1
|
Turnbull IC, Gaitas A. Characterizing induced pluripotent stem cells and derived cardiomyocytes: insights from nano scale mass measurements and mechanical properties. NANOSCALE ADVANCES 2024; 6:1059-1064. [PMID: 38356620 PMCID: PMC10863719 DOI: 10.1039/d3na00727h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Our study reveals that the nano-mechanical measures of elasticity and cell mass change significantly through induced pluripotent stem cell (iPSC) differentiation to cardiomyocytes, providing a reliable method to evaluate such processes. The findings support the importance of identifying these properties, and highlight the potential of AFM for comprehensive characterization of iPSC at the nanoscale.
Collapse
Affiliation(s)
- Irene C Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai New York NY 10029 USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine New York NY 10029 USA
| |
Collapse
|
2
|
Turnbull IC, Bajpai A, Jankowski KB, Gaitas A. Single-Cell Analysis of Contractile Forces in iPSC-Derived Cardiomyocytes: Paving the Way for Precision Medicine in Cardiovascular Disease. Int J Mol Sci 2023; 24:13416. [PMID: 37686223 PMCID: PMC10487756 DOI: 10.3390/ijms241713416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold enormous potential in cardiac disease modeling, drug screening, and regenerative medicine. Furthermore, patient-specific iPSC-CMS can be tested for personalized medicine. To provide a deeper understanding of the contractile force dynamics of iPSC-CMs, we employed Atomic Force Microscopy (AFM) as an advanced detection tool to distinguish the characteristics of force dynamics at a single cell level. We measured normal (vertical) and lateral (axial) force at different pacing frequencies. We found a significant correlation between normal and lateral force. We also observed a significant force-frequency relationship for both types of forces. This work represents the first demonstration of the correlation of normal and lateral force from individual iPSC-CMs. The identification of this correlation is relevant because it validates the comparison across systems and models that can only account for either normal or lateral force. These findings enhance our understanding of iPSC-CM properties, thereby paving the way for the development of therapeutic strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Irene C. Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Apratim Bajpai
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katherine B. Jankowski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York, NY 10029, USA
| |
Collapse
|
3
|
Kumar A, Heidari-Bafroui H, Rahmani N, Anagnostopoulos C, Faghri M. Modeling of Paper-Based Bi-Material Cantilever Actuator for Microfluidic Biosensors. BIOSENSORS 2023; 13:580. [PMID: 37366945 DOI: 10.3390/bios13060580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
This research explores the dynamics of a fluidically loaded Bi-Material cantilever (B-MaC), a critical component of μPADs (microfluidic paper-based analytical devices) used in point-of-care diagnostics. Constructed from Scotch Tape and Whatman Grade 41 filter paper strips, the B-MaC's behavior under fluid imbibition is examined. A capillary fluid flow model is formulated for the B-MaC, adhering to the Lucas-Washburn (LW) equation, and supported by empirical data. This paper further investigates the stress-strain relationship to estimate the modulus of the B-MaC at various saturation levels and to predict the behavior of the fluidically loaded cantilever. The study shows that the Young's modulus of Whatman Grade 41 filter paper drastically decreases to approximately 20 MPa (about 7% of its dry-state value) upon full saturation. This significant decrease in flexural rigidity, in conjunction with the hygroexpansive strain and coefficient of hygroexpansion (empirically deduced to be 0.008), is essential in determining the B-MaC's deflection. The proposed moderate deflection formulation effectively predicts the B-MaC's behavior under fluidic loading, emphasizing the measurement of maximum (tip) deflection using interfacial boundary conditions for the B-MaC's wet and dry regions. This knowledge of tip deflection will prove instrumental in optimizing the design parameters of B-MaCs.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Hojat Heidari-Bafroui
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Nassim Rahmani
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Constantine Anagnostopoulos
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Mohammad Faghri
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| |
Collapse
|
4
|
Qiu Y, Chien CC, Maroulis B, Bei J, Gaitas A, Gong B. Extending applications of AFM to fluidic AFM in single living cell studies. J Cell Physiol 2022; 237:3222-3238. [PMID: 35696489 PMCID: PMC9378449 DOI: 10.1002/jcp.30809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022]
Abstract
In this article, a review of a series of applications of atomic force microscopy (AFM) and fluidic Atomic Force Microscopy (fluidic AFM, hereafter fluidFM) in single-cell studies is presented. AFM applications involving single-cell and extracellular vesicle (EV) studies, colloidal force spectroscopy, and single-cell adhesion measurements are discussed. FluidFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. In this review, capacities of fluidFM are discussed to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces of endothelial or epithelial cells in a confluent cell monolayer in an appropriate physiological environment, and (3) the ease of measurement of vertical binding forces of intercellular adhesion between heterogeneous cells. Furthermore, key applications of fluidFM are reviewed regarding to EV absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chen-Chi Chien
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Basile Maroulis
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York City, New York, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Human Infectious and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Turnbull IC, Zhu W, Stillitano F, Chien CC, Gaitas A. A micromachined force sensing apparatus and method for human engineered cardiac tissue and induced pluripotent stem cell characterization. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 331:112874. [PMID: 34305317 PMCID: PMC8294102 DOI: 10.1016/j.sna.2021.112874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cell derived-cardiomyocytes (iPSC-CMs) have great potential for cell therapy, drug assessment, and for understanding the pathophysiology and genetic underpinnings of cardiac diseases. Contraction forces are one of the most important characteristics of cardiac function and are predictors of healthy and diseased states. Cantilever techniques, such as atomic force microscopy, measure the vertical force of a single cell, while systems designed to more closely resemble the physical heart function, such as engineered cardiac tissue held by end-posts, measure the axial force. One important question is how do these two force measurements correlate? By establishing a correlation of the axial and vertical force, we will be one step closer in being able to use single cell iPSC-CMs as models. A novel micromachined sensor for measuring force contractions of engineered tissue has been developed. Using this novel sensor, a correlation between axial force and vertical force is experimentally established. This finding supports the use of vertical measurements as an alternative to tissue measurements.
Collapse
Affiliation(s)
| | - Weibin Zhu
- Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | | - Chen-Chi Chien
- Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Angelo Gaitas
- Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
6
|
Gao J, Yang C, Li J, Liu S, Ao Z, Han D. Interfacial Curvature as a Potential Index for Prognosis of Colon Adenocarcinoma. Adv Biol (Weinh) 2021; 5:e1900277. [PMID: 33729697 DOI: 10.1002/adbi.201900277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/14/2020] [Indexed: 11/07/2022]
Abstract
Tumor invasion and metastasis are complex interfacial mechanical processes between the tumor and its surrounding tissue, with the interfacial curvature of tumor playing an important role in cancer progression. In this study, the potential role of interfacial curvature in the prognosis of patients with colon adenocarcinoma is investigated. The front edge interfacial curvature of adenocarcinoma from biopsies of patients in different tumor, lymph node, and metastasis (TNM) stages are calculated and compared, and prognosis assessment is conducted using Kaplan-Meier and Cox proportional hazards regression analyses. Results reveal that patients with larger interfacial curvature of adenocarcinoma are more likely to belong to higher TNM stages. Concomitantly, in the same TNM stage, patients with increased adenocarcinoma interfacial curvature show worse prognosis with higher recurrence and lower survival rates. Besides, interfacial curvature is an independent prognostic factor for cause-specific survival and relapse-free survival among all selected patients. Mechanical models of colon adenocarcinoma invasion and metastasis are established to better understand the close association between interfacial curvature and tumor progression. The results together with hematoxylin and eosin staining indicate that metastasis in stages T3N0M0 and T3N1M0 may be linked to large interfacial curvatures. Therefore, interfacial curvature may serve as a potential index for predicting prognosis in patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Jingwei Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chongqing Yang
- Pathology Department, Beijing Hospital, Beijing, 100730, P. R. China
| | - Jianjun Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sidi Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuo Ao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Han
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Etayash H, Jiang K, Azmi S, Thundat T, Kaur K. Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays. Sci Rep 2015; 5:13967. [PMID: 26434765 PMCID: PMC4593050 DOI: 10.1038/srep13967] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/12/2015] [Indexed: 12/26/2022] Open
Abstract
Ligand-directed targeting and capturing of cancer cells is a new approach for detecting circulating tumor cells (CTCs). Ligands such as antibodies have been successfully used for capturing cancer cells and an antibody based system (CellSearch(®)) is currently used clinically to enumerate CTCs. Here we report the use of a peptide moiety in conjunction with a microcantilever array system to selectively detect CTCs resulting from cancer, specifically breast cancer. A sensing microcantilever, functionalized with a breast cancer specific peptide 18-4 (WxEAAYQrFL), showed significant deflection on cancer cell (MCF7 and MDA-MB-231) binding compared to when exposed to noncancerous (MCF10A and HUVEC) cells. The peptide-functionalized microcantilever allowed efficient capture and detection of cancer cells in MCF7 spiked human blood samples emulating CTCs in human blood. A detection limit of 50-100 cancer cells mL(-1) from blood samples was achieved with a capture yield of 80% from spiked whole blood samples. The results emphasize the potential of peptide 18-4 as a novel peptide for capturing and detecting cancer cells in conjunction with nanomechanical cantilever platform. The reported peptide-based cantilever platform represents a new analytical approach that can lead to an alternative to the various detection platforms and can be leveraged to further study CTCs.
Collapse
Affiliation(s)
- Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Keren Jiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Sarfuddin Azmi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| |
Collapse
|
8
|
Gaitas A, Malhotra R, Li T, Herron T, Jalife J. A device for rapid and quantitative measurement of cardiac myocyte contractility. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:034302. [PMID: 25832250 PMCID: PMC4376763 DOI: 10.1063/1.4915500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/09/2015] [Indexed: 05/27/2023]
Abstract
Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca(2+) activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l(-1)) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.
Collapse
Affiliation(s)
- Angelo Gaitas
- Kytaro, Inc., 11200 SW 8th Street, MARC 430, Miami, Florida 33199, USA
| | - Ricky Malhotra
- Kytaro, Inc., 11200 SW 8th Street, MARC 430, Miami, Florida 33199, USA
| | - Tao Li
- Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109, USA
| | - Todd Herron
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - José Jalife
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Eibl RH. Comment on "A method to measure cellular adhesion utilizing a polymer micro-cantilever" [Appl. Phys. Lett. 103, 123702 (2013)]. APPLIED PHYSICS LETTERS 2014; 104:236103. [PMID: 34803171 PMCID: PMC8587856 DOI: 10.1063/1.4882182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 05/28/2014] [Indexed: 06/13/2023]
Affiliation(s)
- Robert H Eibl
- German Cancer Research Center, DKFZ Alumni, INF 280, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Gaitas A, Malhotra R, Pienta K, Kim G. Response to "Comment on 'A method to measure cellular adhesion utilizing a polymer micro-cantilever'" [Appl. Phys. Lett. 104, 236103 (2014)]. APPLIED PHYSICS LETTERS 2014; 104:236104. [PMID: 25315106 PMCID: PMC4187251 DOI: 10.1063/1.4882185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/28/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Angelo Gaitas
- PicoCal, Inc., 333 Parkland Plaza, Ann Arbor, Michigan 48103, USA
| | - Ricky Malhotra
- PicoCal, Inc., 333 Parkland Plaza, Ann Arbor, Michigan 48103, USA
| | - Kenneth Pienta
- Department of Urology, Johns Hopkins University School of Medicine , Marburg 121, 600 N. Wolfe Street, Baltimore, Maryland 21287-2101, USA
| | - Gwangseong Kim
- PicoCal, Inc., 333 Parkland Plaza, Ann Arbor, Michigan 48103, USA
| |
Collapse
|