1
|
Garg D, Chopra P, Lee JWL, Tikhonov DS, Kumar S, Akcaalan O, Allum F, Boll R, Butler AA, Erk B, Gougoula E, Gruet SP, He L, Heathcote D, Jones E, Kazemi MM, Lahl J, Lemmens AK, Liu Z, Loru D, Maclot S, Mason R, Merrick J, Müller E, Mullins T, Papadopoulou CC, Passow C, Peschel J, Plach M, Ramm D, Robertson P, Rompotis D, Simao A, Steber AL, Tajalli A, Tul-Noor A, Vadassery N, Vinklárek IS, Techert S, Küpper J, Rijs AM, Rolles D, Brouard M, Bari S, Eng-Johnsson P, Vallance C, Burt M, Manschwetus B, Schnell M. Ultrafast dynamics of fluorene initiated by highly intense laser fields. Phys Chem Chem Phys 2024. [PMID: 38958416 DOI: 10.1039/d3cp05063g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We present an investigation of the ultrafast dynamics of the polycyclic aromatic hydrocarbon fluorene initiated by an intense femtosecond near-infrared laser pulse (810 nm) and probed by a weak visible pulse (405 nm). Using a multichannel detection scheme (mass spectra, electron and ion velocity-map imaging), we provide a full disentanglement of the complex dynamics of the vibronically excited parent molecule, its excited ionic states, and fragments. We observed various channels resulting from the strong-field ionization regime. In particular, we observed the formation of the unstable tetracation of fluorene, above-threshold ionization features in the photoelectron spectra, and evidence of ubiquitous secondary fragmentation. We produced a global fit of all observed time-dependent photoelectron and photoion channels. This global fit includes four parent ions extracted from the mass spectra, 15 kinetic-energy-resolved ionic fragments extracted from ion velocity map imaging, and five photoelectron channels obtained from electron velocity map imaging. The fit allowed for the extraction of 60 lifetimes of various metastable photoinduced intermediates.
Collapse
Affiliation(s)
- Diksha Garg
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Pragya Chopra
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jason W L Lee
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Sonu Kumar
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | | | - Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Alexander A Butler
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Eva Gougoula
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | | | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
| | - David Heathcote
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Ellen Jones
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Mehdi M Kazemi
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Jan Lahl
- Department of Physics, Lund University, Lund, Sweden
| | - Alexander K Lemmens
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Zhihao Liu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Donatella Loru
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | | | - Robert Mason
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - James Merrick
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Erland Müller
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Terry Mullins
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
- European XFEL, Schenefeld, Germany
| | | | | | | | - Marius Plach
- Department of Physics, Lund University, Lund, Sweden
| | - Daniel Ramm
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Patrick Robertson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Dimitrios Rompotis
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- European XFEL, Schenefeld, Germany
| | - Alcides Simao
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | | | - Ayhan Tajalli
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Atia Tul-Noor
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Nidin Vadassery
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Ivo S Vinklárek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Anouk M Rijs
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | - Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
2
|
Karaev E, Gerlach M, Theil K, Garcia GA, Alcaraz C, Loison JC, Fischer I. Photoelectron spectrum of the pyridyl radical. Phys Chem Chem Phys 2024; 26:17042-17047. [PMID: 38836386 DOI: 10.1039/d4cp00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We report the photoelectron spectrum of the pyridyl radical (C5H4N), a species of interest in astrochemistry and combustion. The radicals were produced via hydrogen abstraction in a fluorine discharge and ionized with synchrotron radiation. Mass-selected slow photoelectron spectra of the products were obtained from photoelectron-photoion coincidence spectra. A Franck-Condon simulation based on computed geometries and vibrational frequencies identified contributions of the o- and p-pyridyl radicals. For the o-isomer an adiabatic ionisation energy of 7.70 eV was obtained, in excellent agreement with a computed value of 7.72 eV. The spectrum of o-pyridyl is characterized by a long progression in an in-plane bending mode and the N-C stretch that contains the radical site.
Collapse
Affiliation(s)
- Emil Karaev
- University of Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany.
| | - Marius Gerlach
- University of Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany.
| | - Katharina Theil
- University of Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany.
| | - Gustavo A Garcia
- Synchrotron Soleil, L'Orme des Merisiers, St Aubin, B.P. 48, F-91192 Gif sur Yvette, France
| | - Christian Alcaraz
- Universite Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | | | - Ingo Fischer
- University of Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
3
|
Sun Z, Farooq Z, Chen Z, Qin Z, Wei Y, Hua Z, Yang X, Xu X, Zheng X, Parker DH. Multiphoton Ionization/Dissociation of Molecular Sulfur S 2 in the UV Region. J Phys Chem A 2024; 128:4030-4037. [PMID: 38722760 DOI: 10.1021/acs.jpca.4c02134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The multiphoton ionization/dissociation dynamics of molecular sulfur (S2) in the ultraviolet range of 205-300 nm is studied using velocity map ion imaging (VMI). In this one-color experiment, molecular sulfur (S2) is generated in a pulsed discharge and then photodissociated by UV radiation. At the three-photon level, superexcited states are accessed via two different resonant states: the B3Σu- (v' = 8-11) valence states at the one-photon level and a Rydberg state at the two-photon level. Among the decay processes of these superexcited states, dissociation to electronically excited S atoms is dominant as compared to autoionization to ionic states S2+ (X2Πg) at wavelengths λ < 288 nm. The anisotropy parameter extracted from these images reflects the parallel character of these electronic transitions. In contrast, autoionization is found to be particularly efficient at S(1D) and S(1S) detection wavelengths around 288 nm. Information obtained from the kinetic energy distributions of S atoms has revealed the existence of vibrationally excited S2+ (X2Πg (v+ > 11)) that dissociates to ionic products following one-photon absorption. This work also reveals many interesting features of S2 photodynamics compared to those of electronically analogous O2.
Collapse
Affiliation(s)
- Zhongfa Sun
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zahid Farooq
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Physics, Division of Science and Technology, University of Education, 54770 Lahore, Pakistan
| | - Zhichao Chen
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhengbo Qin
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yaxiong Wei
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zefeng Hua
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xinyan Yang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xinsheng Xu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xianfeng Zheng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Wuhu, Anhui 241002, China
| | - David H Parker
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Wuhu, Anhui 241002, China
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Wu Y, Sun J, Li Z, Zhang Z, Luo Z, Chang Y, Wu G, Zhang W, Yu S, Yuan K, Yang X. Photodissociation dynamics of SO2 via the G̃1B1 state: The O(1D2) and O(1S0) product channels. J Chem Phys 2024; 160:164311. [PMID: 38661196 DOI: 10.1063/5.0208090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Produced by both nature and human activities, sulfur dioxide (SO2) is an important species in the earth's atmosphere. SO2 has also been found in the atmospheres of other planets and satellites in the solar system. The photoabsorption cross sections and photodissociation of SO2 have been studied for several decades. In this paper, we reported the experimental results for photodissociation dynamics of SO2 via the G̃1B1 state. By analyzing the images from the time-sliced velocity map ion imaging method, the vibrational state population distributions and anisotropy parameters were obtained for the O(1D2) + SO(X3Σ-, a1Δ, b1Σ+) and O(1S0) + SO(X3Σ-) channels, and the branching ratios for the channels O(1D2) + SO(X3Σ-), O(1D2) + SO(a1Δ), and O(1D2) + SO(b1Σ+) were determined to be ∼0.3, ∼0.6, and ∼0.1, respectively. The SO products were dominant in electronically and rovibrationally excited states, which may have yet unrecognized roles in the upper planetary atmosphere.
Collapse
Affiliation(s)
- Yucheng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Sun
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenxing Li
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaoxue Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zijie Luo
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Liu Q, Tan S, Zou X, Liu P, Yu S. Wavelength-Dependent Dynamics of the O( 1D 2) Channel in the 1Δ u State Photodissociation of CO 2. J Phys Chem A 2024; 128:2989-2996. [PMID: 38572621 DOI: 10.1021/acs.jpca.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The wavelength-dependent dynamics of the O(1D2) channel, formed by photoexcitation of CO2 to the 1Δu state at 143.53-153.03 nm, is investigated by using the time-sliced velocity-mapped ion imaging method. The measured ionic peaks of the O(1D2) images are analyzed to determine the total kinetic energy release (TKER) spectra and image anisotropy parameters. The structures observed in the TKER spectra can be directly assigned to the ro-vibrational state distributions of the counter CO photofragments. Compared to those observed at 157 and 155 nm, the highly rotationally excited CO photofragments still obviously appear in v = 0 and 1, but the fraction of rotational excitations is significantly reduced. Conversely, the CO photofragments exhibit substantially higher vibrational excitations, implying that the nearly linear 21A' state also contributes to dissociation in addition to the bend configuration. The image anisotropy parameters display an extremely slow decreasing trend with an increase of the CO ro-vibrational state besides those for the highest ro-vibrationally excited CO photofragments. Nevertheless, the nonaxial recoil effect, suggested in previous photodissociation studies of CO2 and other triatomic molecular systems, is still appropriate to explain the observations of internal energy dependences of image anisotropy parameters.
Collapse
Affiliation(s)
- Qian Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Sha Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Xiaolan Zou
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Peng Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| |
Collapse
|
6
|
Liu Q, Gao Q, Liu P, Yang X, Yu S. Photodissociation of CO2 via the 1Πg state: Wavelength-dependent imaging studies of O(1D2) photoproducts. J Chem Phys 2024; 160:014301. [PMID: 38165095 DOI: 10.1063/5.0180860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Photodissociation of CO2 via the 1Πg state is investigated using a time-sliced velocity-mapped ion imaging apparatus combined with a tunable vacuum ultraviolet photolysis source. The main O(1D2) + CO(X1Σ+) channel is directly observed from the measured images of O(1D2) photoproducts at 129.08-134.76 nm. The total kinetic energy release spectra determined based on these images show that the energetic thresholds for the O(1D2) + CO(X1Σ+) photoproducts correspond to the thermochemical thresholds for the photodissociation of CO2(v2 = 0) and CO2(v2 = 1). One significant difference among the CO(X1Σ+, v) vibrational distributions for the predominant CO2(v2 = 0) dissociation is that the population of CO(v = 0) becomes favorable at 130.23-133.45 nm compared to the Boltzmann-like component (v > 0) that always exists at 129.08-134.76 nm. The wavelength dependences of the overall β are found to follow the variation trend of the CO(v = 0) abnormal intensity. The vibrational state-specific β values present a roughly decreasing trend with an increase in v, whereas β(v = 0) appears to be significantly larger than β(v = 1) at 130.23-133.45 nm compared to 134.76 and 129.08 nm. The non-statistical CO(v = 0) with larger β values at 130.23-133.45 nm implies that an additional pathway may open through the conical intersection coupling to the dissociative 21A' state, except for the ever-existing pathway that yields the Boltzmann-like component. In contrast, at 129.08 nm, the restoration of the statistical equilibrium in the CO(X1Σ+, v) vibrational distribution may be caused by the emergence of novel dissociation pathways arising from the participation of the 31A″ state.
Collapse
Affiliation(s)
- Qian Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Qinghua Gao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Peng Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning Province, People's Republic of China
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, People's Republic of China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| |
Collapse
|
7
|
Nguyen QLD, Simoni J, Dorney KM, Shi X, Ellis JL, Brooks NJ, Hickstein DD, Grennell AG, Yazdi S, Campbell EEB, Tan LZ, Prendergast D, Daligault J, Kapteyn HC, Murnane MM. Direct Observation of Enhanced Electron-Phonon Coupling in Copper Nanoparticles in the Warm-Dense Matter Regime. PHYSICAL REVIEW LETTERS 2023; 131:085101. [PMID: 37683150 DOI: 10.1103/physrevlett.131.085101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/27/2022] [Accepted: 05/26/2023] [Indexed: 09/10/2023]
Abstract
Warm dense matter (WDM) represents a highly excited state that lies at the intersection of solids, plasmas, and liquids and that cannot be described by equilibrium theories. The transient nature of this state when created in a laboratory, as well as the difficulties in probing the strongly coupled interactions between the electrons and the ions, make it challenging to develop a complete understanding of matter in this regime. In this work, by exciting isolated ∼8 nm copper nanoparticles with a femtosecond laser below the ablation threshold, we create uniformly excited WDM. Using photoelectron spectroscopy, we measure the instantaneous electron temperature and extract the electron-ion coupling of the nanoparticle as it undergoes a solid-to-WDM phase transition. By comparing with state-of-the-art theories, we confirm that the superheated nanoparticles lie at the boundary between hot solids and plasmas, with associated strong electron-ion coupling. This is evidenced both by a fast energy loss of electrons to ions, and a strong modulation of the electron temperature induced by strong acoustic breathing modes that change the nanoparticle volume. This work demonstrates a new route for experimental exploration of the exotic properties of WDM.
Collapse
Affiliation(s)
- Quynh L D Nguyen
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Jacopo Simoni
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kevin M Dorney
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Xun Shi
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Jennifer L Ellis
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Nathan J Brooks
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Daniel D Hickstein
- Kapteyn-Murnane Laboratories Inc., 4775 Walnut St #102, Boulder, Colorado 80301, USA
| | - Amanda G Grennell
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309 80309, USA
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Eleanor E B Campbell
- EaStCHEM, School of Chemistry, Edinburgh University, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jerome Daligault
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Henry C Kapteyn
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
- Kapteyn-Murnane Laboratories Inc., 4775 Walnut St #102, Boulder, Colorado 80301, USA
| | - Margaret M Murnane
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| |
Collapse
|
8
|
Caballo A, Huits AJTM, Parker DH, Horke DA. Disentangling Multiphoton Ionization and Dissociation Channels in Molecular Oxygen Using Photoelectron-Photoion Coincidence Imaging. J Phys Chem A 2023; 127:92-98. [PMID: 36542330 PMCID: PMC9841573 DOI: 10.1021/acs.jpca.2c06707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Multiphoton excitation of molecular oxygen in the 392-408 nm region is studied using a tunable femtosecond laser coupled with a double velocity map imaging photoelectron-photoion coincidence spectrometer. The laser intensity is held at ≤∼1 TW/cm2 to ensure excitation in the perturbative regime, where the possibility of resonance enhanced multiphoton ionization (REMPI) can be investigated. O2+ production is found to be resonance enhanced around 400 nm via three-photon excitation to the e'3Δu(v = 0) state, similar to results from REMPI studies using nanosecond dye lasers. O+ production reaches 7% of the total ion yield around 405 nm due to two processes: autoionization following five-photon excitation of O2, producing O2+(X(v)) in a wide range of vibrational states followed by two- or three-photon dissociation, or six-photon excitation to a superexcited O2** state followed by neutral dissociation and subsequent ionization of the electronically excited O atom. Coincidence detection is shown to be crucial in identifying these competing pathways.
Collapse
Affiliation(s)
- Ana Caballo
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Anders J. T. M. Huits
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - David H. Parker
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Daniel A. Horke
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
9
|
Oelmann JH, Heldt T, Guth L, Nauta J, Lackmann N, Wössner V, Kokh S, Pfeifer T, López-Urrutia JRC. Photoelectron tomography with an intra-cavity velocity-map imaging spectrometer at 100 MHz repetition rate. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:123303. [PMID: 36586896 DOI: 10.1063/5.0104679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
We present a compact velocity-map imaging (VMI) spectrometer for photoelectron imaging at 100 MHz repetition rate. Ultrashort pulses from a near-infrared frequency comb laser are amplified in a polarization-insensitive passive femtosecond enhancement cavity. In the focus, multi-photon ionization (MPI) of gas-phase atoms is studied tomographically by rotating the laser polarization. We demonstrate the functioning of the VMI spectrometer by reconstructing photoelectron angular momentum distributions from xenon MPI. Our intra-cavity VMI setup collects electron energy spectra at high rates, with the advantage of transferring the coherence of the cavity-stabilized femtosecond pulses to the electrons. In addition, the setup will allow studies of strong-field effects in nanometric tips.
Collapse
Affiliation(s)
- J-H Oelmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T Heldt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - L Guth
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J Nauta
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - N Lackmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - V Wössner
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Kokh
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
10
|
Lee JWL, Tikhonov DS, Allum F, Boll R, Chopra P, Erk B, Gruet S, He L, Heathcote D, Kazemi MM, Lahl J, Lemmens AK, Loru D, Maclot S, Mason R, Müller E, Mullins T, Passow C, Peschel J, Ramm D, Steber AL, Bari S, Brouard M, Burt M, Küpper J, Eng-Johnsson P, Rijs AM, Rolles D, Vallance C, Manschwetus B, Schnell M. The kinetic energy of PAH dication and trication dissociation determined by recoil-frame covariance map imaging. Phys Chem Chem Phys 2022; 24:23096-23105. [PMID: 35876592 PMCID: PMC9533308 DOI: 10.1039/d2cp02252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed by interaction with 30.3 nm extreme ultraviolet (XUV) photons, and their velocity map images are recorded using a PImMS2 multi-mass imaging sensor. Application of recoil-frame covariance analysis allows the total kinetic energy release (TKER) associated with multiple fragmentation channels to be determined to high precision, ranging 1.94-2.60 eV and 2.95-5.29 eV for the dications and trications, respectively. Experimental measurements are supported by Born-Oppenheimer molecular dynamics (BOMD) simulations.
Collapse
Affiliation(s)
- Jason W L Lee
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Department of Chemistry, University of Oxford, UK.
| | - Denis S Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Germany
| | - Felix Allum
- Department of Chemistry, University of Oxford, UK.
| | | | - Pragya Chopra
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Germany
| | | | | | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
| | | | | | - Jan Lahl
- Department of Physics, Lund University, Sweden
| | - Alexander K Lemmens
- Radboud University, FELIX Laboratory, The Netherlands
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | | | - Sylvain Maclot
- KTH Royal Institute of Technology, Sweden
- Physics Department, University of Gothenburg, Sweden
| | - Robert Mason
- Department of Chemistry, University of Oxford, UK.
| | | | - Terry Mullins
- Center for Ultrafast Imaging, Universität Hamburg, Germany
| | | | | | - Daniel Ramm
- Deutsches Elektronen-Synchrotron DESY, Germany.
| | - Amanda L Steber
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Germany.
| | - Mark Brouard
- Department of Chemistry, University of Oxford, UK.
| | - Michael Burt
- Department of Chemistry, University of Oxford, UK.
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Germany
- Department of Physics, Universität Hamburg, Germany
| | | | - Anouk M Rijs
- Radboud University, FELIX Laboratory, The Netherlands
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, KS, USA
| | | | | | | |
Collapse
|
11
|
Hoshino S, Ishii K, Tsukiyama K. Predissociation Dynamics of Br 2 in the [ 2Π 1/2] c5d; 0 g + and [ 2Π 3/2] c6d; 0 g + Rydberg States by Velocity Map Imaging Study. ACS OMEGA 2022; 7:29072-29078. [PMID: 36033697 PMCID: PMC9404482 DOI: 10.1021/acsomega.2c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
We investigated the predissociation dynamics from the [2Π1/2]c5d; 0g + and [2Π3/2]c6d; 0g + Rydberg states of Br2 using the velocity map imaging technique. Two-dimensional scattering images of the fragmented Br+ exhibited an isotropic feature upon the excitation of these Rydberg states. Analysis of the total kinetic energy release suggested the existence of the predissociation pathways to the dissociation limits of Br(5s, 4P3/2) + Br(4p, 2P3/2) and Br(5s, 4P5/2) + Br(4p, 2P3/2) via the 0g + ion-pair states that interact with the lower and/or excited-core Rydberg states lying at long internuclear distance regions thorough the avoided crossing.
Collapse
|
12
|
Bourgalais J, Jiang Z, Bloino J, Herbinet O, Carstensen HH, Garcia GA, Arnoux P, Tran LS, Vanhove G, Nahon L, Battin-Leclerc F, Hochlaf M. Accounting for molecular flexibility in photoionization: case of tert-butyl hydroperoxide. Phys Chem Chem Phys 2022; 24:10826-10837. [PMID: 35485277 DOI: 10.1039/d2cp00929c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
tert-Butyl hydroperoxide (tBuOOH) is a common intermediate in the oxidation of organic compounds that needs to be accurately quantified in complex gas mixtures for the development of chemical kinetic models of low temperature combustion. This work presents a combined theoretical and experimental investigation on the synchrotron-based VUV single photon ionization of gas-phase tBuOOH in the 9.0 - 11.0 eV energy range, including dissociative ionization processes. Computations consist of the determination of the structures, vibrational frequencies and the energetics of neutral and ionic tBuOOH. The Franck-Condon spectrum for the tBuOOH+ (X+) + e- ← tBuOOH (X) + hν transition is computed, where special treatment is undertaken because of the flexibility of tBuOOH, in particular regarding the OOH group. Through comparison of the experimental mass-selected threshold photoelectron spectra with explicitly correlated coupled cluster calculations and Franck-Condon simulations that account for the flexibility of the molecule, an estimation of the ionization energy is given. The appearance energy of the only fragment observed within the above-mentioned energy range, identified as the tert-butyl C4H9+, is also reported. Finally, the signal branching ratio between the parent and the fragment ions is provided as a function of photon energy, essential to quantify tBuOOH in gas-phase oxidation/combustion experiments via advanced mass spectrometry techniques.
Collapse
Affiliation(s)
| | | | - Julien Bloino
- SMART Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | - Hans-Heinrich Carstensen
- Thermochemical Processes Group (GPT), Department of Chemical and Environmental Engineering, Engineering and Architecture School, University of Zaragoza, Spain.,Fundacion Agencia Aragonesa para la Investigacion y el Desarrollo (ARAID), Zagaroza, Spain
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192 Gif-sur-Yvette Cedex, France
| | | | - Luc-Sy Tran
- PC2A, Université de Lille, CNRS, Avenue Mendeleiev, 59650 Villeneuve-d'Ascq, France
| | - Guillaume Vanhove
- PC2A, Université de Lille, CNRS, Avenue Mendeleiev, 59650 Villeneuve-d'Ascq, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192 Gif-sur-Yvette Cedex, France
| | | | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454, Champs sur Marne, France.
| |
Collapse
|
13
|
Systematical study on the photodissociation dynamics of BrCN from 225 to 260 nm. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Campbell JS, Nauta K, Kable SH, Hansen CS. Photodissociation dynamics of CF 3CHO: C-C bond cleavage. J Chem Phys 2021; 155:204303. [PMID: 34852470 DOI: 10.1063/5.0073974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The photodissociation dynamics of jet-cooled trifluoroacetaldehyde (CF3CHO) into radical products, CF3 + HCO, was explored using velocity mapped ion imaging over the wavelength range 297.5 nm ≤λ≤ 342.8 nm (33 613-29 172 cm-1) covering the entire section of the absorption spectrum accessible with solar actinic wavelengths at the ground level. After initial excitation to the first excited singlet state, S1, the radical dissociation proceeds largely via the first excited triplet state, T1, at excitation energies above the T1 barrier. By combining velocity-mapped ion imaging with high-level theory, we place this barrier at 368.3 ± 2.4 kJ mol-1 (30 780 ± 200 cm-1). After exciting to S1 at energies below this barrier, the dissociation proceeds exclusively via the ground electronic state, S0. The dissociation threshold is determined to be 335.7 ± 1.8 kJ mol-1 (28 060 ± 150 cm-1). Using laser-induced fluorescence spectroscopy, the origin of the S1 ← S0 transition is assigned at 28 903 cm-1. The S0 dissociation channel is active at the S1 origin, but the yield significantly increases above 29 100 cm-1 due to enhanced intersystem crossing or internal conversion.
Collapse
Affiliation(s)
- Jyoti S Campbell
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Klaas Nauta
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Scott H Kable
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
15
|
Vibrationally excited molecular hydrogen production from the water photochemistry. Nat Commun 2021; 12:6303. [PMID: 34728635 PMCID: PMC8563719 DOI: 10.1038/s41467-021-26599-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/13/2021] [Indexed: 11/08/2022] Open
Abstract
Vibrationally excited molecular hydrogen has been commonly observed in the dense photo-dominated regions (PDRs). It plays an important role in understanding the chemical evolution in the interstellar medium. Until recently, it was widely accepted that vibrational excitation of interstellar H2 was achieved by shock wave or far-ultraviolet fluorescence pumping. Here we show a further pathway to produce vibrationally excited H2 via the water photochemistry. The results indicate that the H2 fragments identified in the O(1S) + H2(X1Σg+) channel following vacuum ultraviolet (VUV) photodissociation of H2O in the wavelength range of λ = ~100-112 nm are vibrationally excited. In particular, more than 90% of H2(X) fragments populate in a vibrational state v = 3 at λ~112.81 nm. The abundance of water and VUV photons in the interstellar space suggests that the contributions of these vibrationally excited H2 from the water photochemistry could be significant and should be recognized in appropriate interstellar chemistry models.
Collapse
|
16
|
Lee JWL, Tikhonov DS, Chopra P, Maclot S, Steber AL, Gruet S, Allum F, Boll R, Cheng X, Düsterer S, Erk B, Garg D, He L, Heathcote D, Johny M, Kazemi MM, Köckert H, Lahl J, Lemmens AK, Loru D, Mason R, Müller E, Mullins T, Olshin P, Passow C, Peschel J, Ramm D, Rompotis D, Schirmel N, Trippel S, Wiese J, Ziaee F, Bari S, Burt M, Küpper J, Rijs AM, Rolles D, Techert S, Eng-Johnsson P, Brouard M, Vallance C, Manschwetus B, Schnell M. Time-resolved relaxation and fragmentation of polycyclic aromatic hydrocarbons investigated in the ultrafast XUV-IR regime. Nat Commun 2021; 12:6107. [PMID: 34671016 PMCID: PMC8528970 DOI: 10.1038/s41467-021-26193-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10-100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH*, PAH+* and PAH2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.
Collapse
Affiliation(s)
- J. W. L. Lee
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - D. S. Tikhonov
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - P. Chopra
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - S. Maclot
- grid.4514.40000 0001 0930 2361Department of Physics, Lund University, Lund, Sweden ,grid.8761.80000 0000 9919 9582Physics Department, University of Gothenburg, Gothenburg, Sweden
| | - A. L. Steber
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany ,grid.9026.d0000 0001 2287 2617Center for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - S. Gruet
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - F. Allum
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - R. Boll
- grid.434729.f0000 0004 0590 2900European XFEL, Schenefeld, Germany
| | - X. Cheng
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - S. Düsterer
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - B. Erk
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - D. Garg
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9026.d0000 0001 2287 2617Department of Physics, Universität Hamburg, Hamburg, Germany
| | - L. He
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - D. Heathcote
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - M. Johny
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M. M. Kazemi
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - H. Köckert
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - J. Lahl
- grid.4514.40000 0001 0930 2361Department of Physics, Lund University, Lund, Sweden
| | - A. K. Lemmens
- grid.5590.90000000122931605Radboud University, FELIX Laboratory, Nijmegen, The Netherlands ,grid.7177.60000000084992262Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - D. Loru
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - R. Mason
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - E. Müller
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - T. Mullins
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - P. Olshin
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - C. Passow
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J. Peschel
- grid.4514.40000 0001 0930 2361Department of Physics, Lund University, Lund, Sweden
| | - D. Ramm
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - D. Rompotis
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.434729.f0000 0004 0590 2900European XFEL, Schenefeld, Germany
| | - N. Schirmel
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - S. Trippel
- grid.9026.d0000 0001 2287 2617Center for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany ,grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J. Wiese
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9026.d0000 0001 2287 2617Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - F. Ziaee
- grid.36567.310000 0001 0737 1259J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS USA
| | - S. Bari
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M. Burt
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - J. Küpper
- grid.9026.d0000 0001 2287 2617Center for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany ,grid.9026.d0000 0001 2287 2617Department of Physics, Universität Hamburg, Hamburg, Germany ,grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9026.d0000 0001 2287 2617Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - A. M. Rijs
- grid.5590.90000000122931605Radboud University, FELIX Laboratory, Nijmegen, The Netherlands ,grid.12380.380000 0004 1754 9227Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D. Rolles
- grid.36567.310000 0001 0737 1259J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS USA
| | - S. Techert
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.7450.60000 0001 2364 4210Institute for X-Ray Physics, Georg-August-Universität, Göttingen, Germany
| | - P. Eng-Johnsson
- grid.4514.40000 0001 0930 2361Department of Physics, Lund University, Lund, Sweden
| | - M. Brouard
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - C. Vallance
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - B. Manschwetus
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M. Schnell
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
17
|
Hart CA, Mabbs R. Stabilized resonances are no less exciting. Nat Chem 2021; 13:721-722. [PMID: 34294913 DOI: 10.1038/s41557-021-00755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- C Annie Hart
- Department of Chemistry, Washington University, One Brookings Dr. St. Louis, MO, USA
| | - Richard Mabbs
- Department of Chemistry, Washington University, One Brookings Dr. St. Louis, MO, USA.
| |
Collapse
|
18
|
Kang DH, Kim J, Kim SK. Recapture of the Nonvalence Excess Electron into the Excited Valence Orbital Leads to the Chemical Bond Cleavage in the Anion. J Phys Chem Lett 2021; 12:6383-6388. [PMID: 34232669 DOI: 10.1021/acs.jpclett.1c01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The excess electron in the dipole-bound state (DBS) of the anion is found to be recaptured into the excited valence orbital localized at the positive end of the dipole, leading to the chemical bond cleavage of the anion. In the DBS of the 4-iodophenoxide anion, the extremely loosely bound electron (binding energy of 53 cm-1) is recaptured into the πσ* valence orbital, which is repulsive along the C-I bond extension coordinate, leading to the iodide (I-) and phenoxyl diradical (·C6H4O·) channel at the asymptotic limit. This is the first real-time observation of the state-specific relaxation (other than autodetachment) dynamics of the DBS and subsequent chemical reaction. The lifetime of the 4-iodophenoxide DBS at its zero-point energy (ZPE), which is measured for the cryogenically cooled trapped anion using the picosecond laser pump-probe scheme, has been estimated to be ∼9.5 ± 0.3 ps. Quantum mechanical calculations support the efficient transition from the DBS (below the detachment threshold) to the low-lying πσ* valence orbital of the first excited state of the anion. Similar experiments on 4-chlorophenoxide and 4-bromophenoxide anions indicate that the electron recaptures into excited valence orbitals hardly occur in the DBS of those anions, giving the long lifetimes (≫ns) at ZPE, suggesting that the internal conversion to S0 may be the major relaxation pathway for those anions.
Collapse
Affiliation(s)
- Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Jinwoo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Yifrach Y, Rahimi R, Portnov A, Baraban JH, Bar I. Maximal kinetic energy and angular distribution analysis of spatial map imaging: Application to photoelectrons from a single quantum state of H 2O. J Chem Phys 2021; 154:134201. [PMID: 33832240 DOI: 10.1063/5.0046015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dynamical or spatial properties of charged species can be obtained using electrostatic lenses by velocity map imaging (VMI) or spatial map imaging (SMI), respectively. Here, we report an approach for extracting dynamical and spatial information from patterns in SMI images that map the initial coordinates, velocity vectors, and angular distributions of charged particles onto the detector, using the same apparatus as in VMI. Deciphering these patterns required analysis and modeling, involving both their predictions from convolved spatial and velocity distributions and fitting observed images to kinetic energies (KEs) and anisotropy parameters (βs). As the first demonstration of this capability of SMI, the ensuing photoelectrons resulting from (2 + 1) resonant ionization of water in a selected rotational state were chosen to provide a rigorous basis for comparison to VMI. Operation with low acceleration voltages led to a measured SMI pattern with a unique vertical intensity profile that could be least-squares fitted to yield KE and β, in good agreement with VMI measurement. Due to the potential for improved resolution and the extended KE range achievable by this new technique, we expect that it might augment VMI in applications that require the analysis of charged particles and particularly in processes with high KE release.
Collapse
Affiliation(s)
- Yair Yifrach
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Rami Rahimi
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexander Portnov
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Joshua H Baraban
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ilana Bar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
20
|
Blackstone CC, Wallace AA, Sanov A. Photoelectron angular distributions in photodetachment from polarised d-like states: the case of HO2−. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1831636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Adam A. Wallace
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Andrei Sanov
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
21
|
Kang DH, An S, Kim SK. Real-Time Autodetachment Dynamics of Vibrational Feshbach Resonances in a Dipole-Bound State. PHYSICAL REVIEW LETTERS 2020; 125:093001. [PMID: 32915603 DOI: 10.1103/physrevlett.125.093001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Feshbach resonances corresponding to metastable vibrational states of the dipole-bound state (DBS) have been interrogated in real time for the first time. The state-specific autodetachment rates of the DBS of the phenoxide anion in the cryogenically cooled ion trap have been directly measured, giving τ∼33.5 ps for the lifetime of the most prominent 11^{'1} mode (519 cm^{-1}). Overall, the lifetime of the individual DBS state is strongly mode dependent to give τ∼5 ps for the 18^{'1} mode (632 cm^{-1}) and τ∼12 ps for the 11^{'2} mode (1036 cm^{-1}). The qualitative trend of the experiment could be successfully explained by the Fermi's golden rule. Autodetachment of the 11^{'1}18^{'1} combination mode is found to be much accelerated (τ≤1.4 ps) than expected, and its bifurcation dynamics into either the 11^{1}18^{0} or 11^{0}18^{1} state of the neutral core radical, according to the propensity rule of Δv=-1, could be distinctly differentiated through the photoelectron images to provide the unprecedented deep insights into the interaction between electronic and nuclear dynamics of the DBS, challenging the most sophisticated theoretical calculations.
Collapse
Affiliation(s)
- Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sejun An
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Yifrach Y, Rahimi R, Portnov A, Bar I. A new imaging-based method for alignment of multiple laser beams. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118404. [PMID: 32361520 DOI: 10.1016/j.saa.2020.118404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
A new method for multiple laser beams alignment, useful in a wide range of spectroscopies, is proposed and demonstrated. The method, based on the coupling of spatial map imaging (SMI) with velocity map imaging (VMI), aided beams visualization, through interrogation of the ionization signal of different species in a time-of-flight mass spectrometer. This approach is very effective for alignment and for evaluating the spatial overlap of laser beams with a molecular beam. This was demonstrated by monitoring the resonant two-photon ionization spectrum of 2-phenylethylamine (PEA) monomer and its hydrated (PEA-H2O) cluster and the ionization-loss stimulated Raman spectrum of the cluster, via VMIs accumulation, as a function of the exciting laser wavelength. The former permitted immediate classification of the features in the spectrum, corresponding to the molecular ion or the cluster. The proposed methodology will be useful in other challenging multiple laser beam experiments for spectroscopic studies and is expected to improve extensively their outcome.
Collapse
Affiliation(s)
- Yair Yifrach
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Rami Rahimi
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexander Portnov
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ilana Bar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
23
|
Abstract
Roaming reactions were first clearly identified in photodissociation of formaldehyde 15 years ago, and roaming dynamics are now recognized as a universal aspect of chemical reactivity. These reactions typically involve frustrated near-dissociation of a quasibound system to radical fragments, followed by reorientation at long range and intramolecular abstraction. The consequences can be unexpected formation of molecular products, depletion of the radical pool in chemical systems, and formation of products with unusual internal state distributions. In this review, I examine some current aspects of roaming reactions with an emphasis on experimental results, focusing on possible quantum effects in roaming and roaming dynamics in bimolecular systems. These considerations lead to a more inclusive definition of roaming reactions as those for which key dynamics take place at long range.
Collapse
Affiliation(s)
- Arthur G. Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
24
|
Chang Y, He ZG, Luo ZJ, Zhou JM, Zhang ZG, Chen ZC, Yang JY, Yu Y, Li QM, Che L, Wu GR, Wang XA, Yang XM, Yuan KJ. Application of laser dispersion method in apparatus combining H atom Rydberg tagging time-of-flight technique with vacuum ultraviolet free electron laser. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2001008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yao Chang
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi-gang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zi-jie Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, China
| | - Jia-mi Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi-guo Zhang
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutions and School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Zhi-chao Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jia-yue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Yu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qin-ming Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, China
| | - Guo-rong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xing-an Wang
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai-jun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Weeraratna C, Amarasinghe C, Joalland B, Suits AG. Ethylene Intersystem Crossing Caught in the Act by Photofragment Sulfur Atoms. J Phys Chem A 2020; 124:1712-1719. [PMID: 31941276 DOI: 10.1021/acs.jpca.9b11445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ethylene, C2H4, the simplest π-bonded molecule, is of enormous fundamental and commercial importance. Its lowest triplet state, in which the CH2 moieties occupy perpendicular planes, is well known from theory, but there has been no definitive experimental observation of this species. Here, velocity map imaging of the sulfur atoms in ethylene sulfide (c-C2H4S) photodissociation at 217 nm is used to reveal the internal state distribution of co-product ethylene. While both S (1D) and S (3P) translational energy distributions display three distinct regions that find their origins in singlet and triplet excited states of c-C2H4S, respectively, the S (3P) distribution is dominated by a fourth, low-recoil region. In this region, the distribution is fully isotropic at a recoil of 9 ± 1 kcal/mol, corresponding to the opening of the triplet ethylene channel. Multireference calculations suggest that this photodissociation pathway is mediated by a hot, transient biradical CH2CH2S that strongly favors CH2-hindered rotations in the predissociated complex. This photochemical ring-opening mechanism is invoked to account for the vibrational features observed in this low-recoil region, which are attributed to triplet ethylene relaxing to the torsional saddle point on the ground-state singlet surface. This study thereby gives for the first time the experimental confirmation of an adiabatic singlet-triplet splitting of 66 ± 1 kcal/mol and a torsional barrier height of 64 ± 1 kcal/mol in ethylene.
Collapse
Affiliation(s)
- Chaya Weeraratna
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211 United States
| | - Chandika Amarasinghe
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211 United States
| | - Baptiste Joalland
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211 United States
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211 United States
| |
Collapse
|
26
|
Study on photodynamics of furan via strong field multiphoton ionization by velocity map imaging technique. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Sub-cycle time resolution of multi-photon momentum transfer in strong-field ionization. Nat Commun 2019; 10:5548. [PMID: 31804473 PMCID: PMC6895185 DOI: 10.1038/s41467-019-13409-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/07/2019] [Indexed: 11/08/2022] Open
Abstract
During multi-photon ionization of an atom it is well understood how the involved photons transfer their energy to the ion and the photoelectron. However, the transfer of the photon linear momentum is still not fully understood. Here, we present a time-resolved measurement of linear momentum transfer along the laser pulse propagation direction. We can show that the linear momentum transfer to the photoelectron depends on the ionization time within the laser cycle using the attoclock technique. We can mostly explain the measured linear momentum transfer within a classical model for a free electron in a laser field. However, corrections are required due to the parent-ion interaction and due to the initial momentum when the electron enters the continuum. The parent-ion interaction induces a negative attosecond time delay between the appearance in the continuum of the electron with minimal linear momentum transfer and the point in time with maximum ionization rate.
Collapse
|
28
|
Voznyuk O, Jochim B, Zohrabi M, Broin A, Averin R, Carnes KD, Ben-Itzhak I, Wells E. Adaptive strong-field control of vibrational population in NO 2+. J Chem Phys 2019; 151:124310. [DOI: 10.1063/1.5115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- O. Voznyuk
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - Bethany Jochim
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - M. Zohrabi
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Adam Broin
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - R. Averin
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - K. D. Carnes
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - I. Ben-Itzhak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - E. Wells
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| |
Collapse
|
29
|
Röder A, Petersen J, Issler K, Fischer I, Mitrić R, Poisson L. Exploring the Excited-State Dynamics of Hydrocarbon Radicals, Biradicals, and Carbenes Using Time-Resolved Photoelectron Spectroscopy and Field-Induced Surface Hopping Simulations. J Phys Chem A 2019; 123:10643-10662. [DOI: 10.1021/acs.jpca.9b06346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anja Röder
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Jens Petersen
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kevin Issler
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lionel Poisson
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
30
|
Zeng HJ, Yang N, Johnson MA. Introductory lecture: advances in ion spectroscopy: from astrophysics to biology. Faraday Discuss 2019; 217:8-33. [PMID: 31094388 DOI: 10.1039/c9fd00030e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This introduction provides a historical context for the development of ion spectroscopy over the past half century by following the evolution of experimental methods to the present state-of-the-art. Rather than attempt a comprehensive review, we focus on how early work on small ions, carried out with fluorescence, direct absorption, and photoelectron spectroscopy, evolved into powerful technologies that can now address complex chemical problems ranging from catalysis to biophysics. One of these developments is the incorporation of cooling and temperature control to enable the general application of "messenger tagging" vibrational spectroscopy, first carried out using ionized supersonic jets and then with buffer gas cooling in radiofrequency ion traps. Some key advances in the application of time-resolved pump-probe techniques to follow ultrafast dynamics are also discussed, as are significant benchmarks in the refinement of ion mobility to allow spectroscopic investigation of large biopolymers with well-defined shapes. We close with a few remarks on challenges and opportunities to explore molecular level mechanics that drive macroscopic behavior.
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
31
|
Bain M, Hansen CS, Karsili TNV, Ashfold MNR. Quantifying rival bond fission probabilities following photoexcitation: C-S bond fission in t-butylmethylsulfide. Chem Sci 2019; 10:5290-5298. [PMID: 31191885 PMCID: PMC6540878 DOI: 10.1039/c9sc00738e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
We illustrate a new, collision-free experimental strategy that allows determination of the absolute probabilities of rival bond fission processes in a photoexcited molecule - here t-butylmethylsulfide (BSM). The method combines single photon ('universal') ionization laser probe methods, simultaneous imaging of all probed fragments (multi-mass ion imaging) and the use of an appropriate internal calibrant (here dimethylsulfide). Image analysis allows quantification of the dynamics of the rival B-SM and BS-M bond fission processes following ultraviolet (UV) excitation of BSM and shows the former to be twice as probable, despite the only modest (∼2%) differences in the respective ground state equilibrium C-S bond lengths or bond strengths. Rationalising this finding should provide a stringent test of the two close-lying, coupled excited states of 1A'' symmetry accessed by UV excitation in BSM and related thioethers, of the respective transition dipole moment surfaces, and of the geometry dependent non-adiabatic couplings that enable the rival C-S bond fissions.
Collapse
Affiliation(s)
- Matthew Bain
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK .
| | - Christopher S Hansen
- School of Chemistry , University of New South Wales , Sydney , NSW 2052 , Australia .
| | - Tolga N V Karsili
- Department of Chemistry , University of Louisiana at Lafayette , Louisiana , LA 70504 , USA
| | | |
Collapse
|
32
|
LaForge AC, Michiels R, Bohlen M, Callegari C, Clark A, von Conta A, Coreno M, Di Fraia M, Drabbels M, Huppert M, Finetti P, Ma J, Mudrich M, Oliver V, Plekan O, Prince KC, Shcherbinin M, Stranges S, Svoboda V, Wörner HJ, Stienkemeier F. Real-Time Dynamics of the Formation of Hydrated Electrons upon Irradiation of Water Clusters with Extreme Ultraviolet Light. PHYSICAL REVIEW LETTERS 2019; 122:133001. [PMID: 31012607 DOI: 10.1103/physrevlett.122.133001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 06/09/2023]
Abstract
Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance, e.g., in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H^{*}) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing extreme ultraviolet femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states.
Collapse
Affiliation(s)
- A C LaForge
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - R Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - M Bohlen
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - C Callegari
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - A Clark
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - A von Conta
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - M Coreno
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - M Di Fraia
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - M Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - M Huppert
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - P Finetti
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - J Ma
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - V Oliver
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - O Plekan
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - K C Prince
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - M Shcherbinin
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - S Stranges
- Department of Chemistry and Drug Technologies, University Sapienza, 00185 Rome, Italy, and Tasc IOM-CNR, Basovizza, Trieste, Italy
| | - V Svoboda
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - H J Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - F Stienkemeier
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
33
|
Suits AG. Invited Review Article: Photofragment imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:111101. [PMID: 30501356 DOI: 10.1063/1.5045325] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Photodissociation studies in molecular beams that employ position-sensitive particle detection to map product recoil velocities emerged thirty years ago and continue to evolve with new laser and detector technologies. These powerful methods allow application of tunable laser detection of single product quantum states, simultaneous measurement of velocity and angular momentum polarization, measurement of joint product state distributions for the detected and undetected products, coincident detection of multiple product channels, and application to radicals and ions as well as closed-shell molecules. These studies have permitted deep investigation of photochemical dynamics for a broad range of systems, revealed new reaction mechanisms, and addressed problems of practical importance in atmospheric, combustion, and interstellar chemistry. This review presents an historical overview, a detailed technical account of the range of methods employed, and selected experimental highlights illustrating the capabilities of the method.
Collapse
Affiliation(s)
- Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
34
|
Weeraratna C, Amarasinghe C, Lee SK, Li W, Suits AG. Demonstration of multi-hit and multi-mass capability of 3D imaging in a conventional velocity map imaging experiment. J Chem Phys 2018; 149:084202. [DOI: 10.1063/1.5040589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chaya Weeraratna
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | - Suk Kyoung Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Wen Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Arthur G. Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
35
|
Lin KC, Tsai PY, Chao MH, Nakamura M, Kasai T, Lombardi A, Palazzetti F, Aquilanti V. Roaming signature in photodissociation of carbonyl compounds. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1488951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (ROC)
| | - Po-Yu Tsai
- Department of Chemistry, National Chung-Hsing University, Taichung, Taiwan (ROC)
| | - Meng-Hsuan Chao
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
| | - Masaaki Nakamura
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
| | - Toshio Kasai
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Andrea Lombardi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS)2, Perugia, Italy
| | - Federico Palazzetti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
36
|
Long J, Furch FJ, Durá J, Tremsin AS, Vallerga J, Schulz CP, Rouzée A, Vrakking MJJ. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector. J Chem Phys 2018; 147:013919. [PMID: 28688405 DOI: 10.1063/1.4981126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (<6 μm) is achieved by the use of a center-of-mass centroiding algorithm. This performance is achieved while retaining a high event rate (104 per s). The spectrometer was characterized and used in a proof-of-principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.
Collapse
Affiliation(s)
- Jingming Long
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Federico J Furch
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Judith Durá
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Anton S Tremsin
- The Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - John Vallerga
- The Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - Claus Peter Schulz
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Arnaud Rouzée
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Marc J J Vrakking
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| |
Collapse
|
37
|
Harrison AW, Kable SH. Photodissociation dynamics of propanal and isobutanal: The Norrish Type I pathway. J Chem Phys 2018; 148:164308. [DOI: 10.1063/1.5019383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aaron W. Harrison
- School of Chemistry, University of New South Wales, New South Wales 2052, Australia
| | - Scott H. Kable
- School of Chemistry, University of New South Wales, New South Wales 2052, Australia
| |
Collapse
|
38
|
Pandit S, Hornung B, Dunning GT, Preston TJ, Brazener K, Orr-Ewing AJ. Primary vs. secondary H-atom abstraction in the Cl-atom reaction with n-pentane. Phys Chem Chem Phys 2018; 19:1614-1626. [PMID: 27995254 DOI: 10.1039/c6cp07164c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Velocity map imaging (VMI) measurements and quasi-classical trajectory (QCT) calculations on a newly developed, global potential energy surface (PES) combine to reveal the detailed mechanisms of reaction of Cl atoms with n-pentane. Images of the HCl (v = 0, J = 1, 2 and 3) products of reaction at a mean collision energy of 33.5 kJ mol-1 determine the centre-of-mass frame angular scattering and kinetic energy release distributions. The HCl products form with relative populations of J = 0-5 levels that fit to a rotational temperature of 138 ± 13 K. Product kinetic energy release distributions agree well with those derived from a previous VMI study of the pentyl radical co-product [Estillore et al., J. Chem. Phys. 2010, 132, 164313], but the angular distributions show more pronounced forward scattering. The QCT calculations reproduce many of the experimental observations, and allow comparison of the site-specific dynamics of abstraction of primary and secondary H-atoms. They also quantify the relative reactivity towards Cl atoms of the three different H-atom environments in n-pentane.
Collapse
Affiliation(s)
- Shubhrangshu Pandit
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Balázs Hornung
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Greg T Dunning
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Thomas J Preston
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Kristian Brazener
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
39
|
Qi W, Jiang P, Lin D, Chi X, Cheng M, Du Y, Zhu Q. A mini-photofragment translational spectrometer with ion velocity map imaging using low voltage acceleration. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:013101. [PMID: 29390722 DOI: 10.1063/1.5006982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.
Collapse
Affiliation(s)
- Wenke Qi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pan Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dan Lin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoping Chi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Cheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yikui Du
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qihe Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
40
|
REMPI detection of singlet oxygen 1O2 arising from UV-photodissociation of van der Waals complex isoprene-oxygen C5H8-O2. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Sztáray B, Voronova K, Torma KG, Covert KJ, Bodi A, Hemberger P, Gerber T, Osborn DL. CRF-PEPICO: Double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies. J Chem Phys 2017; 147:013944. [DOI: 10.1063/1.4984304] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bálint Sztáray
- Department of Chemistry, University of the Pacific, Stockton, California 95211, USA
| | - Krisztina Voronova
- Department of Chemistry, University of the Pacific, Stockton, California 95211, USA
| | - Krisztián G. Torma
- Department of Chemistry, University of the Pacific, Stockton, California 95211, USA
| | - Kyle J. Covert
- Department of Chemistry, University of the Pacific, Stockton, California 95211, USA
| | - Andras Bodi
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
| | - Thomas Gerber
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
| | - David L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, USA
| |
Collapse
|
42
|
Nakamura M, Yang SJ, Lin KC, Kasai T, Che DC, Lombardi A, Palazzetti F, Aquilanti V. Stereodirectional images of molecules oriented by a variable-voltage hexapolar field: Fragmentation channels of 2-bromobutane electronically excited at two photolysis wavelengths. J Chem Phys 2017; 147:013917. [DOI: 10.1063/1.4981025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Masaaki Nakamura
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shiun-Jr Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Toshio Kasai
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Dock-Chil Che
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Andrea Lombardi
- Università di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, 06123 Perugia, Italy
| | - Federico Palazzetti
- Università di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, 06123 Perugia, Italy
| | - Vincenzo Aquilanti
- Università di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, 06123 Perugia, Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00016 Rome, Italy
| |
Collapse
|
43
|
Sun ZF, Scheidsbach RJA, Suits AG, Parker DH. Imaging multiphoton ionization and dissociation of rotationally warm CO via the B +Σ 1 and EΠ1 electronic states. J Chem Phys 2017; 147:013906. [PMID: 28688406 DOI: 10.1063/1.4973677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pathways for formation of C+ and O+ ions when applying (2 + 1) resonance enhanced multiphoton ionization (REMPI) of CO via the B1Σ+ and E1Π electronic states are characterized with the velocity map imaging technique. By employing an unskimmed pulsed valve, it was possible to obtain sharp images for a wide range of initial CO J-states. Most of the atomic ion production pathways could be assigned as one- or two-photon dissociation of a series of vibrational levels of the CO+ X2Σ+ and A2Π states. Large enhancements in dissociation of particular CO+ vibrational states in these progressions could be accurately assigned to accidental resonances of the REMPI laser with CO+ X2Σ+-B2Σ+ transitions.
Collapse
Affiliation(s)
- Z-F Sun
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - R J A Scheidsbach
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - A G Suits
- Chemistry Department, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, USA
| | - D H Parker
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
44
|
Chandler DW, Houston PL, Parker DH. Perspective: Advanced particle imaging. J Chem Phys 2017; 147:013601. [PMID: 28688442 PMCID: PMC5648558 DOI: 10.1063/1.4983623] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 11/14/2022] Open
Abstract
Since the first ion imaging experiment [D. W. Chandler and P. L. Houston, J. Chem. Phys. 87, 1445-1447 (1987)], demonstrating the capability of collecting an image of the photofragments from a unimolecular dissociation event and analyzing that image to obtain the three-dimensional velocity distribution of the fragments, the efficacy and breadth of application of the ion imaging technique have continued to improve and grow. With the addition of velocity mapping, ion/electron centroiding, and slice imaging techniques, the versatility and velocity resolution have been unmatched. Recent improvements in molecular beam, laser, sensor, and computer technology are allowing even more advanced particle imaging experiments, and eventually we can expect multi-mass imaging with co-variance and full coincidence capability on a single shot basis with repetition rates in the kilohertz range. This progress should further enable "complete" experiments-the holy grail of molecular dynamics-where all quantum numbers of reactants and products of a bimolecular scattering event are fully determined and even under our control.
Collapse
Affiliation(s)
- David W Chandler
- Sandia National Laboratories, Combustion Research Facility, Livermore, California 94550, USA
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - David H Parker
- Department of Laser and Molecular Physics, Radboud University of Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
45
|
Forbes R, Makhija V, Veyrinas K, Stolow A, Lee JWL, Burt M, Brouard M, Vallance C, Wilkinson I, Lausten R, Hockett P. Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera. J Chem Phys 2017; 147:013911. [DOI: 10.1063/1.4978923] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ruaridh Forbes
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Varun Makhija
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Kévin Veyrinas
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Albert Stolow
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Jason W. L. Lee
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Iain Wilkinson
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Methods for Material Development, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Rune Lausten
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Paul Hockett
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
46
|
Hróðmarsson HR, Kartakoullis A, Zaouris D, Glodic P, Wang H, Samartzis PC, Kvaran Á. Excitation dynamics involving homogeneous multistate interactions: one and two color VMI and REMPI of HBr. Phys Chem Chem Phys 2017; 19:11354-11365. [PMID: 28421209 DOI: 10.1039/c7cp00345e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Velocity map imaging (VMI) data and mass resolved REMPI spectra are complementarily utilized to elucidate the involvement of homogeneous multistate interactions in excited state dynamics of HBr. The H1Σ+(v' = 0) and E1Σ+(v' = 1) Rydberg states and the V1Σ+(v'= m + 7) and V1Σ+(v'= m + 8) ion-pair states are explored as a function of rotational quantum number in the two-photon excitation region of 79 100-80 700 cm-1. H+ and Br+ images were recorded by one- as well as two-color excitation schemes. Kinetic energy release (KER) spectra and angular distributions were extracted from the data. Strong-to-medium interactions between the E(1) and V(m + 8)/V(m + 7) states on one hand and the H(0) and V(m + 7)/V(m + 8) states on the other hand were quantified from peak shifts and intensity analysis of REMPI spectra. The effects of those interactions on subsequent photoionization and photolytic pathways of HBr were evaluated in one-color VMI experiments of the H+ and two-color VMI experiments of the Br+ photoproducts.
Collapse
|
47
|
Affiliation(s)
- Jennifer Meyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
48
|
Saha K, Prabhakaran A, Chandrasekaran V, Rappaport ML, Heber O, Zajfman D. An experimental setup to study delayed electron emission upon photoexcitation of trapped polyatomic anions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:053101. [PMID: 28571459 DOI: 10.1063/1.4982034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A Velocity Map Imaging (VMI) spectrometer has been designed and integrated with an electrostatic ion beam trap to study delayed electron emission from trapped polyatomic anions upon photodetachment. The VMI spectrometer is small in size and can record a wide range of photoelectron energies, with variable magnification. Delayed electron emission can be recorded in our experimental setup for any time duration after the photoexcitation of the polyatomic anions. Experiments were carried out with trapped O- and C5- ions to demonstrate the capability of the spectrometer. Delayed electron emissions from C5- as well as prompt photoelectrons from O- were detected by the VMI spectrometer upon photoexcitation. The design and performance of the spectrometer are presented in detail.
Collapse
Affiliation(s)
- K Saha
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - A Prabhakaran
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - V Chandrasekaran
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - M L Rappaport
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - O Heber
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - D Zajfman
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
49
|
Lee KLK, Nauta K, Kable SH. Photodissociation of acetone from 266 to 312 nm: Dynamics of CH3 + CH3CO channels on the S0 and T1 states. J Chem Phys 2017; 146:044304. [DOI: 10.1063/1.4974035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kin Long Kelvin Lee
- School of Chemistry, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Klaas Nauta
- School of Chemistry, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Scott H. Kable
- School of Chemistry, University of New South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
50
|
Brouard M, Chadwick H, Gordon SDS, Hornung B, Nichols B, Aoiz FJ, Stolte S. Stereodynamics in NO(X) + Ar inelastic collisions. J Chem Phys 2017; 144:224301. [PMID: 27306001 DOI: 10.1063/1.4952649] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of orientation of the NO(X) bond axis prior to rotationally inelastic collisions with Ar has been investigated experimentally and theoretically. A modification to conventional velocity-map imaging ion optics is described, which allows the orientation of hexapole state-selected NO(X) using a static electric field, followed by velocity map imaging of the resonantly ionized scattered products. Bond orientation resolved differential cross sections are measured experimentally for a series of spin-orbit conserving transitions and compared with quantum mechanical calculations. The agreement between experimental results and those from quantum mechanical calculations is generally good. Parity pairs, which have previously been observed in collisions of unpolarized NO with various rare gases, are not observed due to the coherent superposition of the two j = 1/2, Ω = 1/2 Λ-doublet levels in the orienting field. The normalized difference differential cross sections are found to depend predominantly on the final rotational state, and are not very sensitive to the final Λ-doublet level. The differential steric effect has also been investigated theoretically, by means of quantum mechanical and classical calculations. Classically, the differential steric effect can be understood by considering the steric requirement for different types of trajectories that contribute to different regions of the differential cross section. However, classical effects cannot account quantitatively for the differential steric asymmetry observed in NO(X) + Ar collisions, which reflects quantum interference from scattering at either end of the molecule. This quantum interference effect is dominated by the repulsive region of the potential.
Collapse
Affiliation(s)
- M Brouard
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - H Chadwick
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - S D S Gordon
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - B Hornung
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - B Nichols
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - S Stolte
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|