1
|
Zhou L, Huang Q, Xia Y. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry. Chem Rev 2024; 124:8597-8619. [PMID: 38829921 PMCID: PMC11273350 DOI: 10.1021/acs.chemrev.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Plasmon refers to the coherent oscillation of all conduction-band electrons in a nanostructure made of a metal or a heavily doped semiconductor. Upon excitation, the plasmon can decay through different channels, including nonradiative Landau damping for the generation of plasmon-induced energetic carriers, the so-called hot electrons and holes. The energetic carriers can be collected by transferring to a functional material situated next to the plasmonic component in a hybrid configuration to facilitate a range of photochemical processes for energy or chemical conversion. This article centers on the recent advancement in generating and utilizing plasmon-induced hot electrons in a rich variety of hybrid nanostructures. After a brief introduction to the fundamentals of hot-electron generation and decay in plasmonic nanocrystals, we extensively discuss how to collect the hot electrons with various types of functional materials. With a focus on plasmonic nanocrystals made of metals, we also briefly examine those based upon heavily doped semiconductors. Finally, we illustrate how site-selected growth can be leveraged for the rational fabrication of different types of hybrid nanostructures, with an emphasis on the parameters that can be experimentally controlled to tailor the properties for various applications.
Collapse
Affiliation(s)
- Li Zhou
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Qijia Huang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Farcaş AA, Bende A. Theoretical insights into dopamine photochemistry adsorbed on graphene-type nanostructures. Phys Chem Chem Phys 2024; 26:14937-14947. [PMID: 38738904 DOI: 10.1039/d4cp00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The equilibrium geometry structures and light absorption properties of the dopamine (DA) and dopamine-o-quinone (DAQ) adsorbed on the graphene surface have been investigated using the ground state and linear-response time-dependent density functional theories. Two types of graphene systems were considered, a rectangular form of hexagonal lattice with optimized C-C bond length as the model system for graphene nanoparticles (GrNP) and a similar system but with fixed C-C bond length (1.42 Å) as the model system for graphene 2D sheet (GrS). The analysis of the vertical excitations showed that three types of electronic transitions are possible, namely, localized on graphene, localized on the DA or DAQ, and charge transfer (CT). In the case of the graphene-DA complex, the charge transfer excitations were characterized by the molecule-to-surface (MSCT) character, whereas the graphene-DAQ was characterized by the reverse, i.e. surface-to-molecule (SMCT). The difference between the two cases is given by the presence of an energetically low-lying unoccupied orbital (LUMO+1) that allows charge transfer from the surface to the molecule in the case of DAQ. However, it was also shown that the fingerprints of excited electronic states associated with the adsorbed molecules cannot be seen in the spectrum, as they are mostly suppressed by the characteristic spectral shape of graphene.
Collapse
Affiliation(s)
- Alex-Adrian Farcaş
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| | - Attila Bende
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Jiang H, He Y, Lu J, Zheng F, Zhu Z, Yan Y, Sun Q. Unraveling the Mechanisms of On-Surface Photoinduced Reaction with Polarized Light Excitations. ACS NANO 2024; 18:1118-1125. [PMID: 38117979 DOI: 10.1021/acsnano.3c10690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
On-surface reaction has been shown as a powerful strategy to achieve atomically precise nanostructures. Numerous reactions have been realized on surfaces with thermal annealing as the primary excitation. In contrast, far fewer reactions have been triggered by light on surfaces despite its advantages due to the nonthermal process. This is possibly ascribed to our limited understanding on the excitation mechanisms of on-surface photoinduced reactions. In this work, we have studied the photoinduced debrominated coupling by using a linearly polarized light. We successfully achieved the reaction with no annealing process and obtained oligomers as the primary reaction products, which is in contrast with the formation of polymers with traditional thermal treatments. By exploring the dependence of reaction yield on the angle of incidence, we demonstrate an experimental method that can provide fundamental insights. The comparison with the theoretical approximation suggests indirect hot carrier excitation as the leading excitation mechanism. Our results not only provide fundamental insight into the surface photochemical reactions but also set the basis for harnessing light to construct unconventional nanomaterials.
Collapse
Affiliation(s)
- Hao Jiang
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Yu He
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Jiayi Lu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Fengru Zheng
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Zhiwen Zhu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Yuyi Yan
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Qiang Sun
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
4
|
Lyu P, Espinoza R, Nguyen SC. Photocatalysis of Metallic Nanoparticles: Interband vs Intraband Induced Mechanisms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15685-15698. [PMID: 37609384 PMCID: PMC10440817 DOI: 10.1021/acs.jpcc.3c04436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Indexed: 08/24/2023]
Abstract
Photocatalysis induced by localized surface plasmon resonance of metallic nanoparticles has been studied for more than a decade, but photocatalysis originating from direct interband excitations is still under-explored. The spectral overlap and the coupling of these two optical regimes also complicate the determination of hot carriers' energy states and eventually hinder the accurate assignment of their catalytic role in studied reactions. In this Featured Article, after reviewing previous studies, we suggest classifying the photoexcitation via intra- and interband transitions where the physical states of hot carriers are well-defined. Intraband transitions are featured by creating hot electrons above the Fermi level and suitable for reductive catalytic pathways, whereas interband transitions are featured by generating hot d-band holes below the Fermi level and better for oxidative catalytic pathways. Since the contribution of intra- and interband transitions are different in the spectral regions of localized surface plasmon resonance and direct interband excitations, the wavelength dependence of the photocatalytic activities is very helpful in assigning which transitions and carriers contribute to the observed catalysis.
Collapse
Affiliation(s)
- Pin Lyu
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Randy Espinoza
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C. Nguyen
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
5
|
Ninakanti R, Dingenen F, Borah R, Peeters H, Verbruggen SW. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Cham) 2022; 380:40. [PMID: 35951165 DOI: 10.1007/s41061-022-00390-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term "hybrid" implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core-shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Collapse
Affiliation(s)
- Rajeshreddy Ninakanti
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
6
|
Swearer DF, Bourgeois BB, Angell DK, Dionne JA. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy. Acc Chem Res 2021; 54:3632-3642. [PMID: 34492177 DOI: 10.1021/acs.accounts.1c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoparticle photocatalysts are essential to processes ranging from chemical production and water purification to air filtration and surgical instrument sterilization. Photochemical reactions are generally mediated by the illumination of metallic and/or semiconducting nanomaterials, which provide the necessary optical absorption, electronic band structure, and surface faceting to drive molecular reactions. However, with reaction efficiency and selectivity dictated by atomic and molecular interactions, imaging and controlling photochemistry at the atomic scale are necessary to both understand reaction mechanisms and to improve nanomaterials for next-generation catalysts. Here, we describe how advances in plasmonics, combined with advances in electron microscopy, particularly optically coupled transmission electron microscopy (OTEM), can be used to image and control light-induced chemical transformations at the nanoscale. We focus on our group's research investigating the interaction between hydrogen gas and Pd nanoparticles, which presents an important model system for understanding both hydrogenation catalysis and hydrogen storage. The studies described in this Account primarily rely on an environmental transmission electron microscope, a tool capable of circumventing traditional TEM's high-vacuum requirements, outfitted with optical sources and detectors to couple light into and out of the microscope. First, we describe the H2 loading kinetics of individual Pd nanoparticles. When confined to sizes of less than ∼100 nm, single-crystalline Pd nanoparticles exhibit coherent phase transformations between the hydrogen-poor α-phase and hydrogen-rich β-phase, as revealed through monitoring the bulk plasmon resonance with electron energy loss spectroscopy. Next, we describe how contrast imaging techniques, such as phase contrast STEM and displaced-aperture dark field, can be employed as real-time techniques to image phase transformations with 100 ms temporal resolution. Studies of multiply twinned Pd nanoparticles and high aspect ratio Pd nanorods demonstrate that internal strain and grain boundaries can lead to partial hydrogenation within individual nanoparticles. Finally, we describe how OTEM can be used to locally probe nanoparticle dynamics under optical excitation and in reactive chemical environments. Under illumination, multicomponent plasmonic photocatalysts consisting of a gold nanoparticle "antenna" and a Pd "reactor" show clear α-phase nucleation in regions close to electromagnetic "hot spots" when near plasmonic antennas. Importantly, these hot spots need not correspond to the traditionally active, energetically preferred sites of catalytic nanoparticles. Nonthermal effects imparted by plasmonic nanoparticles, including electromagnetic field enhancement and plasmon-derived hot carriers, are crucial to explaining the site selectivity observed in PdHx phase transformations under illumination. This Account demonstrates how light can contribute to selective chemical phenomena in plasmonic heterostructures, en route to sustainable, solar-driven chemical production.
Collapse
Affiliation(s)
- Dayne F. Swearer
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
| | - Briley B. Bourgeois
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
| | - Daniel K. Angell
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
7
|
Pettine J, Meyer SM, Medeghini F, Murphy CJ, Nesbitt DJ. Controlling the Spatial and Momentum Distributions of Plasmonic Carriers: Volume vs Surface Effects. ACS NANO 2021; 15:1566-1578. [PMID: 33427462 DOI: 10.1021/acsnano.0c09045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spatial and momentum distributions of excited charge carriers in nanoplasmonic systems depend sensitively on optical excitation parameters and nanoscale geometry, which therefore control the efficiency and functionality of plasmon-enhanced catalysts, photovoltaics, and nanocathodes. Growing appreciation over the past decade for the different roles of volume- vs surface-mediated excitation in such systems has underscored the need for explicit separation and quantification of these pathways. Toward these ends, we utilize angle-resolved photoelectron velocity map imaging to distinguish these processes in gold nanorods of different aspect ratios down to the spherical limit. Despite coupling to the longitudinal surface plasmon, we find that resonantly excited nanorods always exhibit transverse (sideways) multiphoton photoemission distributions due to photoexcitation within volume field enhancement regions rather than at the tip hot spots. This behavior is accurately reproduced via ballistic Monte Carlo modeling, establishing that volume-excited electrons primarily escape through the nanorod sides. Furthermore, we demonstrate optical control over the photoelectron angular distributions via a screening-induced transition from volume (transverse/side) to surface (longitudinal/tip) photoemission with red detuning of the excitation laser. Frequency-dependent cross sections are separately quantified for these mechanisms by comparison with theoretical calculations, combining volume and surface velocity-resolved photoemission modeling. Based on these results, we identify nanomaterial-specific contributions to the photoemission cross sections and offer general nanoplasmonic design principles for controlling photoexcitation/emission distributions via geometry- and frequency-dependent tuning of the volume vs surface fields.
Collapse
Affiliation(s)
- Jacob Pettine
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean M Meyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Fabio Medeghini
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Vu NN, Kaliaguine S, Do TO. Plasmonic Photocatalysts for Sunlight-Driven Reduction of CO 2 : Details, Developments, and Perspectives. CHEMSUSCHEM 2020; 13:3967-3991. [PMID: 32476290 DOI: 10.1002/cssc.202000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Plasmonic photocatalysis is among the most efficient processes for the photoreduction of CO2 into valuable fuels. The formation of localized surface plasmon resonance (LSPR), energy transfer, and surface reaction are the significant steps in this process. LSPR plays an essential role in the performance of plasmonic photocatalysts as it promotes an excellent, light absorption over a broad wavelength range while simultaneously facilitating an efficient energy transfer to semiconductors. The LSPR transfers energy to a semiconductor through various mechanisms, which have both advantages and disadvantages. This work points out four critical features for plasmonic photocatalyst design, that is, plasmonic materials, size, shape of plasmonic nanoparticles (PNPs), and the contact between PNPs and semiconductor. Various developed plasmonic photocatalysts, as well as their photocatalytic performance in CO2 photoreduction, are reviewed and discussed. Finally, perspectives of advanced architectures and structural engineering for plasmonic photocatalyst design are put forward with high expectations to achieve an efficient CO2 photoreduction shortly.
Collapse
Affiliation(s)
- Nhu-Nang Vu
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Serge Kaliaguine
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|
9
|
Da Browski M, Dai Y, Petek H. Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chem Rev 2020; 120:6247-6287. [PMID: 32530607 DOI: 10.1021/acs.chemrev.0c00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmonics is a rapidly growing field spanning research and applications across chemistry, physics, optics, energy harvesting, and medicine. Ultrafast photoemission electron microscopy (PEEM) has demonstrated unprecedented power in the characterization of surface plasmons and other electronic excitations, as it uniquely combines the requisite spatial and temporal resolution, making it ideally suited for 3D space and time coherent imaging of the dynamical plasmonic phenomena on the nanofemto scale. The ability to visualize plasmonic fields evolving at the local speed of light on subwavelength scale with optical phase resolution illuminates old phenomena and opens new directions for growth of plasmonics research. In this review, we guide the reader thorough experimental description of PEEM as a characterization tool for both surface plasmon polaritons and localized plasmons and summarize the exciting progress it has opened by the ultrafast imaging of plasmonic phenomena on the nanofemto scale.
Collapse
Affiliation(s)
- Maciej Da Browski
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL, U.K
| | - Yanan Dai
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
Therrien AJ, Kale MJ, Yuan L, Zhang C, Halas NJ, Christopher P. Impact of chemical interface damping on surface plasmon dephasing. Faraday Discuss 2019; 214:59-72. [DOI: 10.1039/c8fd00151k] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We characterized the change in photon absorption and scattering properties of plasmonic Au nanoparticles by chemical interface damping.
Collapse
Affiliation(s)
- Andrew J. Therrien
- Department of Chemical Engineering
- University of California
- Santa Barbara
- USA
| | - Matthew J. Kale
- Department of Chemical Engineering and Materials Science
- University of Minnesota
- Minneapolis
- USA
| | - Lin Yuan
- Department of Chemistry
- Rice University
- Houston
- USA
- Laboratory for Nanophotonics
| | - Chao Zhang
- Department of Electrical and Computer Engineering
- Rice University
- Houston
- USA
- Laboratory for Nanophotonics
| | - Naomi J. Halas
- Department of Electrical and Computer Engineering
- Rice University
- Houston
- USA
- Department of Physics and Astronomy
| | | |
Collapse
|
11
|
Schreck S, Diesen E, LaRue J, Ogasawara H, Marks K, Nordlund D, Weston M, Beye M, Cavalca F, Perakis F, Sellberg J, Eilert A, Kim KH, Coslovich G, Coffee R, Krzywinski J, Reid A, Moeller S, Lutman A, Öström H, Pettersson LGM, Nilsson A. Atom-specific activation in CO oxidation. J Chem Phys 2018; 149:234707. [PMID: 30579301 DOI: 10.1063/1.5044579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft X-ray pulses and discuss the prospects of femtosecond X-ray pump X-ray spectroscopy probe, as well as X-ray two-pulse correlation measurements for fundamental investigations of chemical reactions via selective X-ray excitation.
Collapse
Affiliation(s)
- Simon Schreck
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Elias Diesen
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Jerry LaRue
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Kess Marks
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Dennis Nordlund
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Matthew Weston
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Martin Beye
- DESY Photon Science, Notkestrasse 85, Hamburg 22607, Germany
| | - Filippo Cavalca
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Jonas Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - André Eilert
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Kyung Hwan Kim
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Giacomo Coslovich
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Ryan Coffee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jacek Krzywinski
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alex Reid
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Stefan Moeller
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alberto Lutman
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Henrik Öström
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| |
Collapse
|
12
|
Zhan C, Chen XJ, Yi J, Li JF, Wu DY, Tian ZQ. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0031-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Cushing SK, Chen CJ, Dong CL, Kong XT, Govorov AO, Liu RS, Wu N. Tunable Nonthermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure. ACS NANO 2018; 12:7117-7126. [PMID: 29945441 DOI: 10.1021/acsnano.8b02939] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
For semiconductors photosensitized with organic dyes or quantum dots, transferred electrons are usually considered thermalized at the conduction band edge. This study suggests that the electrons injected from a plasmonic metal into a thin semiconductor shell can be nonthermal with energy up to the plasmon frequency. In other words, the electrons injected into the semiconductor are still hot carriers. Photomodulated X-ray absorption measurements of the Ti L2,3 edge are compared before and after excitation of the plasmon in Au@TiO2 core-shell nanoparticles. Comparison with theoretical predictions of the X-ray absorption, which include the heating and state-filling effects from injected hot carriers, suggests that the electrons transferred from the plasmon remain nonthermal in the ∼10 nm TiO2 shell, due in part to a slow trapping in defect states. By repeating the measurements for spherical, rod-like, and star-like metal nanoparticles, the magnitude of the nonthermal distribution, peak energy, and number of injected hot electrons are confirmed to be tuned by the plasmon frequency and the sharp corners of the plasmonic nanostructure. The results suggest that plasmonic photosensitizers can not only extend the sunlight absorption spectral range of semiconductor-based devices but could also result in increased open circuit voltages and elevated thermodynamic driving forces for solar fuel generation in photoelectrochemical cells.
Collapse
Affiliation(s)
| | - Chih-Jung Chen
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Chung Li Dong
- Department of Physics , Tamkang University , Tamsui 25137 , Taiwan
| | - Xiang-Tian Kong
- Institute of Fundamental and Frontier Sciences and State Key Laboratory of Electronic Thin Films and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , China
- Department of Physics and Astronomy , Ohio University , Athens , Ohio 45701 , United States
| | - Alexander O Govorov
- Department of Physics and Astronomy , Ohio University , Athens , Ohio 45701 , United States
| | - Ru-Shi Liu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology , National Taipei University of Technology , Taipei 10617 , Taiwan
| | | |
Collapse
|
14
|
Simoncelli S, Li Y, Cortés E, Maier SA. Nanoscale Control of Molecular Self-Assembly Induced by Plasmonic Hot-Electron Dynamics. ACS NANO 2018; 12:2184-2192. [PMID: 29346720 DOI: 10.1021/acsnano.7b08563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembly processes allow designing and creating complex nanostructures using molecules as building blocks and surfaces as scaffolds. This autonomous driven construction is possible due to a complex thermodynamic balance of molecule-surface interactions. As such, nanoscale guidance and control over this process is hard to achieve. Here we use the highly localized light-to-chemical-energy conversion of plasmonic materials to spatially cleave Au-S bonds on predetermined locations within a single nanoparticle, enabling a high degree of control over this archetypal system for molecular self-assembly. Our method offers nanoscale precision and high-throughput light-induced tailoring of the surface chemistry of individual and packed nanosized metallic structures by simply varying wavelength and polarization of the incident light. Assisted by single-molecule super-resolution fluorescence microscopy, we image, quantify, and shed light onto the plasmon-induced desorption mechanism. Our results point toward localized distribution of hot electrons, contrary to uniformly distributed lattice heating, as the mechanism inducing Au-S bond breaking. We demonstrate that plasmon-induced photodesorption enables subdiffraction and even subparticle multiplexing. Finally, we explore possible routes to further exploit these concepts for the selective positioning of nanomaterials and the sorting and purification of colloidal nanoparticles.
Collapse
Affiliation(s)
- Sabrina Simoncelli
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Yi Li
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- Chair in Hybrid Nanosystems, Faculty of Physics , Ludwig-Maximilians-Universität München , 80799 München , Germany
| |
Collapse
|
15
|
Tan S, Dai Y, Zhang S, Liu L, Zhao J, Petek H. Coherent Electron Transfer at the Ag/Graphite Heterojunction Interface. PHYSICAL REVIEW LETTERS 2018; 120:126801. [PMID: 29694071 DOI: 10.1103/physrevlett.120.126801] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 06/08/2023]
Abstract
Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.
Collapse
Affiliation(s)
- Shijing Tan
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanan Dai
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Shengmin Zhang
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Liming Liu
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Zhao
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
16
|
Kumar PV, Norris DJ. Tailoring Energy Transfer from Hot Electrons to Adsorbate Vibrations for Plasmon-Enhanced Catalysis. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priyank V. Kumar
- Optical Materials Engineering
Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - David J. Norris
- Optical Materials Engineering
Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
17
|
Xiang B, Li Y, Pham CH, Paesani F, Xiong W. Ultrafast direct electron transfer at organic semiconductor and metal interfaces. SCIENCE ADVANCES 2017; 3:e1701508. [PMID: 29159282 PMCID: PMC5694661 DOI: 10.1126/sciadv.1701508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/19/2017] [Indexed: 06/01/2023]
Abstract
The ability to control direct electron transfer can facilitate the development of new molecular electronics, light-harvesting materials, and photocatalysis. However, control of direct electron transfer has been rarely reported, and the molecular conformation-electron dynamics relationships remain unclear. We describe direct electron transfer at buried interfaces between an organic polymer semiconductor film and a gold substrate by observing the first dynamical electric field-induced vibrational sum frequency generation (VSFG). In transient electric field-induced VSFG measurements on this system, we observe dynamical responses (<150 fs) that depend on photon energy and polarization, demonstrating that electrons are directly transferred from the Fermi level of gold to the lowest unoccupied molecular orbital of organic semiconductor. Transient spectra further reveal that, although the interfaces are prepared without deliberate alignment control, a subensemble of surface molecules can adopt conformations for direct electron transfer. Density functional theory calculations support the experimental results and ascribe the observed electron transfer to a flat-lying polymer configuration in which electronic orbitals are found to be delocalized across the interface. The present observation of direct electron transfer at complex interfaces and the insights gained into the relationship between molecular conformations and electron dynamics will have implications for implementing novel direct electron transfer in energy materials.
Collapse
Affiliation(s)
- Bo Xiang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093–0418, USA
| | - Yingmin Li
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093–0418, USA
| | - C. Huy Pham
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093–0358, USA
| | - Francesco Paesani
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093–0418, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093–0358, USA
| | - Wei Xiong
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093–0418, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093–0358, USA
| |
Collapse
|
18
|
Nilsson A, LaRue J, Öberg H, Ogasawara H, Dell'Angela M, Beye M, Öström H, Gladh J, Nørskov J, Wurth W, Abild-Pedersen F, Pettersson L. Catalysis in real time using X-ray lasers. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Tan S, Liu L, Dai Y, Ren J, Zhao J, Petek H. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions. J Am Chem Soc 2017; 139:6160-6168. [DOI: 10.1021/jacs.7b01079] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shijing Tan
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Liming Liu
- ICQD/Hefei
National Laboratory for Physical Sciences at Microscale, and Key Laboratory
of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences,
and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanan Dai
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jindong Ren
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jin Zhao
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- ICQD/Hefei
National Laboratory for Physical Sciences at Microscale, and Key Laboratory
of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences,
and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hrvoje Petek
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Ro I, Sener C, Stadelman TM, Ball MR, Venegas JM, Burt SP, Hermans I, Dumesic JA, Huber GW. Measurement of intrinsic catalytic activity of Pt monometallic and Pt-MoOx interfacial sites over visible light enhanced PtMoOx/SiO2 catalyst in reverse water gas shift reaction. J Catal 2016. [DOI: 10.1016/j.jcat.2016.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Böckmann H, Liu S, Mielke J, Gawinkowski S, Waluk J, Grill L, Wolf M, Kumagai T. Direct Observation of Photoinduced Tautomerization in Single Molecules at a Metal Surface. NANO LETTERS 2016; 16:1034-41. [PMID: 26796945 DOI: 10.1021/acs.nanolett.5b04092] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular switches are of fundamental importance in nature, and light is an important stimulus to selectively drive the switching process. However, the local dynamics of a conformational change in these molecules remain far from being completely understood at the single-molecule level. Here, we report the direct observation of photoinduced tautomerization in single porphycene molecules on a Cu(111) surface by using a combination of low-temperature scanning tunneling microscopy and laser excitation in the near-infrared to ultraviolet regime. It is found that the thermodynamically stable trans configuration of porphycene can be converted to the metastable cis configuration in a unidirectional fashion by photoirradiation. The wavelength dependence of the tautomerization cross section exhibits a steep increase around 2 eV and demonstrates that excitation of the Cu d-band electrons and the resulting hot carriers play a dominant role in the photochemical process. Additionally, a pronounced isotope effect in the cross section (∼100) is observed when the transferred hydrogen atoms are substituted with deuterium, indicating a significant contribution of zero-point energy in the reaction. Combined with the study of inelastic tunneling electron-induced tautomerization with the STM, we propose that tautomerization occurs via excitation of molecular vibrations after photoexcitation. Interestingly, the observed cross section of ∼10(-19) cm(2) in the visible-ultraviolet region is much higher than that of previously studied molecular switches on a metal surface, for example, azobenzene derivatives (10(-23)-10(-22) cm(2)). Furthermore, we examined a local environmental impact on the photoinduced tautomerization by varying molecular density on the surface and find substantial changes in the cross section and quenching of the process due to the intermolecular interaction at high density.
Collapse
Affiliation(s)
- H Böckmann
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | - S Liu
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | - J Mielke
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | - S Gawinkowski
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, Warsaw 01-224, Poland
| | - J Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, Warsaw 01-224, Poland
- Faculty of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszyński University , Dewajtis 5, 01-815 Warsaw, Poland
| | - L Grill
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
- Department of Physical Chemistry, University of Graz , Heinrichstrasse 28, 8010 Graz, Austria
| | - M Wolf
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | - T Kumagai
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
22
|
Wu K, Chen J, McBride JR, Lian T. CHARGE TRANSFER. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015; 349:632-5. [PMID: 26250682 DOI: 10.1126/science.aac5443] [Citation(s) in RCA: 520] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plasmon-induced hot-electron transfer from metal nanostructures is a potential new paradigm for solar energy conversion; however, the reported efficiencies of devices based on this concept are often low because of the loss of hot electrons via ultrafast electron-electron scattering. We propose a pathway, called the plasmon-induced interfacial charge-transfer transition (PICTT), that enables the decay of a plasmon by directly exciting an electron from the metal to a strongly coupled acceptor. We demonstrated this concept in cadmium selenide nanorods with gold tips, in which the gold plasmon was strongly damped by cadmium selenide through interfacial electron transfer. The quantum efficiency of the PICTT process was high (>24%), independent of excitation photon energy over a ~1-electron volt range, and dependent on the excitation polarization.
Collapse
Affiliation(s)
- K Wu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - J Chen
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - J R McBride
- Department of Chemistry, The Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - T Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Ouyang W, Dou W, Subotnik JE. Surface hopping with a manifold of electronic states. I. Incorporating surface-leaking to capture lifetimes. J Chem Phys 2015; 142:084109. [PMID: 25725714 DOI: 10.1063/1.4908032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the incorporation of the surface-leaking (SL) algorithm into Tully's fewest-switches surface hopping (FSSH) algorithm to simulate some electronic relaxation induced by an electronic bath in conjunction with some electronic transitions between discrete states. The resulting SL-FSSH algorithm is benchmarked against exact quantum scattering calculations for three one-dimensional model problems. The results show excellent agreement between SL-FSSH and exact quantum dynamics in the wide band limit, suggesting the potential for a SL-FSSH algorithm. Discrepancies and failures are investigated in detail to understand the factors that will limit the reliability of SL-FSSH, especially the wide band approximation. Considering the easiness of implementation and the low computational cost, we expect this method to be useful in studying processes involving both a continuum of electronic states (where electronic dynamics are probabilistic) and processes involving only a few electronic states (where non-adiabatic processes cannot ignore short-time coherence).
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
24
|
Jensen ET. Excitation and quenching mechanisms in the near-UV photodissociation of CH3Br and CH3Cl adsorbed on D2O or CH3OH on Cu(110). Phys Chem Chem Phys 2015; 17:9173-85. [PMID: 25757378 DOI: 10.1039/c4cp06128d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemical processes for CH3X (X = Cl, Br, I) adsorbed on top of thin films of D2O or CH3OH on a Cu(110) substrate is studied by time-of-flight mass spectrometry for a range of UV wavelengths (351-193 nm). Photodissociation via dissociative electron attachment by photoelectrons and by neutral photodissociation is identified and quantified based on the observed dynamics of the desorbing CH3 fragments. Photoelectron-driven dissociation of CH3X is found to be a maximum for monolayer quantities of the D2O or CH3OH on Cu(110), but with differing kinetic energy release on the two substrates. The dynamics of CH3Br and CH3Cl photodissociation qualitatively differ on CH3OH/Cu(110) as compared to D2O/Cu(110), which is ascribed to differing molecular structures for these systems. Evidence is presented for an efficient inter-molecular quenching mechanism for neutral photoexcitation of CH3Cl and CH3Br on the CH3OH/Cu(110) substrate.
Collapse
Affiliation(s)
- E T Jensen
- Department of Physics, University of Northern BC, 3333 University, Way, Prince George B.C., V2N 4Z9, Canada.
| |
Collapse
|
25
|
Öström H, Öberg H, Xin H, LaRue J, Beye M, Dell’Angela M, Gladh J, Ng ML, Sellberg JA, Kaya S, Mercurio G, Nordlund D, Hantschmann M, Hieke F, Kühn D, Schlotter WF, Dakovski GL, Turner JJ, Minitti MP, Mitra A, Moeller SP, Föhlisch A, Wolf M, Wurth W, Persson M, Nørskov JK, Abild-Pedersen F, Ogasawara H, Pettersson LGM, Nilsson A. Probing the transition state region in catalytic CO oxidation on Ru. Science 2015; 347:978-82. [DOI: 10.1126/science.1261747] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K, Xu GQ, Wee ATS, Chen W. Towards single molecule switches. Chem Soc Rev 2015; 44:2998-3022. [DOI: 10.1039/c4cs00377b] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scanning tunneling microscope (STM) controlled reversible switching of a single-dipole molecule imbedded in hydrogen-bonded binary molecular networks on graphite.
Collapse
Affiliation(s)
- Jia Lin Zhang
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| | - Jian Qiang Zhong
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| | - Jia Dan Lin
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| | - Wen Ping Hu
- School of Science
- Tianjin University
- Tian Jin
- China
| | - Kai Wu
- Singapore-Peking University Research Center for a Sustainable Low-Carbon Future
- Singapore
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Guo Qin Xu
- Department of Chemistry
- National University of Singapore
- Singapore
- Singapore-Peking University Research Center for a Sustainable Low-Carbon Future
- Singapore
| | | | - Wei Chen
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| |
Collapse
|
27
|
Kale MJ, Avanesian T, Xin H, Yan J, Christopher P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. NANO LETTERS 2014; 14:5405-12. [PMID: 25111312 DOI: 10.1021/nl502571b] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Engineering heterogeneous metal catalysts for high selectivity in thermal driven reactions typically involves the synthesis of nanostructures with well-controlled geometries and compositions. However, inherent relationships between the energetics of elementary steps limit the control of catalytic selectivity through these approaches. Photon excitation of metal catalysts can induce chemical reactivity channels that cannot be accessed using thermal energy, although the potential for targeted activation of adsorbate-metal bonds is limited because the processes of photon absorption and adsorbate-metal bond photoexcitation are typically separated spatially. Here, we show that the use of sub-5-nanometer metal particles as photocatalysts enables direct photoexcitation of hybridized adsorbate-metal states as the dominant mechanism driving photochemistry. Activation of targeted adsorbate-metal bonds through direct photoexcitation of hybridized electronic states enabled selectivity control in preferential CO oxidation in H2 rich streams. This mechanism opens new avenues to drive selective catalytic reactions that cannot be achieved using thermal energy.
Collapse
Affiliation(s)
- Matthew J Kale
- Department of Chemical & Environmental Engineering, University of California, Riverside , Riverside, California 92521, United States
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Matthew J. Kale
- Department of Chemical & Environmental Engineering and ‡Program in Materials Science & Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Talin Avanesian
- Department of Chemical & Environmental Engineering and ‡Program in Materials Science & Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Phillip Christopher
- Department of Chemical & Environmental Engineering and ‡Program in Materials Science & Engineering, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
29
|
Chulkov SK, Benoit DM. A fragment method for systematic improvement of anharmonic adsorbate vibrational frequencies: Acetylene on Cu(001). J Chem Phys 2013; 139:214704. [DOI: 10.1063/1.4829461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|