1
|
Slipchenko LV. Detangling Solvatochromic Effects by the Effective Fragment Potential Method. J Phys Chem A 2024; 128:656-669. [PMID: 38193780 DOI: 10.1021/acs.jpca.3c06194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Understanding molecular interactions in complex systems opens avenues for the efficient design of new materials with target properties. Energy decomposition methods provide a means to obtain a detailed picture of intermolecular interactions. This work introduces a molecular modeling approach for decomposing the solvatochromic shifts of the electronic excited states into the contributions of the individual molecular fragments of the environment surrounding the chromophore. The developed approach is implemented for the QM/EFP (quantum mechanics/effective fragment potential) model that provides a rigorous first-principles-based description of the electronic states of the chromophores in complex polarizable environments. On the example of two model systems, water pentamer and hydrated uracil, we show how the decomposition of the solvatochromic shifts into the contributions of individual solvent water molecules provides a detailed picture of the intermolecular interactions in the ground and excited states of these systems. The analysis also demonstrates the nonadditivity of solute-solvent interactions and the significant contribution of solute polarization to the total values of solvatochromic shifts.
Collapse
Affiliation(s)
- Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47906, United States
| |
Collapse
|
2
|
Sladek V, Yamamoto Y, Harada R, Shoji M, Shigeta Y, Sladek V. pyProGA-A PyMOL plugin for protein residue network analysis. PLoS One 2021; 16:e0255167. [PMID: 34329304 PMCID: PMC8323899 DOI: 10.1371/journal.pone.0255167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 11/18/2022] Open
Abstract
The field of protein residue network (PRN) research has brought several useful methods and techniques for structural analysis of proteins and protein complexes. Many of these are ripe and ready to be used by the proteomics community outside of the PRN specialists. In this paper we present software which collects an ensemble of (network) methods tailored towards the analysis of protein-protein interactions (PPI) and/or interactions of proteins with ligands of other type, e.g. nucleic acids, oligosaccharides etc. In parallel, we propose the use of the network differential analysis as a method to identify residues mediating key interactions between proteins. We use a model system, to show that in combination with other, already published methods, also included in pyProGA, it can be used to make such predictions. Such extended repertoire of methods allows to cross-check predictions with other methods as well, as we show here. In addition, the possibility to construct PRN models from various kinds of input is so far a unique asset of our code. One can use structural data as defined in PDB files and/or from data on residue pair interaction energies, either from force-field parameters or fragment molecular orbital (FMO) calculations. pyProGA is a free open-source software available from https://gitlab.com/Vlado_S/pyproga.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Tokyo, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Vladimir Sladek
- Institute of Construction and Architecture, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Abstract
Computational methods for modeling biochemical processes implemented in GAMESS package are reviewed; in particular, quantum mechanics combined with molecular mechanics (QM/MM), semi-empirical, and fragmentation approaches. A detailed summary of capabilities is provided for the QM/MM implementation in QuanPol program and the fragment molecular orbital (FMO) method. Molecular modeling and visualization packages useful for biochemical simulations with GAMESS are described. GAMESS capabilities with corresponding references are tabulated for reader's convenience.
Collapse
|
4
|
Abstract
High-order charge transfer is incorporated into the fragment molecular orbital (FMO) method using a charge transfer state with fractional charges. This state is used for a partition analysis of properties based on segments that may be different from fragments in FMO. The partition analysis is also formulated for calculations without fragmentation. All development in this work is limited to density-functional tight-binding. The analysis is applied to a water cluster, crambin (PDB: 1CBN), and two complexes of Trp-cage (1L2Y) with ligands. The contributions of functional groups in ligands are obtained, providing useful information for drug discovery.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
5
|
Mao Y, Levine DS, Loipersberger M, Horn PR, Head-Gordon M. Probing radical-molecule interactions with a second generation energy decomposition analysis of DFT calculations using absolutely localized molecular orbitals. Phys Chem Chem Phys 2020; 22:12867-12885. [PMID: 32510096 DOI: 10.1039/d0cp01933j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intermolecular interactions between radicals and closed-shell molecules are ubiquitous in chemical processes, ranging from the benchtop to the atmosphere and extraterrestrial space. While energy decomposition analysis (EDA) schemes for closed-shell molecules can be generalized for studying radical-molecule interactions, they face challenges arising from the unique characteristics of the electronic structure of open-shell species. In this work, we introduce additional steps that are necessary for the proper treatment of radical-molecule interactions to our previously developed unrestricted Absolutely Localized Molecular Orbital (uALMO)-EDA based on density functional theory calculations. A "polarize-then-depolarize" (PtD) scheme is used to remove arbitrariness in the definition of the frozen wavefunction, rendering the ALMO-EDA results independent of the orientation of the unpaired electron obtained from isolated fragment calculations. The contribution of radical rehybridization to polarization energies is evaluated. It is also valuable to monitor the wavefunction stability of each intermediate state, as well as their associated spin density profiles, to ensure the EDA results correspond to a desired electronic state. These radical extensions are incorporated into the "vertical" and "adiabatic" variants of uALMO-EDA for studies of energy changes and property shifts upon complexation. The EDA is validated on two model complexes, H2O˙F and FH˙OH. It is then applied to several chemically interesting radical-molecule complexes, including the sandwiched and T-shaped benzene dimer radical cation, complexes of pyridine with benzene and naphthalene radical cations, binary and ternary complexes of the hydroxyl radical with water (˙OH(H2O) and ˙OH(H2O)2), and the pre-reactive complexes and transition states in the ˙OH + HCHO and ˙OH + CH3CHO reactions. These examples suggest that this second generation uALMO-EDA is a useful tool for furthering one's understanding of both energetic and property changes associated with radical-molecule interactions.
Collapse
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
6
|
Fedorov DG. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. J Phys Chem A 2020; 124:4956-4971. [DOI: 10.1021/acs.jpca.0c03085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
7
|
Liu S, Fu R, Li G. Exploring the mechanism of olfactory recognition in the initial stage by modeling the emission spectrum of electron transfer. PLoS One 2020; 15:e0217665. [PMID: 31923248 PMCID: PMC6953861 DOI: 10.1371/journal.pone.0217665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022] Open
Abstract
Olfactory sense remains elusive regarding the primary reception mechanism. Some studies suggest that olfaction is a spectral sense, the olfactory event is triggered by electron transfer (ET) across the odorants at the active sites of odorant receptors (ORs). Herein we present a Donor-Bridge-Acceptor model, proposing that the ET process can be viewed as an electron hopping from the donor molecule to the odorant molecule (Bridge), then hopping off to the acceptor molecule, making the electronic state of the odorant molecule change along with vibrations (vibronic transition). The odorant specific parameter, Huang–Rhys factor can be derived from ab initio calculations, which make the simulation of ET spectra achievable. In this study, we revealed that the emission spectra (after Gaussian convolution) can be acted as odor characteristic spectra. Using the emission spectrum of ET, we were able to reasonably interpret the similar bitter-almond odors among hydrogen cyanide, benzaldehyde and nitrobenzene. In terms of isotope effects, we succeeded in explaining why subjects can easily distinguish cyclopentadecanone from its fully deuterated analogue cyclopentadecanone-d28 but not distinguishing acetophenone from acetophenone-d8.
Collapse
Affiliation(s)
- Shu Liu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, China
- * E-mail:
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangwu Li
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Abstract
Basic concepts in the analysis of binding using the fragment molecular orbital method are discussed at length: polarization, desolvation, and interaction. The components in the pair interaction energy decomposition analysis are introduced, and the analysis is illustrated for a water dimer and a protein-ligand complex.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
9
|
Bistoni G. Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1442] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Giovanni Bistoni
- Max‐Planck‐Institut für Kohlenforschung Mülheim an der Ruhr Germany
| |
Collapse
|
10
|
Altun A, Saitow M, Neese F, Bistoni G. Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework. J Chem Theory Comput 2019; 15:1616-1632. [PMID: 30702888 PMCID: PMC6728066 DOI: 10.1021/acs.jctc.8b01145] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Local
energy decomposition (LED) analysis decomposes the interaction
energy between two fragments calculated at the domain-based local
pair natural orbital CCSD(T) (DLPNO-CCSD(T)) level of theory into
a series of chemically meaningful contributions and has found widespread
applications in the study of noncovalent interactions. Herein, an
extension of this scheme that allows for the analysis of interaction
energies of open-shell molecular systems calculated at the UHF-DLPNO-CCSD(T)
level is presented. The new scheme is illustrated through applications
to the CH2···X (X = He, Ne, Ar, Kr, and
water) and heme···CO interactions in the low-lying
singlet and triplet spin states. The results are used to discuss the
mechanism that governs the change in the singlet–triplet energy
gap of methylene and heme upon adduct formation.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Masaaki Saitow
- Department of Chemistry, Graduate School of Science , Nagoya University , 1-5 Chikusa-ku , 464-8602 Nagoya , Japan
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
11
|
Sladek V, Tokiwa H, Shimano H, Shigeta Y. Protein Residue Networks from Energetic and Geometric Data: Are They Identical? J Chem Theory Comput 2018; 14:6623-6631. [PMID: 30500196 DOI: 10.1021/acs.jctc.8b00733] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein residue networks (PRN) from energetic and geometric data are probably not identical. PRNs constructed from ab initio pair interaction energies are analyzed for the first time and compared to PRN based on center of mass separation. We use modern, previously unused algorithms such as global and local efficiencies to quantitatively confirm that both types of PRNs do exhibit small-world character. The main novelty finding is that interaction energy-based PRNs preserve small-world character even when clustered. A node hierarchy independent of the cutoff energy used for the edge creation is characteristic for them. Efficiency centrality identifies hubs responsible for such behavior. The interaction energy-based PRNs seem to comply with the scale-free network model with respect to efficiency centrality distribution as opposed to distance based PRNs. Community detection is introduced into protein network research as an extension beyond cluster analysis to study tertiary and quaternary structures.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry - Centre for Glycomics , Dubravska cesta 9 , 84538 Bratislava , Slovakia.,Agency for Medical Research and Development (AMED) , Chiyoda-ku , Japan
| | - Hiroaki Tokiwa
- Agency for Medical Research and Development (AMED) , Chiyoda-ku , Japan.,Department of Chemistry , Rikkyo University , Nishi-Ikebukuro , Toshima, Tokyo 171-8501 , Japan
| | - Hitoshi Shimano
- Agency for Medical Research and Development (AMED) , Chiyoda-ku , Japan.,Department of Internal Medicine, Faculty of Medicine , University of Tsukuba , 1-1-1 Tennodai , Tsukuba, Ibaraki 305-8575 , Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences , University of Tsukuba , Tennodai 1-1-1 , Tsukuba, Ibaraki 305-8577 , Japan
| |
Collapse
|
12
|
Empirical corrections and pair interaction energies in the fragment molecular orbital method. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Šesták S, Bella M, Klunda T, Gurská S, Džubák P, Wöls F, Wilson IBH, Sladek V, Hajdúch M, Poláková M, Kóňa J. N-Benzyl Substitution of Polyhydroxypyrrolidines: The Way to Selective Inhibitors of Golgi α-Mannosidase II. ChemMedChem 2018; 13:373-383. [PMID: 29323461 DOI: 10.1002/cmdc.201700607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/04/2018] [Indexed: 12/24/2022]
Abstract
Inhibition of the biosynthesis of complex N-glycans in the Golgi apparatus influences progress of tumor growth and metastasis. Golgi α-mannosidase II (GMII) has become a therapeutic target for drugs with anticancer activities. One critical task for successful application of GMII drugs in medical treatments is to decrease their unwanted co-inhibition of lysosomal α-mannosidase (LMan), a weakness of all known potent GMII inhibitors. A series of novel N-substituted polyhydroxypyrrolidines was synthesized and tested with modeled GH38 α-mannosidases from Drosophila melanogaster (GMIIb and LManII). The most potent structures inhibited GMIIb (Ki =50-76 μm, as determined by enzyme assays) with a significant selectivity index of IC50 (LManII)/IC50 (GMIIb) >100. These compounds also showed inhibitory activities in in vitro assays with cancer cell lines (leukemia, IC50 =92-200 μm) and low cytotoxic activities in normal fibroblast cell lines (IC50 >200 μm). In addition, they did not show any significant inhibitory activity toward GH47 Aspergillus saitoiα1,2-mannosidase. An appropriate stereo configuration of hydroxymethyl and benzyl functional groups on the pyrrolidine ring of the inhibitor may lead to an inhibitor with the required selectivity for the active site of a target α-mannosidase.
Collapse
Affiliation(s)
- Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Tomáš Klunda
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Soňa Gurská
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Puškinova 6, 775 20, Olomouc, Czech Republic
| | - Petr Džubák
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Puškinova 6, 775 20, Olomouc, Czech Republic
| | - Florian Wöls
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Vladimir Sladek
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Marián Hajdúch
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Puškinova 6, 775 20, Olomouc, Czech Republic
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
14
|
Fedorov DG, Kitaura K. Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics. J Phys Chem A 2018; 122:1781-1795. [DOI: 10.1021/acs.jpca.7b12000] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research
Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Kazuo Kitaura
- Advanced
Institute for Computational Science (AICS), RIKEN, 7-1-26 Minatojima-Minami-Machi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho
34-4, Sakyou-ku, Kyoto 606-8103, Japan
| |
Collapse
|
15
|
Tsipis AC. RETRACTED: DFT challenge of intermetallic interactions: From metallophilicity and metallaromaticity to sextuple bonding. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in
GAMESS
, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD‐FMat)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| |
Collapse
|
17
|
Gonthier JF, Sherrill CD. Density-fitted open-shell symmetry-adapted perturbation theory and application to π-stacking in benzene dimer cation and ionized DNA base pair steps. J Chem Phys 2017; 145:134106. [PMID: 27782424 DOI: 10.1063/1.4963385] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Symmetry-Adapted Perturbation Theory (SAPT) is one of the most popular approaches to energy component analysis of non-covalent interactions between closed-shell systems, yielding both accurate interaction energies and meaningful interaction energy components. In recent years, the full open-shell equations for SAPT up to second-order in the intermolecular interaction and zeroth-order in the intramolecular correlation (SAPT0) were published [P. S. Zuchowski et al., J. Chem. Phys. 129, 084101 (2008); M. Hapka et al., ibid. 137, 164104 (2012)]. Here, we utilize density-fitted electron repulsion integrals to produce an efficient computational implementation. This approach is used to examine the effect of ionization on π-π interactions. For the benzene dimer radical cation, comparison against reference values indicates a good performance for open-shell SAPT0, except in cases with substantial charge transfer. For π stacking between hydrogen-bonded pairs of nucleobases, dispersion interactions still dominate binding, in spite of the creation of a positive charge.
Collapse
Affiliation(s)
- Jérôme F Gonthier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
18
|
Horn PR, Mao Y, Head-Gordon M. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies. J Chem Phys 2016; 144:114107. [PMID: 27004862 DOI: 10.1063/1.4942921] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na(+), water-Cl(-), and the naphthalene dimer.
Collapse
Affiliation(s)
- Paul R Horn
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA
| | - Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA
| |
Collapse
|
19
|
Horn PR, Head-Gordon M. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations. J Chem Phys 2016; 144:084118. [PMID: 26931692 DOI: 10.1063/1.4941849] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.
Collapse
Affiliation(s)
- Paul R Horn
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
20
|
Estillore AD, Trueblood JV, Grassian VH. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem Sci 2016; 7:6604-6616. [PMID: 28567251 PMCID: PMC5450524 DOI: 10.1039/c6sc02353c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/17/2016] [Indexed: 12/20/2022] Open
Abstract
Once airborne, biologically-derived aerosol particles are prone to reaction with various atmospheric oxidants such as OH, NO3, and O3.
Advances in analytical techniques and instrumentation have now established methods for detecting, quantifying, and identifying the chemical and microbial constituents of particulate matter in the atmosphere. For example, recent cryo-TEM studies of sea spray have identified whole bacteria and viruses ejected from ocean seawater into air. A focal point of this perspective is directed towards the reactivity of aerosol particles of biological origin with oxidants (OH, NO3, and O3) present in the atmosphere. Complementary information on the reactivity of aerosol particles is obtained from field investigations and laboratory studies. Laboratory studies of different types of biologically-derived particles offer important information related to their impacts on the local and global environment. These studies can also unravel a range of different chemistries and reactivity afforded by the complexity and diversity of the chemical make-up of these particles. Laboratory experiments as the ones reviewed herein can elucidate the chemistry of biological aerosols.
Collapse
Affiliation(s)
- Armando D Estillore
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Jonathan V Trueblood
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499.,Scripps Institution of Oceanography and Department of Nanoengineering , University of California San Diego , La Jolla , California 92093 , USA
| |
Collapse
|
21
|
Green MC, Nakata H, Fedorov DG, Slipchenko LV. Radical damage in lipids investigated with the fragment molecular orbital method. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Green MC, Dubnicka LJ, Davis AC, Rypkema HA, Francisco JS, Slipchenko LV. Thermodynamics and Kinetics for the Free Radical Oxygen Protein Oxidation Pathway in a Model for β-Structured Peptides. J Phys Chem A 2016; 120:2493-503. [PMID: 27055125 DOI: 10.1021/acs.jpca.5b12549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mandy C. Green
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Laura J. Dubnicka
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alex C. Davis
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Heather A. Rypkema
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joseph S. Francisco
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Lyudmila V. Slipchenko
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Horn PR, Head-Gordon M. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions. J Chem Phys 2015; 143:114111. [PMID: 26395691 DOI: 10.1063/1.4930534] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polarization energy in intermolecular interactions treated by self-consistent field electronic structure theory is often evaluated using a constraint that the atomic orbital (AO) to molecular orbital transformation is blocked by fragments. This approach is tied to AO basis sets, overestimates polarization energies in the overlapping regime, particularly in large AO basis sets, and lacks a useful complete basis set limit. These problems are addressed by the construction of polarization subspaces based on the responses of isolated fragments to weak electric fields. These subspaces are spanned by fragment electric-field response functions, which can capture effects up to the dipole (D), or quadrupole (DQ) level, or beyond. Schemes are presented for the creation of both non-orthogonal and orthogonal fragment subspaces, and the basis set convergence of the polarization energies computed using these spaces is assessed. Numerical calculations for the water dimer, water-Na(+), water-Mg(2+), water-F(-), and water-Cl(-) show that the non-orthogonal DQ model is very satisfactory, with small differences relative to the orthogonalized model. Additionally, we prove a fundamental difference between the polarization degrees of freedom in the fragment-blocked approaches and in constrained density schemes. Only the former are capable of properly prohibiting charge delocalization during polarization.
Collapse
Affiliation(s)
- Paul R Horn
- Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
24
|
Sengupta A, Ramabhadran RO, Raghavachari K. Breaking a bottleneck: Accurate extrapolation to “gold standard” CCSD(T) energies for large open shell organic radicals at reduced computational cost. J Comput Chem 2015; 37:286-95. [DOI: 10.1002/jcc.24050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022]
|
25
|
Extension of the fragment molecular orbital method to treat large open-shell systems in solution. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2015; 16:10310-44. [PMID: 24740821 DOI: 10.1039/c4cp00316k] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.
Collapse
Affiliation(s)
- Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
27
|
Simoncini D, Nakata H, Ogata K, Nakamura S, Zhang KY. Quality Assessment of Predicted Protein Models Using Energies Calculated by the Fragment Molecular Orbital Method. Mol Inform 2015; 34:97-104. [PMID: 27490032 DOI: 10.1002/minf.201400108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022]
Abstract
Protein structure prediction directly from sequences is a very challenging problem in computational biology. One of the most successful approaches employs stochastic conformational sampling to search an empirically derived energy function landscape for the global energy minimum state. Due to the errors in the empirically derived energy function, the lowest energy conformation may not be the best model. We have evaluated the use of energy calculated by the fragment molecular orbital method (FMO energy) to assess the quality of predicted models and its ability to identify the best model among an ensemble of predicted models. The fragment molecular orbital method implemented in GAMESS was used to calculate the FMO energy of predicted models. When tested on eight protein targets, we found that the model ranking based on FMO energies is better than that based on empirically derived energies when there is sufficient diversity among these models. This model diversity can be estimated prior to the FMO energy calculations. Our result demonstrates that the FMO energy calculated by the fragment molecular orbital method is a practical and promising measure for the assessment of protein model quality and the selection of the best protein model among many generated.
Collapse
Affiliation(s)
- David Simoncini
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan phone: +81(0)45-503-9560/fax: +81(0)45-503-9559.,Present address: Mathématiques et Informatique Appliquées de Toulouse, Unité de Recherche 875, Institut National de la Recherche Agronomique, F-31320 Castanet-Tolosan, France
| | - Hiroya Nakata
- RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan phone/fax: +81(0)48-467-9477/+81(0)48-467-8503.,Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Koji Ogata
- RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan phone/fax: +81(0)48-467-9477/+81(0)48-467-8503
| | - Shinichiro Nakamura
- RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan phone/fax: +81(0)48-467-9477/+81(0)48-467-8503.
| | - Kam Yj Zhang
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan phone: +81(0)45-503-9560/fax: +81(0)45-503-9559.
| |
Collapse
|
28
|
A Mini-review on Chemoinformatics Approaches for Drug Discovery. JOURNAL OF COMPUTER AIDED CHEMISTRY 2015. [DOI: 10.2751/jcac.16.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Sladek V, Holka F, Tvaroška I. Ab initio modelling of the anomeric and exo anomeric effects in 2-methoxytetrahydropyran and 2-methoxythiane corrected for intramolecular BSSE. Phys Chem Chem Phys 2015; 17:18501-13. [DOI: 10.1039/c5cp02191j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen substitution in 2-methoxytetrahydropyran by sulphur in 2-methoxythiane approximately doubles the anomeric effect, which slows down enzymatic processing of 2-methoxythiane.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Filip Holka
- Faculty of Materials Science and Technology in Trnava
- Slovak University of Technology in Bratislava
- SK-917 24 Trnava
- Slovakia
| | - Igor Tvaroška
- Institute of Chemistry
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
30
|
Stringfellow HM, Jones MR, Green MC, Wilson AK, Francisco JS. Selectivity in ROS-Induced Peptide Backbone Bond Cleavage. J Phys Chem A 2014; 118:11399-404. [DOI: 10.1021/jp508877m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hannah M. Stringfellow
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Michael R. Jones
- Department
of Chemistry and Center for Advanced Scientific Computing and Modeling
(CASCaM), University of North Texas, Denton, Texas 76203-5017, United States
| | - Mandy C. Green
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Angela K. Wilson
- Department
of Chemistry and Center for Advanced Scientific Computing and Modeling
(CASCaM), University of North Texas, Denton, Texas 76203-5017, United States
| | - Joseph S. Francisco
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0304, United States
| |
Collapse
|
31
|
Nakata H, Schmidt MW, Fedorov DG, Kitaura K, Nakamura S, Gordon MS. Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method. J Phys Chem A 2014; 118:9762-71. [DOI: 10.1021/jp507726m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hiroya Nakata
- Department
of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Research Cluster
for Innovation, Nakamura Lab, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Kojimachi Business
Center Building, Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Michael W. Schmidt
- Department
of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Dmitri G. Fedorov
- NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Kazuo Kitaura
- Graduate
School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shinichiro Nakamura
- Research Cluster
for Innovation, Nakamura Lab, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mark S. Gordon
- Department
of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
32
|
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Efficient vibrational analysis for unrestricted Hartree–Fock based on the fragment molecular orbital method. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Sakurai M, Nakamura S. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems. J Chem Phys 2014; 140:144101. [DOI: 10.1063/1.4870261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
34
|
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Derivatives of the approximated electrostatic potentials in unrestricted Hartree–Fock based on the fragment molecular orbital method and an application to polymer radicals. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1477-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|