at different pH ranging from 0.5 mol/L to 4 mol/L HNO3, i.e. not only at excess acidic conditions but also at limiting nitric acid conditions.
Collapse
Affiliation(s)
- Iván Sánchez-García
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040 Madrid, Spain; Instituto Fusión Nuclear, Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain
| | - Laura J Bonales
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040 Madrid, Spain.
| | - Hitos Galán
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040 Madrid, Spain
| | - Jose Manuel Perlado
- Instituto Fusión Nuclear, Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain
| | - Joaquín Cobos
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040 Madrid, Spain
| |
Collapse
|
44
|
Ansari N, Onat B, Sosso GC, Hassanali A. Insights into the Emerging Networks of Voids in Simulated Supercooled Water. J Phys Chem B 2020; 124:2180-2190. [PMID: 32032486 DOI: 10.1021/acs.jpcb.9b10144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural evolution of supercooled liquid water as we approach the glass transition temperature continues to be an active area of research. Here, we use molecular dynamics simulations of TIP4P/ice water to study the changes in the connected regions of empty space within the liquid, which we investigate using the Voronoi-voids network. We observe two important features: supercooling enhances the fraction of nonspherical voids and different sizes of voids tend to cluster forming a percolating network. By examining order parameters such as the local structure index (LSI), tetrahedrality and topological defects, we show that water molecules near large void clusters tend to be slightly more tetrahedral than those near small voids, with a lower population of under- and overcoordinated defects. We show further that the distribution of closed rings of water molecules around small and large void clusters maintain a balance between 6 and 7 membered rings. Our results highlight the changes of the dual voids and water network as a structural hallmark of supercooling and provide insights into the molecular origins of cooperative effects underlying density fluctuations on the subnanometer and nanometer length scale. In addition, the percolation of the voids and the hydrogen bond network around the voids may serve as useful order parameters to investigate density fluctuations in supercooled water.
Collapse
Affiliation(s)
- Narjes Ansari
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Berk Onat
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.,School of Engineering, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Gabriele C Sosso
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ali Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
45
|
Eneh CI, Bolen MJ, Suarez-Martinez PC, Bachmann AL, Zimudzi TJ, Hickner MA, Batys P, Sammalkorpi M, Lutkenhaus JL. Fourier transform infrared spectroscopy investigation of water microenvironments in polyelectrolyte multilayers at varying temperatures. SOFT MATTER 2020; 16:2291-2300. [PMID: 32043105 DOI: 10.1039/c9sm02478f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyelectrolyte multilayers (PEMs) are thin films formed by the alternating deposition of oppositely charged polyelectrolytes. Water plays an important role in influencing the physical properties of PEMs, as it can act both as a plasticizer and swelling agent. However, the way in which water molecules distribute around and hydrate ion pairs has not been fully quantified with respect to both temperature and ionic strength. Here, we examine the effects of temperature and ionic strength on the hydration microenvironments of fully immersed poly(diallyldimethylammonium)/polystyrene sulfonate (PDADMA/PSS) PEMs. This is accomplished by tracking the OD stretch peak using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy at 0.25-1.5 M NaCl and 35-70 °C. The OD stretch peak is deconvoluted into three peaks: (1) high frequency water, which represents a tightly bound microenvironment, (2) low frequency water, which represents a loosely bound microenvironment, and (3) bulk water. In general, the majority of water absorbed into the PEM exists in a bound state, with little-to-no bulk water observed. Increasing temperature slightly reduces the amount of absorbed water, while addition of salt increases the amount of absorbed water. Finally, a van't Hoff analysis is applied to estimate the enthalpy (11-22 kJ mol-1) and entropy (48-79 kJ mol-1 K-1) of water exchanging from low to high frequency states.
Collapse
Affiliation(s)
- Chikaodinaka I Eneh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Matthew J Bolen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Pilar C Suarez-Martinez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Adam L Bachmann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Tawanda J Zimudzi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael A Hickner
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, PO Box 16100, 00076 Aalto, Finland and Department of Bioproducts and Biosystems, Aalto University, PO Box 16100, 00076 Aalto, Finland
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
46
|
Sommers GM, Calegari Andrade MF, Zhang L, Wang H, Car R. Raman spectrum and polarizability of liquid water from deep neural networks. Phys Chem Chem Phys 2020; 22:10592-10602. [DOI: 10.1039/d0cp01893g] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using deep neural networks to model the polarizability and potential energy surfaces, we compute the Raman spectrum of liquid water at several temperatures with ab initio molecular dynamics accuracy.
Collapse
Affiliation(s)
| | | | - Linfeng Zhang
- Program in Applied and Computational Mathematics
- Princeton University
- Princeton
- USA
| | - Han Wang
- Laboratory of Computational Physics
- Institute of Applied Physics and Computational Mathematics
- Beijing 100088
- P. R. China
| | - Roberto Car
- Department of Physics
- Princeton University
- Princeton
- USA
- Department of Chemistry
| |
Collapse
|
47
|
Raanan D, Audier X, Shivkumar S, Asher M, Menahem M, Yaffe O, Forget N, Rigneault H, Oron D. Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation. OPTICS LETTERS 2019; 44:5153-5156. [PMID: 31674954 DOI: 10.1364/ol.44.005153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Real-time vibrational microscopy has been recently demonstrated by various techniques, most of them utilizing the well-known schemes of coherent anti-stokes Raman scattering and stimulated Raman scattering. These techniques readily provide valuable chemical information mostly in the higher vibrational frequency regime (>400 cm-1). Addressing the low vibrational frequency regime (<200 cm-1) is challenging due to the usage of spectral filters that are required to isolate the signal from the Rayleigh scattered excitation field. In this Letter, we report on rapid, high-resolution, low-frequency (<130 cm-1) vibrational microscopy using impulsive coherent Raman excitation. By combining impulsive excitation with a fast acousto-optic delay line, we detect the Raman-induced optical Kerr lensing and spectral shift effects with a 25 μs pixel dwell time to produce shot-noise limited, low-frequency hyper-spectral images of various samples.
Collapse
|
48
|
Xu S, Bruce Chase D, Rabolt JF, Noda I. Two-Dimensional Correlation Spectroscopy (2D-COS) Studies of Solution Mixtures in the Low Frequency Raman Region. APPLIED SPECTROSCOPY 2019; 73:1012-1018. [PMID: 31008652 DOI: 10.1177/0003702819848501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Raman spectra of a series of binary solution mixtures, including chloroform (CHCl3), ethanol (EtOH), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), were analyzed using the two-dimensional correlation spectroscopic (2D-COS) technique in the low frequency region. Numerous asynchronous cross-peaks ubiquitously appeared in the concentration-dependent Raman spectra of these organic solvent mixtures. The result clearly demonstrated a deviation from ideal solution behavior, reflecting the presence of specific molecular interactions causing a subtle nonlinear spectral intensity response of Raman bands to the concentration changes. Furthermore, the combination of 2D-COS and low frequency Raman spectroscopy was extended to poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBHx) copolymer solutions in CHCl3-HFIP co-solvents. The results suggest the existence of hydrogen bonding interaction between the PHBHx and HFIP, which is consistent with the previous infrared spectroscopic study of PHBHx solutions.
Collapse
Affiliation(s)
- Shuyu Xu
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - D Bruce Chase
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - John F Rabolt
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Danimer Scientific, Bainbridge, GA, USA
| |
Collapse
|
49
|
de Lima Ribeiro A, Artlett C, Ajani PA, Derkenne C, Pask H. Impact of fluorescence on Raman remote sensing of temperature in natural water samples. OPTICS EXPRESS 2019; 27:22339-22351. [PMID: 31510529 DOI: 10.1364/oe.27.022339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
A comprehensive investigation into the impact of spectral baseline on temperature prediction in natural marine water samples by Raman spectroscopy is presented. The origin of baseline signals is investigated using principal component analysis and phytoplankton cultures in laboratory experiments. Results indicate that fluorescence from photosynthetic pigments and dissolved organic matter may overlap with the Raman peak for 532 nm excitation and compromise the accuracy of temperature predictions. Two methods of spectral baseline correction in natural waters are evaluated: a traditional tilted baseline correction and a new correction by temperature marker values, with accuracies as high as ± 0.2°C being achieved in both cases.
Collapse
|
50
|
Camisasca G, Schlesinger D, Zhovtobriukh I, Pitsevich G, Pettersson LGM. A proposal for the structure of high- and low-density fluctuations in liquid water. J Chem Phys 2019; 151:034508. [PMID: 31325915 DOI: 10.1063/1.5100875] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Based on recent experimental data that can be interpreted as indicating the presence of specific structures in liquid water, we build and optimize two structural models which we compare with the available experimental data. To represent the proposed high-density liquid structures, we use a model consisting of chains of water molecules, and for low-density liquid, we investigate fused dodecahedra as templates for tetrahedral fluctuations. The computed infrared spectra of the models are in very good agreement with the extracted experimental spectra for the two components, while the extracted structures from molecular dynamics (MD) simulations give spectra that are intermediate between the experimentally derived spectra. Computed x-ray absorption and emission spectra as well as the O-O radial distribution functions of the proposed structures are not contradicted by experiment. The stability of the proposed dodecahedral template structures is investigated in MD simulations by seeding the starting structure, and remnants found to persist on an ∼30 ps time scale. We discuss the possible significance of such seeds in simulations and whether they can be viable candidates as templates for structural fluctuations below the compressibility minimum of liquid water.
Collapse
Affiliation(s)
- Gaia Camisasca
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Daniel Schlesinger
- Department of Environmental Science and Analytical Chemistry & Bolin Centre for Climate Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Iurii Zhovtobriukh
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - George Pitsevich
- Belarusian State University, Nezavisimosti Ave., 4, 220030 Minsk, Belarus
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|