1
|
Shirkov L. Ab Initio Potentials for the Ground S0 and the First Electronically Excited Singlet S1 States of Benzene-Helium with Application to Tunneling Intermolecular Vibrational States. J Phys Chem A 2024; 128:6132-6139. [PMID: 39016462 PMCID: PMC11299187 DOI: 10.1021/acs.jpca.4c01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
We present new ab initio intermolecular potential energy surfaces for the benzene-helium complex in its ground (S0) and first excited (S1) states. The coupled-cluster level of theory with single, double, and perturbative triple excitations, CCSD(T), was used to calculate the ground state potential. The excited state potential was obtained by adding the excitation energies S0 → S1 of the complex, calculated using the equation of motion approach EOM-CCSD, to the ground state potential interaction energies. Analytical potentials are constructed and applied to study the structural and vibrational dynamics of benzene-helium. The binding energies and equilibrium distances of the ground and excited states were found to be 89 cm-1, 3.14 Å and 77 cm-1, 3.20 Å, respectively. The calculated vibrational energy levels exhibit tunneling of He through the benzene plane and are in reasonable agreement with recently reported experimental values for both the ground and excited states [Hayashi, M.; Ohshima, Y. J. Phys. Chem. Lett. 2020, 11, 9745]. Prospects for the theoretical study of complexes with large aromatic molecules and He are also discussed.
Collapse
Affiliation(s)
- Leonid Shirkov
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
2
|
García-Vázquez RM, Cabrera-González LD, Denis-Alpizar O, Stoecklin T. A Rigid Bender Study of the Bending Relaxation of H 2O and D 2O by Collisions with Ar. Chemphyschem 2024; 25:e202300752. [PMID: 38236071 DOI: 10.1002/cphc.202300752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
The bending relaxation of H2O and D2O by collisions with Ar is studied at the Close Coupling level. Two new 4D PES are developed for these two systems. They are tested by performing rigid rotor calculations as well as by computing the D2O-Ar bound states. The results are compared with available theoretical and experimental data. Propensity rules for the dynamics are discussed and compared to those of H2O colliding with Ne or He. The bending relaxation cross sections and rates are then calculated for these two systems. The results are analysed and compared with available experimental data.
Collapse
Affiliation(s)
| | | | - Otoniel Denis-Alpizar
- Grupo de Investigación en Física Aplicada, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Thierry Stoecklin
- UMR5255-CNRS, Université de Bordeaux, 351 cours de la libération, F-33405, Talence, France
| |
Collapse
|
3
|
Rutskoy B, Ozerov G, Bezrukov D. The Role of Bond Functions in Describing Intermolecular Electron Correlation for Van der Waals Dimers: A Study of (CH 4) 2 and Ne 2. Int J Mol Sci 2024; 25:1472. [PMID: 38338750 PMCID: PMC10855067 DOI: 10.3390/ijms25031472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
We present a study of the intermolecular interactions in van der Waals complexes of methane and neon dimers within the framework of the CCSD method. This approach was implemented and applied to calculate and examine the behavior of the contracted two-particle reduced density matrix (2-RDM). It was demonstrated that the region near the minimum of the two-particle density matrix correlation part, corresponding to the primary bulk of the Coulomb hole contribution, exerts a significant influence on the dispersion interaction energetics of the studied systems. As a result, the bond functions approach was applied to improve the convergence performance for the intermolecular correlation energy results with respect to the size of the atomic basis. For this, substantial acceleration was achieved by introducing an auxiliary basis of bond functions centered on the minima of the 2-RDM. For both methane and neon dimers, this general conclusion was confirmed with a series of CCSD calculations for the 2-RDM and the correlation energies.
Collapse
Affiliation(s)
- Bogdan Rutskoy
- National Research Centre “Kurchatov Institute”, Moscow 123182, Russia;
- Institute of Nuclear Physics and Technology, National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Moscow 115409, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Georgiy Ozerov
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Dmitry Bezrukov
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow 119991, Russia;
| |
Collapse
|
4
|
Leibin IV, Bezrukov DS, Buchachenko AA. Trapping and thermal migration of the first- and second-row atoms in Ar, Kr and Xe crystals. Phys Chem Chem Phys 2024; 26:958-973. [PMID: 38088087 DOI: 10.1039/d3cp04178f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Trapping and temperature-induced migration (TIM) of the first- and second-row atoms A from H to Ne in the face-centered cubic rare gas RG = Ar, Kr and Xe crystals are investigated within the classical crystal model parameterized by the empirically modified pairwise potentials. New ab initio coupled cluster A-RG potentials computed in a uniform way for all the atoms A are used to represent the atom-crystal interactions. Absolute and relative stabilities of the substitutional and interstitial trapping sites, their structures, interstitial migration pathways, related activation energies and rough estimates of the TIM rates are obtained. The isotropic model, which neglects non-zero atomic electronic orbital momentum, reveals that migration of interstitial atoms along the network of conjugated fcc octahedral voids is the generic case for atomic mobility. Anisotropic interactions with a crystal inherent to P-state atoms B, C, O and F are accounted for using the non-relativistic diatomics-in-molecule method. Depending on its sign, interaction anisotropy can alter the structures of interstitial trapping sites and transition states remarkably. This, in turn, can dramatically affect the TIM rates. Comparison with reliable experimental data available for oxygen and hydrogen indicates a systematic overestimation of the measured activation energies, by 30% at worst. A comprehensive literature review accomplished for other atoms reveals a lack of information on the TIM processes and rates, though makes it possible to verify a part of the present results on the trapping site energies and structures.
Collapse
Affiliation(s)
- Iosif V Leibin
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russia.
| | - Dmitry S Bezrukov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexei A Buchachenko
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russia
| |
Collapse
|
5
|
Prediction of interaction energy for rare gas dimers using machine learning approaches. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Godard Palluet A, Lique F. Fine-structure excitation of CCS by He: Potential energy surface and scattering calculations. J Chem Phys 2023; 158:044303. [PMID: 36725495 DOI: 10.1063/5.0138470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The fine structure excitation of the interstellar CCS radical induced by collisions with He is investigated. The first potential energy surface (PES) for the CCS-He van der Waals complex is presented. It was obtained from a highly correlated spin unrestricted coupled cluster approach with single double and perturbative triple excitations. The PES presents two shallow minima of 31.85 and 37.12 cm-1 for the linear (He facing S) and the nearly T-shaped geometries, respectively. The dissociation energy of the complex was calculated and found to be D0 = 14.183 cm-1. Inelastic scattering calculations were performed using the close-coupling approach. Cross-sections for transitions between the 61 first fine structure levels of CCS were obtained for energy up to 600 cm-1 and rate coefficients for the 5-50 K temperature range were derived. This set of collisional data can be used to model CCS emission spectra in dark molecular interstellar clouds and circumstellar envelopes and enable an accurate determination of CCS abundance in these astrophysical media.
Collapse
Affiliation(s)
- A Godard Palluet
- Université de Rennes 1, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - F Lique
- Université de Rennes 1, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| |
Collapse
|
7
|
Ströker P, Hellmann R, Meier K. Thermodynamic properties of krypton from Monte Carlo simulations using ab initio potentials. J Chem Phys 2022; 157:114504. [PMID: 36137797 DOI: 10.1063/5.0107851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ten different thermodynamic properties of the noble gas krypton were calculated by Monte Carlo simulations in the isothermal-isobaric ensemble using a highly accurate ab initio pair potential, Feynman-Hibbs corrections for quantum effects, and an extended Axilrod-Teller-Muto potential to account for nonadditive three-body interactions. Fourteen state points at a liquid and a supercritical isotherm were simulated. To obtain results representative for macroscopic systems, simulations with several particle numbers were carried out and extrapolated to the thermodynamic limit. Our results agree well with experimental data from the literature, an accurate equation of state for krypton, and a recent virial equation of state (VEOS) for krypton in the region where the VEOS has converged. These results demonstrate that very good agreement between simulation and experiment can only be achieved if nonadditive three-body interactions and quantum effects are taken into account.
Collapse
Affiliation(s)
- Philipp Ströker
- Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Robert Hellmann
- Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Karsten Meier
- Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| |
Collapse
|
8
|
Uhl D, Wituschek A, Michiels R, Trinter F, Jahnke T, Allaria E, Callegari C, Danailov M, Di Fraia M, Plekan O, Bangert U, Dulitz K, Landmesser F, Michelbach M, Simoncig A, Manfredda M, Spampinati S, Penco G, Squibb RJ, Feifel R, Laarmann T, Mudrich M, Prince KC, Cerullo G, Giannessi L, Stienkemeier F, Bruder L. Extreme Ultraviolet Wave Packet Interferometry of the Autoionizing HeNe Dimer. J Phys Chem Lett 2022; 13:8470-8476. [PMID: 36054027 PMCID: PMC9486932 DOI: 10.1021/acs.jpclett.2c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant interatomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process. A Fourier analysis reveals the molecular absorption spectrum with high resolution. The demonstrated experiment shows a promising route for the real-time analysis of ultrafast ICD processes with both high temporal and high spectral resolution.
Collapse
Affiliation(s)
- Daniel Uhl
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Andreas Wituschek
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Rupert Michiels
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Florian Trinter
- Institut
für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Till Jahnke
- Institut
für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
- European
XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Enrico Allaria
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Carlo Callegari
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Miltcho Danailov
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Michele Di Fraia
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Ulrich Bangert
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Katrin Dulitz
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Friedemann Landmesser
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Moritz Michelbach
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Alberto Simoncig
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Michele Manfredda
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Simone Spampinati
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Giuseppe Penco
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Richard James Squibb
- Department
of Physics, University of Gothenburg, Origovägen 6 B, 41296 Gothenburg, Sweden
| | - Raimund Feifel
- Department
of Physics, University of Gothenburg, Origovägen 6 B, 41296 Gothenburg, Sweden
| | - Tim Laarmann
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg
Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marcel Mudrich
- Department
of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Kevin C. Prince
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Giulio Cerullo
- IFN-CNR
and Dipartimento di Fisica, Politecnico
di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Giannessi
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
- Istituto
Nazionale di Fisica Nucleare, Laboratori
Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Roma
| | - Frank Stienkemeier
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Lukas Bruder
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Buchachenko AA, Visentin G, Viehland LA. Gaseous transport properties of the ground and excited Cr, Co and Ni cations in He: Ab initio study of electronic state chromatography. J Chem Phys 2022; 157:104303. [DOI: 10.1063/5.0107110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The electronic state chromatography (ESC) effect allows the differentiation of ions in their ground and metastable states by their gaseous mobilities in the limit of low electrostatic fields. It is investigated here by means of accurate transport calculations with ab initio ion-atom potentials for the Cr, Co and Ni cations in He buffer gas near room temperature. The values for the open-shell ions in degenerate states are shown to be well approximated by using the single isotropic interaction potential. Minimalistic implementation of the multireference configuration interaction (MRCI) method is enough to describe the zero-field transport properties of metastable ions in the 3dm-14s configuration, such as Cr+(a6D), Co+(a5F) and Ni+(4F), due to their weak and almost isotropic interaction with He atom and the low sensitivity of the measured mobilities to the potential well region. By contrast, interactions involving the ions in the ground 3dm states, such as Cr+(a6S), Co+(a3F) and Ni+(2D), are strong and anisotropic; the MRCI potentials poorly describe their transport coefficients. Even the coupled cluster with singles, doubles and non-iterative triples [CCSD(T)] approach taking into account vectorial spin-orbit coupling may not be accurate enough, as shown here for Ni+(2D). The sensitivity of ion mobility and the ESC effect to interaction potentials, similarities in ion-He interactions of the studied ions in distinct configurations, accuracy and possible improvements of the ab initio schemes, and control of the ESC effect by macroscopic parameters are discussed. Extensive sets of improved interaction potentials and transport data are generated.
Collapse
Affiliation(s)
| | | | - Larry A. Viehland
- Department of Chemistry, Chatham University, United States of America
| |
Collapse
|
10
|
Mizuse K, Sato U, Tobata Y, Ohshima Y. Rotational spectroscopy of the argon dimer by time-resolved Coulomb explosion imaging of rotational wave packets. Phys Chem Chem Phys 2022; 24:11014-11022. [PMID: 35470358 DOI: 10.1039/d2cp01113a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report time-domain rotational spectroscopy of the argon dimer, Ar2, by implementing time-resolved Coulomb explosion imaging of rotational wave packets. The rotational wave packets are created in Ar2 with a linearly polarized, nonresonant, ultrashort laser pulse, and their spatiotemporal evolution is fully characterized by measuring angular distribution of the fragmented Ar+ promptly ejected from Ar22+ generated by the more intense probe pulse. The pump-probe measurements have been carried out up to a delay time of 16 ns. The alignment parameters, derived from the observed images, exhibit periodic oscillation lasting for more than 15 ns. The pure rotational spectrum of Ar2 is obtained by Fourier transformation of the time traces of the alignment parameters. The frequency resolution in the spectrum is about 90 MHz, the highest ever achieved for Ar2. The rotational constant and the centrifugal distortion constant are determined with much improved precision than the previous experimental results: B0 = 1.72713 ± 0.00009 GHz and D0 = 0.0310 ± 0.0005 MHz. The present B0 value does not match within the quoted experimental uncertainty with that from the VUV spectroscopy, so far accepted as an experimental reference to assess theories. The present improved constants would stand as new references to calibrate state-of-the-art theoretical investigations and an indispensable experimental source for the construction of an accurate empirical intermolecular potential.
Collapse
Affiliation(s)
- Kenta Mizuse
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-9 Ookayama, Meguro, Tokyo 152-8550, Japan. .,Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan.
| | - Urara Sato
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan.
| | - Yuya Tobata
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-9 Ookayama, Meguro, Tokyo 152-8550, Japan.
| | - Yasuhiro Ohshima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-9 Ookayama, Meguro, Tokyo 152-8550, Japan.
| |
Collapse
|
11
|
Generation of Basis Sets for Accurate Molecular Calculations: Application to Helium Atom and Dimer. COMPUTATION 2022. [DOI: 10.3390/computation10050065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A new approach for basis set generation is reported and tested in helium atom and dimer. The basis sets thus computed, named sigma, range from DZ to 5Z and consist of the same composition as Dunning basis sets but with a different treatment of contractions. The performance of the sigma sets is analyzed for energy and other properties of He atom and He dimer, and the results are compared with those obtained with Dunning and ANO basis sets. The sigma basis sets and their extended versions up to triple augmented provide better energy values than Dunning basis sets of the same composition, and similar values to those attained with the currently available ANO. Extrapolation to complete basis set of correlation energy is compared between the sigma basis sets and those of Dunning, showing the better performance of the former in this respect.
Collapse
|
12
|
Burrows A, Cooper S, Schwerdtfeger P. Instability of the body-centered cubic lattice within the sticky hard sphere and Lennard-Jones model obtained from exact lattice summations. Phys Rev E 2021; 104:035306. [PMID: 34654145 DOI: 10.1103/physreve.104.035306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
A smooth path of rearrangement from the body-centered cubic (bcc) to the face-centered cubic (fcc) lattice is obtained by introducing a single parameter to lattice vectors of a cuboidal unit cell. As a result, we obtain analytical expressions in terms of lattice sums for the cohesive energy where the interaction is described by a Lennard-Jones (LJ) interaction potential or a sticky hard-sphere (SHS) model with a r^{-n} long-range attractive term. These lattice sums are evaluated to computer precision by expansions in terms of a fast converging Bessel function series. Applying the whole range of lattice parameters for the SHS and LJ potentials we prove that the bcc phase is unstable (or, at best, metastable) toward distortion into the fcc phase in the low temperature and pressure limit. Even if more accurate potentials are used, such as the extended LJ potential for argon or chromium, the bcc phase remains unstable. This strongly indicates that the appearance of a low temperature bcc phase for several elements in the periodic table is due to higher than two-body forces in atomic interactions.
Collapse
Affiliation(s)
- Antony Burrows
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand
| | - Shaun Cooper
- School of Natural and Computational Sciences, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand
| |
Collapse
|
13
|
Stoecklin T, Cabrera-González LD, Denis-Alpizar O, Páez-Hernández D. A close coupling study of the bending relaxation of H 2O by collision with He. J Chem Phys 2021; 154:144307. [PMID: 33858145 DOI: 10.1063/5.0047718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a close coupling study of the bending relaxation of H2O by collision with He, taking explicitly into account the bending-rotation coupling within the rigid-bender close-coupling method. A 4D potential energy surface is developed based on a large grid of ab initio points calculated at the coupled-cluster single double triple level of theory. The bound states energies of the He-H2O complex are computed and found to be in excellent agreement with previous theoretical calculations. The dynamics results also compare very well with the rigid-rotor results available in the Basecol database and with experimental data for both rotational transitions and bending relaxation. The bending-rotation coupling is also demonstrated to be very efficient in increasing bending relaxation when the rotational excitation of H2O increases.
Collapse
Affiliation(s)
- Thierry Stoecklin
- Institut des Sciences Moléculaires, Université de Bordeaux, CNRS UMR 5255, 33405 Talence Cedex, France
| | - Lisán David Cabrera-González
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile
| | - Otoniel Denis-Alpizar
- Núcleo de Astroquímica y Astrofísica, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Dayán Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile
| |
Collapse
|
14
|
Koner D. Quantum and quasiclassical dynamical simulations for the Ar 2H + on a new global analytical potential energy surface. J Chem Phys 2021; 154:054303. [PMID: 33557552 DOI: 10.1063/5.0039252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A new analytical potential energy surface (PES) has been constructed for the Ar2H+ system from a dataset consisting of a large number of ab initio energies computed using the coupled-cluster singles, doubles and perturbative triples method and aug-cc-pVQZ basis set. The long-range interaction is added to the diatomic potentials using a standard long range expansion form to better describe the asymptotic regions. The vibrational states for the most stable structures of the Ar2H+ system have been calculated, and few low lying states are assigned to quantum numbers. Reactive scattering studies have been performed for the Ar + Ar'H+ → Ar' + ArH+ proton exchange reaction on the newly generated PES. Reaction probability, cross sections, and rate constants are calculated for the Ar + Ar'H+(v = 0, j = 0) collisions within 0.01 eV-0.6 eV of relative translational energy using exact quantum dynamical simulations as well as quasiclassical trajectory (QCT) calculations. The effect of vibrational excitation of the reactants is also explored for the reaction. State averaged rate constants are calculated for the proton exchange reaction at different temperatures using the QCT method. The mechanistic pathways for the reaction are understood by analyzing the quasiclassical trajectories.
Collapse
Affiliation(s)
- Debasish Koner
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| |
Collapse
|
15
|
Cederbaum LS. Fragmentation of Molecules by Virtual Photons from Remote Neighbors. J Phys Chem Lett 2020; 11:8964-8969. [PMID: 33031701 DOI: 10.1021/acs.jpclett.0c02259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is shown that a molecule can dissociate by the energy transferred from a remote neighbor. This neighbor can be an excited neutral or ionic atom or molecule. If it is an atom, then the transferred energy is, of course, electronic, and in the case of molecules, it can also be vibrational. Explicit examples are given which demonstrate that the transfer can be highly efficient at distances where there is no bonding between the transmitter and the dissociating molecule.
Collapse
Affiliation(s)
- Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| |
Collapse
|
16
|
Buchachenko AA, Artiukhin DG. Weak bonding of the hydrogen molecule by the S-state lanthanide ions Eu+, Yb+ and Lu+ from ab initio calculations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
|
18
|
Potential energy surface of interaction of two diatomic molecules for air flows simulation at intermediate temperatures. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Visentin G, Laatiaoui M, Viehland LA, Buchachenko AA. Mobility of the Singly-Charged Lanthanide and Actinide Cations: Trends and Perspectives. Front Chem 2020; 8:438. [PMID: 32528933 PMCID: PMC7262671 DOI: 10.3389/fchem.2020.00438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
The current status of gaseous transport studies of the singly-charged lanthanide and actinide ions is reviewed in light of potential applications to superheavy ions. The measurements and calculations for the mobility of lanthanide ions in He and Ar agree well, and they are remarkably sensitive to the electronic configuration of the ion, namely, whether the outer electronic shells are 6s, 5d6s or 6s2. The previous theoretical work is extended here to ions of the actinide family with zero electron orbital momentum: Ac+ (7s2, 1S), Am+ (5f77s 9S°), Cm+ (5f77s2 8S°), No+ (5f147s 2S), and Lr+ (5f147s2 1S). The calculations reveal large systematic differences in the mobilities of the 7s and 7s2 groups of ions and other similarities with their lanthanide analogs. The correlation of ion-neutral interaction potentials and mobility variations with spatial parameters of the electron distributions in the bare ions is explored through the ionic radii concept. While the qualitative trends found for interaction potentials and mobilities render them appealing for superheavy ion research, lack of experimental data and limitations of the scalar relativistic ab initio approaches in use make further efforts necessary to bring the transport measurements into the inventory of techniques operating in "one atom at a time" mode.
Collapse
Affiliation(s)
- Giorgio Visentin
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mustapha Laatiaoui
- Department Chemie, Johannes Gutenberg-Universität, Mainz, Germany.,Helmholtz-Institut Mainz, Mainz, Germany
| | - Larry A Viehland
- Science Department, Chatham University, Pittsburgh, PA, United States
| | - Alexei A Buchachenko
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Theoretical Department, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
20
|
Shirkov L, Sladek V, Makarewicz J. Ab initio relativistic potential energy surfaces of benzene-Xe complex with application to intermolecular vibrations. J Chem Phys 2020; 152:114116. [PMID: 32199439 DOI: 10.1063/1.5140728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The benzene-Xe (BXe) complex in its electronic ground state is studied using ab initio methods. Since this complex contains the heavy Xe atom, the relativistic effects cannot be neglected. We test two different approaches that describe the scalar relativistic effects in the framework of the coupled-cluster level of theory with single, double, and perturbative triple excitations, used for the interaction energy calculations. The first one is based on the small core pseudopotential (PP), and the second one is based on the explicit treatment of scalar relativistic effects using the Douglas-Kroll-Hess (DKH) Hamiltonian. A few basis sets are tested with the PP and DKH, and for each one, the analytical potential energy surface (PES) is constructed. It is shown that the difference between PESs determined with PP and DKH methods is small, if the orbitals of the 4d subshell in Xe are correlated. We select the most appropriate approach for the calculation of the potential energy surface of BXe, with respect to accuracy and computational cost. The optimal level of theory includes a small Dunning's basis set for the benzene monomer and a larger PP basis set for Xe supplemented by midbond functions. The PES obtained using such an approach provides a reasonable accuracy when compared to the empirical one derived from the microwave spectra of BXe. The empirical and the theoretical values of intermolecular vibrational energies agree within 0.5 cm-1 up to second overtones. The vibrational energy level pattern of BXe is characterized by a distinct polyad structure.
Collapse
Affiliation(s)
- Leonid Shirkov
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Vladimir Sladek
- Institute of Chemistry - Centre for Glycomics, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia and Agency for Medical Research and Development (AMED), Chiyoda-ku, Japan
| | - Jan Makarewicz
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
21
|
Blancafort-Jorquera M, Vilà A, González M. Quantum-classical approach to the reaction dynamics in a superfluid helium nanodroplet. The Ne 2 dimer and Ne-Ne adduct formation reaction Ne + Ne-doped nanodroplet. Phys Chem Chem Phys 2019; 21:24218-24231. [PMID: 31661098 DOI: 10.1039/c9cp04561a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the Ne2 dimer and Ne-Ne adduct formation in a superfluid helium nanodroplet [(4He)N; T = 0.37 K], Ne + Ne@(4He)N→ Ne2@(4He)N'/Ne-Ne@(4He)N' + (N-N')4He with N = 500, has been investigated using a hybrid approach (quantum and classical mechanics (QM-CM) descriptions for helium and the Ne atoms, respectively) and taking into account the angular momentum of the attacking Ne atom, Ne(1). Comparison with zero angular momentum QM results of our own shows that the present results are similar to the quantum ones for the initial Ne(1) velocities (v0) of 500 and 800 m s-1 (the former one being the most probable velocity of Ne at 300 K), in all cases leading to the Ne2 dimer (re = 3.09 Å). However, significant differences appear below v0 = 500 m s-1, because in the QM-CM dynamics, instead of the dimer, a Ne-Ne adduct is formed (r0 = 5.45 Å). The formation of this adduct will probably dominate as the contribution to reactivity of angular momenta larger than zero is the leading one and angular momentum strongly acts against the Ne2 production. Angular momentum adds further difficulties in producing the dimer, since it makes it more difficult to remove the helium density between both Ne atoms to lead, subsequently, to the Ne2 molecule. Hence, the formation of the neon-neon adduct, Ne-Ne@(4He)N', clearly dominates the reactivity of the system, which results in the formation of a "quantum gel"/"quantum foam", because the two Ne atoms essentially maintain their identity inside the nanodroplet. Large enough Ne(1) initial angular momentum values can induce the formation of vortex lines by the collapse of superficial excitations (ripplons), but they occur with greater difficulty than in the case of the capture of the Ne atom by a non doped helium nanodroplet, due to the wave interferences induced by the Ne induced by the solvation layers of the Ne atom originally placed inside the nanodroplet. We hope that this work will encourage other researchers to investigate the reaction dynamics in helium nanodroplets, an interesting topic on which there are few studies available.
Collapse
Affiliation(s)
- Miquel Blancafort-Jorquera
- Departament de Ciència de Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
22
|
Rutskoy BV, Bezrukov DS. Ab Initio Description of the Structure and Interaction Energy of Perhalomethane Dimers. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419080259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
El Hanini H, Najar F, Naouai M, Jaidane NE. Inelastic scattering dynamics of ortho and para hydronium ions, o-H 3O + and p-H 3O +, with He at low temperature. Phys Chem Chem Phys 2019; 21:11705-11713. [PMID: 31134992 DOI: 10.1039/c9cp01889a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hydronium ion, H3O+, presents a crucial key to understanding the chemistry of the interstellar clouds where it has been frequently observed. The present paper is devoted to studying the inelastic scattering of both forms of the hydronium ion, o-H3O+ and p-H3O+, by helium atoms. The interaction potential between H3O+ and He was mapped in Jacobi coordinates leading to a new three dimensional potential energy surface (3D-PES) at the CCSD(T)/aug-cc-pVQZ+BF (CCSD(T)/AVQZ+BF) level of theory. Close coupling treatment was used to obtain rotational cross-sections for both o-H3O+ and p-H3O+ involving 9 rotational states in each case. The cross-sections were computed from energy thresholds up to 500 cm-1 for o-H3O+ and up to 300 cm-1 for p-H3O+, in order to generate rotational rate coefficients for the kinetic temperature range 5-50 K for both forms. The use of the present rates are viewed to be a good tool to estimate hydronium abundance.
Collapse
Affiliation(s)
- Houda El Hanini
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Farhat Hached, 2092 Tunis ElManar, Tunisia.
| | | | | | | |
Collapse
|
24
|
Makarewicz J, Shirkov L. Theoretical study of the complexes of dichlorobenzene isomers with argon. I. Global potential energy surface for all the isomers with application to intermolecular vibrations. J Chem Phys 2019; 150:074301. [PMID: 30795660 DOI: 10.1063/1.5053801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complexes of para- (p-), meta- (m-), and ortho- (o-)dichlorobenzene (DCB) isomers with argon are studied using an ab initio method. The interaction energy in the ground electronic state of the complexes has been calculated using the CCSD(T) method (coupled cluster method including single and double excitations with perturbative triple excitations) and Dunning's double-ζ (aug-cc-pVDZ) basis set supplemented by midbond functions. Local interaction parameters have been defined and interesting relations fulfilled by them, independent of the DCB isomer, have been revealed. This finding has allowed us to construct the accurate global analytical intermolecular potential energy surface for all the DCB-Ar complexes with the same set of parameters, except for the monomer geometries. Each complex is characterized by two symmetrically equivalent global minima, one located above and the other located below the monomer plane at distances equal to 3.497 Å, 3.494 Å, and 3.485 Å for p-, m-, and o-isomers of DCB bound to Ar, respectively. Additionally, the Ar atom is shifted from the geometrical center of the DCB monomer towards the chlorine atoms by the value xe of 0.182 Å for m-isomer and 0.458 Å for o-isomer. The calculated binding energy De of 460 cm-1, 465 cm-1, and 478 cm-1 for p-, m-, and o-complex, respectively, are related to xe by simple relations. The intermolecular bending fundamentals calculated from PES depend strongly on the isomer structure. The calculated dissociation energies fit in the intervals estimated by the experiment of Gaber et al. for the S0 state [Phys. Chem. Chem. Phys. 11, 1628 (2009)].
Collapse
Affiliation(s)
- Jan Makarewicz
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Leonid Shirkov
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
25
|
Abstract
The potential energy surfaces for the interior rotation of a series of pairs of noble gas atoms encapsulated in the C70 cavity have been explored.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore
- Classe di Scienze
- 56126 Pisa
- Italy
| | - Albeiro Restrepo
- Instituto de Química
- Universidad de Antioquia UdeA
- Medellín
- Colombia
| |
Collapse
|
26
|
Buchachenko AA, Viehland LA. Interaction potentials and transport properties of Ba, Ba +, and Ba 2+ in rare gases from He to Xe. J Chem Phys 2018; 148:154304. [PMID: 29679969 DOI: 10.1063/1.5025861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A highly accurate, consistent set of ab initio interaction potentials is obtained for the title systems at the coupled cluster with singles, doubles, and non-iterative triples level of theory with extrapolation to the complete basis set limit. These potentials are shown to be more reliable than the previous potentials based on their long-range behavior, equilibrium properties, collision cross sections, and transport properties.
Collapse
Affiliation(s)
- Alexei A Buchachenko
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow 143026, Russia
| | - Larry A Viehland
- Science Department, Chatham University, Pittsburgh, Pennsylvania 15232, USA
| |
Collapse
|
27
|
Myatt PT, Dham AK, Chandrasekhar P, McCourt FRW, Le Roy RJ. A new empirical potential energy function for Ar2. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1437932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Philip T. Myatt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Ashok K. Dham
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
- Department of Physics, Punjabi University, Patiala, India
| | | | | | - Robert J. Le Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
28
|
Nikitin AM. A Non-Polarizable Three-Site Water Model Reproduces the Density Anomaly of the Liquid. ChemistrySelect 2018. [DOI: 10.1002/slct.201702974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexei M. Nikitin
- Laboratory of DNA-protein interaction; Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; 119991 Moscow Russia
| |
Collapse
|
29
|
Blancafort-Jorquera M, Vilà A, González M. Quantum-classical dynamics of the capture of neon atoms by superfluid helium nanodroplets. Phys Chem Chem Phys 2018; 20:29737-29753. [DOI: 10.1039/c8cp05140b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The capture dynamics of Ne by a HeND was studied theoretically in a detailed manner (energy and angular momentum transfer and vortex formation).
Collapse
Affiliation(s)
| | - Arnau Vilà
- Departament de Ciència de Materials i Química Física and IQTC
- Universitat de Barcelona
- Barcelona
- Spain
| | - Miguel González
- Departament de Ciència de Materials i Química Física and IQTC
- Universitat de Barcelona
- Barcelona
- Spain
| |
Collapse
|
30
|
Sharipov F, Benites VJ. Transport coefficients of helium-neon mixtures at low density computed from ab initio potentials. J Chem Phys 2017; 147:224302. [DOI: 10.1063/1.5001711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Felix Sharipov
- Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, Curitiba 81531-990, Brazil
| | - Victor J. Benites
- Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, Curitiba 81531-990, Brazil
| |
Collapse
|
31
|
|
32
|
Lara-Moreno M, Stoecklin T, Halvick P. Interaction of rigid C3N− with He: Potential energy surface, bound states, and rotational spectrum. J Chem Phys 2017; 146:224310. [DOI: 10.1063/1.4985148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Miguel Lara-Moreno
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence, France
- Instituto Superior de Tecnologías y Ciencias Aplicadas, Quinta de los Molinos, Plaza de la Revolución, 10600 La Habana, Cuba
| | | | - Philippe Halvick
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence, France
| |
Collapse
|
33
|
Kleshchina NN, Korchagina KA, Bezrukov DS, Buchachenko AA. Modeling of Manganese Atom and Dimer Isolated in Solid Rare Gases: Structure, Stability, and Effect on Spin Coupling. J Phys Chem A 2017; 121:2429-2441. [PMID: 28263615 DOI: 10.1021/acs.jpca.6b12444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structures and energies of the trapping sites of manganese atom and dimer in solid Ar, Kr, and Xe are investigated within the classical model, which balances local distortion and long-range crystal order of the host and provides a means to estimate the relative site stabilities. The model is implemented with the additive pairwise potential field based on the ab initio and best empirical interatomic potential functions. In agreement with experiment, Mn single substitution (SS) and tetrahedral vacancy (TV) occupation are identified as stable for Ar and Kr, whereas the SS site is only found for Xe. Stable trapping sites of the weakly bound Mn2 dimer are shown to be the mergers of SS and/or TV atomic sites. For Ar, (SS + SS) and (TV + TV) sites are close in energy, whereas (SS + TV) site lies higher. The (SS + SS) accommodation is identified as the only stable site in Kr and Xe at low energies. The results are compared with the resonance Raman, electron spin resonance, and absorption spectroscopy data. Reproducing the numbers of stable sites, the calculations tend to underestimate the matrix effect on the dimer vibrational frequency and spin-spin coupling constant. Nonetheless, the level of agreement is found to be informative for tentative assignments of the complex features seen in Mn2 matrix isolation spectroscopy.
Collapse
Affiliation(s)
- Nadezhda N Kleshchina
- Department of Chemistry, M. V. Lomonosov Moscow State University , Moscow 119991, Russia
| | - Kseniia A Korchagina
- Department of Chemistry, M. V. Lomonosov Moscow State University , Moscow 119991, Russia
| | - Dmitry S Bezrukov
- Department of Chemistry, M. V. Lomonosov Moscow State University , Moscow 119991, Russia.,Skolkovo Institute of Science and Technology , Skolkovo Innovation Center, Building 3, Moscow 143026, Russia
| | - Alexei A Buchachenko
- Skolkovo Institute of Science and Technology , Skolkovo Innovation Center, Building 3, Moscow 143026, Russia
| |
Collapse
|
34
|
Farrokhpour H, Dehdashti Jahromi M. Absorption spectra of small helium Nano clusters (4He ; n= 2–29) and characterization of their low-lying excited states. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Dehdashti-Jahromi M, Farrokhpour H. Effect of helium nanoclusters on the spectroscopic properties of embedded SF 6: Ionization, excitation and vibration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:772-782. [PMID: 27794241 DOI: 10.1016/j.saa.2016.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Ionization and excitation energies, IR and Raman spectra of sulfur hexafluoride (SF6), located inside helium (He) nanoclusters with different sizes (SF6@Hen; n=20, 40, 60), were calculated. The effect of the cluster size on the spectroscopic properties of the SF6 was investigated and found that the Hen-SF6 interaction in the He clusters with large number of atoms is small so that the ionization and absorption energies of SF6 are not affected while for small He nanoclusters the Hen-SF6 interaction is more important. The effect of Hen-SF6 interaction and deformation of the fragments on the photoelectron and absorption spectra of SF6@Hen were separated theoretically and discussed in details. It was deduced that the effect of the cluster size on the IR and Raman vibrational frequencies of the SF6 is negligible for the cluster size range considered in this work. Density functional theory (DFT) employing M06-2X functional and 6-31+G(df) basis set were used for optimizing the structures of SF6@Hen. Symmetry adapted cluster-configuration interaction (SAC-CI) methodology, with the same basis set, were used to calculate the ionization and excitation energies of the SF6@Hen structures. Using the calculated ionization and absorption energies and their intensities, the photoelectron and absorption spectra of the considered SF6@Hen structures were simulated and compared with the experiment.
Collapse
Affiliation(s)
- M Dehdashti-Jahromi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran, 84156-83111
| | - H Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran, 84156-83111.
| |
Collapse
|
36
|
Collisional rate coefficients of SiH(X 2Π) open-shell molecule induced by its collision with He( 1S). Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Artiukhin DG, Bieske EJ, Buchachenko AA. Ab Initio Characterization of the Electrostatic Complexes Formed by H2 Molecule and Cr(+), Mn(+), Cu(+), and Zn(+) Cations. J Phys Chem A 2016; 120:5006-15. [PMID: 26914616 DOI: 10.1021/acs.jpca.5b12700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Equilibrium structures, dissociation energies, and rovibrational energy levels of the electrostatic complexes formed by molecular hydrogen and first-row S-state transition metal cations Cr(+), Mn(+), Cu(+), and Zn(+) are investigated ab initio. Extensive testing of the CCSD(T)-based approaches for equilibrium structures provides an optimal scheme for the potential energy surface calculations. These surfaces are calculated in two dimensions by keeping the H-H internuclear distance fixed at its equilibrium value in the complex. Subsequent variational calculations of the rovibrational energy levels permits direct comparison with data obtained from equilibrium thermochemical and spectroscopic measurements. Overall accuracy within 2-3% is achieved. Theoretical results are used to examine trends in hydrogen activation, vibrational anharmonicity, and rotational structure along the sequence of four electrostatic complexes covering the range from a relatively floppy van der Waals system (Mn(+)···H2) to an almost a rigid molecular ion (Cu(+)···H2).
Collapse
Affiliation(s)
- Denis G Artiukhin
- Department of Chemistry, Moscow State University , Moscow 119991, Russia
| | - Evan J Bieske
- School of Chemistry, The University of Melbourne , Parkville, VIC 3010, Australia
| | - Alexei A Buchachenko
- Skolkovo Institute of Science and Technology , 100 Novaya Street, Skolkovo, Odintsovsky District, Moscow Region 143025, Russia
| |
Collapse
|
38
|
Vilà A, González M. Reaction dynamics inside superfluid helium nanodroplets: the formation of the Ne2 molecule from Ne + Ne@(4He)N. Phys Chem Chem Phys 2016; 18:31869-31880. [DOI: 10.1039/c6cp03942a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybrid TDDFT approach was proposed to consider bimolecular reactive processes in superfluid helium nanodroplets. The Ne + Ne@(4He)N reaction was considered as the first application example. The formation of Ne2 is a complex process related to the nature of the helium density waves and their reflection from the nanodroplet surface.
Collapse
Affiliation(s)
- Arnau Vilà
- Departament de Química Física i IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Miguel González
- Departament de Química Física i IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
39
|
Bhattacharya S. Quantum dynamical studies of the He + HeH + reaction using multi-configuration time-dependent Hartree approach. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Vilà A, González M, Mayol R. Quantum dynamics of the pick up process of atoms by superfluid helium nanodroplets: the Ne + (4He)1000 system. Phys Chem Chem Phys 2016; 18:2006-14. [DOI: 10.1039/c5cp04176g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quantum dynamics of neon atom capture by a superfluid helium-4 nanodroplet has been theoretically investigated using a hybrid method.
Collapse
Affiliation(s)
- Arnau Vilà
- Departament de Química Física i IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Miguel González
- Departament de Química Física i IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Ricardo Mayol
- Departament d'Estructura i Constituents de la Matèria
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
41
|
Loreau J, van der Avoird A. Scattering of NH3 and ND3 with rare gas atoms at low collision energy. J Chem Phys 2015; 143:184303. [DOI: 10.1063/1.4935259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. Loreau
- Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB) CP 160/09, 50 av. F.D. Roosevelt, 1050 Brussels, Belgium
| | - A. van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
42
|
Bouhafs N, Lique F. Collisional excitation of NH(X(3)Σ(-)) by Ne: Potential energy surface, scattering calculations, and comparison with experiments. J Chem Phys 2015; 143:184311. [PMID: 26567666 DOI: 10.1063/1.4935513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new three-dimensional potential energy surface (PES) for the NH(X(3)Σ(-))-Ne van der Waals system, which explicitly takes into account the NH vibrational motion. Ab initio calculations of the NH-Ne PES were carried out using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations [RCCSD(T)]. The augmented correlation-consistent quadruple zeta (aug-cc-pVQZ) basis set was employed. Mid-bond functions were also included in order to improve the accuracy in the van der Waals well. Using this new PES, we have studied the collisional excitation of NH(X(3)Σ(-)) by Ne. Close-coupling calculations of the collisional excitation cross sections of the fine-structure levels of NH by Ne are performed for energies up to 3000 cm(-1), which yield, after thermal average, rate coefficients up to 350 K. The propensity rules between fine-structure levels are reported, and it is found that F-conserving cross sections are larger than F-changing cross sections even if the propensity rules are not as strong as for the NH-He system. The calculated rate coefficients are compared with available experimental measurements at room temperature and a fairly good agreement is found between experimental and theoretical data, confirming the good quality of the scattering calculations and also the accuracy of the potential energy surface used in this work.
Collapse
Affiliation(s)
- Nezha Bouhafs
- LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre, France
| | - François Lique
- LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre, France
| |
Collapse
|
43
|
Tao LG, Kleshchina NN, Lambo R, Buchachenko AA, Zhou XG, Bezrukov DS, Hu SM. Heat- and light-induced transformations of Yb trapping sites in an Ar matrix. J Chem Phys 2015; 143:174306. [PMID: 26547169 DOI: 10.1063/1.4934999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The low-lying electronic states of Yb isolated in a solid Ar matrix grown at 4.2 K are characterized through absorption and emission spectroscopy. Yb atoms are found to occupy three distinct thermally stable trapping sites labeled "red," "blue," and "violet" according to the relative positions of the absorption features they produce. Classical simulations of the site structure and relative stability broadly reproduced the experimentally observed matrix-induced frequency shifts and thus identified the red, blue, and violet sites as due to respective single substitutional (ss), tetravacancy (Tv), and hexavacancy (Hv) occupation. Prolonged excitation of the (1)S → (1)P transition was found to transfer the Yb population from hv sites into Tv and ss sites. The process showed reversibility in that annealing to 24 K predominantly transferred the Tv population back into Hv sites. Population kinetics were used to deduce the effective rate parameters for the site transformation processes. Experimental observations indicate that the blue and violet sites lie close in energy, whereas the red one is much less stable. Classical simulations identify the blue site as the most stable one.
Collapse
Affiliation(s)
- L-G Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026, China
| | - N N Kleshchina
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - R Lambo
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026, China
| | - A A Buchachenko
- Skolkovo Institute of Science and Technology, 100 Novaya St., Skolkovo, Moscow Region 143025, Russia
| | - X-G Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026, China
| | - D S Bezrukov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - S-M Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
44
|
Sharipov F, Benites VJ. Transport coefficients of helium-argon mixture based on ab initio potential. J Chem Phys 2015; 143:154104. [PMID: 26493894 DOI: 10.1063/1.4933327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-argon mixtures are calculated for a wide range of temperature and for various mole fractions up to the 12th order of the Sonine polynomial expansion with an ab initio intermolecular potential. The calculated values for these transport coefficients are compared with other data available in the open literature. The comparison shows that the obtained transport coefficients of helium-argon mixture have the best accuracy for the moment.
Collapse
Affiliation(s)
- Felix Sharipov
- Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, Curitiba 81531-990, Brazil
| | - Victor J Benites
- Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, Curitiba 81531-990, Brazil
| |
Collapse
|
45
|
Desgranges C, Delhommelle J. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids. J Chem Theory Comput 2015; 11:5401-14. [DOI: 10.1021/acs.jctc.5b00693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
46
|
Meyer W, Frommhold L. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra. J Chem Phys 2015; 143:114313. [DOI: 10.1063/1.4931377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Naindouba A, Nkem C, Ajili Y, Hammami K, Gotoum N, Owono Owono L. Rotationally inelastic collisions of fulminic acid (HCNO) by He atom at low temperature. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Dubernet ML, Quintas-Sánchez E, Tuckey P. New potential energy surface for the HCS(+)-He system and inelastic rate coefficients. J Chem Phys 2015; 143:044315. [PMID: 26233137 DOI: 10.1063/1.4926839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A new high quality potential energy surface is calculated at a coupled-cluster single double triple level with an aug-cc-pV5Z basis set for the HCS(+)-He system. This potential energy surface is used in low energy quantum scattering calculations to provide a set of (de)-excitation cross sections and rate coefficients among the first 20 rotational levels of HCS(+) by He in the range of temperature from 5 K to 100 K. The paper discusses the impact of the new ab initio potential energy surface on the cross sections at low energy and provides a comparison with the HCO(+)-He system. The HCS(+)-He rate coefficients for the strongest transitions differ by factors of up to 2.5 from previous rate coefficients; thus, analysis of astrophysical spectra should be reconsidered with the new rate coefficients.
Collapse
Affiliation(s)
- Marie-Lise Dubernet
- LERMA, UMR8112, PSL Research University, Observatoire de Paris, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 5 Place Janssen, 92195 Meudon, France
| | - Ernesto Quintas-Sánchez
- LERMA, UMR8112, PSL Research University, Observatoire de Paris, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 5 Place Janssen, 92195 Meudon, France
| | - Philip Tuckey
- LNE-SYRTE, PSL Research University, Observatoire de Paris, Sorbonne Universités, UPMC Univ Paris 06, CNRS, LNE, 61 Av. de l'Observatoire, 75014 Paris, France
| |
Collapse
|
49
|
Loreau J, Liévin J, Scribano Y, van der Avoird A. Potential energy surface and bound states of the NH3-Ar and ND3-Ar complexes. J Chem Phys 2015; 141:224303. [PMID: 25494745 DOI: 10.1063/1.4903047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A new, four-dimensional potential energy surface for the interaction of NH3 and ND3 with Ar is computed using the coupled-cluster method with single, double, and perturbative triple excitations and large basis sets. The umbrella motion of the ammonia molecule is explicitly taken into account. The bound states of both NH3-Ar and ND3-Ar are calculated on this potential for total angular momentum values from J = 0 to 10, with the inclusion of Coriolis interactions. The energies and splittings of the rovibrational levels are in excellent agreement with the extensive high-resolution spectroscopic data accumulated over the years in the infrared and microwave regions for both complexes, which demonstrates the quality of the potential energy surface.
Collapse
Affiliation(s)
- J Loreau
- Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB) CP 160/09, 50 av. F.D. Roosevelt, 1050 Brussels, Belgium
| | - J Liévin
- Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB) CP 160/09, 50 av. F.D. Roosevelt, 1050 Brussels, Belgium
| | - Y Scribano
- Laboratoire Univers et Particules de Montpellier, Université de Montpellier II, LUPM - UMR CNRS 5299, 34095 Montpellier Cedex, France
| | - A van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
50
|
Shirkov L, Makarewicz J. Does DFT-SAPT method provide spectroscopic accuracy? J Chem Phys 2015; 142:064102. [DOI: 10.1063/1.4907204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|