1
|
Lu B, Zeng X. Phosphinidenes: Fundamental Properties and Reactivity. Chemistry 2023:e202303283. [PMID: 38108540 DOI: 10.1002/chem.202303283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Phosphinidenes are heavy congeners of nitrenes that have been broadly used as in situ reagents in synthetic phosphorus chemistry and also serve as versatile ligands in coordination with transition metals. However, the detection of free phosphinidenes is largely challenged by their high reactivity and also the lack of suitable synthetic methods, rendering the knowledge about the fundamental properties of this class of low-valent phosphorus compounds limited. Recently, an increasing number of free phosphinidenes bearing prototype structural and bonding properties have been prepared for the first time, thus enabling the exploration of their distinct reactivity from the nitrene analogues. This Concept article will discuss the experimental approaches for the generation of the highly unstable phosphinidenes and highlight their distinct reactivity from the nitrogen analogues so as to stimuate future studies about their potential applications in phosphorus chemistry.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Jarraya M, Wallner M, Nyman G, Yaghlane SB, Hochlaf M, Eland JHD, Feifel R. State selective fragmentation of doubly ionized sulphur dioxide. Sci Rep 2021; 11:17137. [PMID: 34429456 PMCID: PMC8384974 DOI: 10.1038/s41598-021-96405-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Using multi-electron–ion coincidence measurements combined with high level calculations, we show that double ionisation of SO2 at 40.81 eV can be state selective. It leads to high energy products, in good yield, via a newly identified mechanism, which is likely to apply widely to multiple ionisation by almost all impact processes.
Collapse
Affiliation(s)
- M Jarraya
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France.,Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - M Wallner
- Department of Physics, University of Gothenburg, 412 58, Gothenburg, Sweden
| | - G Nyman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - S Ben Yaghlane
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - M Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France.
| | - J H D Eland
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
| | - R Feifel
- Department of Physics, University of Gothenburg, 412 58, Gothenburg, Sweden.
| |
Collapse
|
3
|
Benabdelkrim A, Tourchi AE, Hammoutène D, Ben Yaghlane S, Abdallah HH, Linguerri R, Hochlaf M. Characterization of the simplest sulfenyl thiocyanate: isomers, spectroscopy and implications of astrophysical and biological relevance. Phys Chem Chem Phys 2020; 22:17052-17061. [PMID: 32658239 DOI: 10.1039/d0cp02382e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sulfenyl thiocyanate compounds, RSSCN, are involved in the human immune system biochemical processes. They are also the routes for the synthesis of complex S-containing species such as polypeptides, or symmetrical (RSSR) and unsymmetrical disulfides (RSSR'). At present, we have characterized the stable forms of the simplest sulfenyl thiocyanate compound, HSSCN, at the coupled cluster level. We found twenty-three isomers, for which we determined a set of structural parameters, anharmonic frequencies and reaction energies for the formation of the corresponding diatomic + triatomic and atomic + tetratomic fragments. We also discussed the implications of the present findings for biological entities containing a disulfide bridge, where we identified three isomers that may serve as prototypes. Similarities and differences with other S/N hybrid bioactive molecules are also discussed. From an astrophysical point of view, we expect HSSCN isomers to be present in astrophysical media, since several of their molecular fragments have already been detected. In sum, the present set of data can be used for the identification of HSSCN compounds and understanding the physical chemistry of sulfur containing molecules in vivo, in the laboratory and in astrophysical media.
Collapse
Affiliation(s)
- Aicha Benabdelkrim
- USTHB, Faculty of Chemistry, Laboratory of Thermodynamics and Molecular Modeling, BP 32, Al Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | | | | | | | | | | | | |
Collapse
|
4
|
Transue WJ, Nava M, Terban MW, Yang J, Greenberg MW, Wu G, Foreman ES, Mustoe CL, Kennepohl P, Owen JS, Billinge SJL, Kulik HJ, Cummins CC. Anthracene as a Launchpad for a Phosphinidene Sulfide and for Generation of a Phosphorus–Sulfur Material Having the Composition P2S, a Vulcanized Red Phosphorus That Is Yellow. J Am Chem Soc 2018; 141:431-440. [DOI: 10.1021/jacs.8b10775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wesley J. Transue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew Nava
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maxwell W. Terban
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Jing Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew W. Greenberg
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gang Wu
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L3N6, Canada
| | - Elizabeth S. Foreman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chantal L. Mustoe
- Chemistry Department, University of British Columbia, Vancouver, British Columbia V6T1Z1, Canada
| | - Pierre Kennepohl
- Chemistry Department, University of British Columbia, Vancouver, British Columbia V6T1Z1, Canada
| | - Jonathan S. Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Simon J. L. Billinge
- Department of Applied Physics & Applied Mathematics, Columbia University, New York, New York 10027, United States
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C. Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Mehnen B, Linguerri R, Ben Yaghlane S, Mogren Al Mogren M, Elmarghany A, Hochlaf M. Spectroscopy of the electronic excited states of thioxophosphane, HPS, and of its deuterated species. J Chem Phys 2018; 149:164303. [DOI: 10.1063/1.5048463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- B. Mehnen
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR01ES09 Spectroscopie Atomique et Moléculaire et Applications, 1060 Tunis, Tunisia
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - R. Linguerri
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - S. Ben Yaghlane
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR01ES09 Spectroscopie Atomique et Moléculaire et Applications, 1060 Tunis, Tunisia
| | - M. Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - A. Elmarghany
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Faculty of Science, Suez University, Suez, Egypt
| | - M. Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
6
|
Trabelsi T, Al-Mogren MM, Hochlaf M, Francisco JS. Mechanistic study of the photoexcitation, photoconversion, and photodissociation of CS2. J Chem Phys 2018; 149:064304. [DOI: 10.1063/1.5040141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tarek Trabelsi
- Department of Chemistry, University of Nebraska-Lincoln, 433 Hamilton Hall, Lincoln, Nebraska 68588-0304, USA
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Muneerah Mogren Al-Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Majdi Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska-Lincoln, 433 Hamilton Hall, Lincoln, Nebraska 68588-0304, USA
| |
Collapse
|
7
|
Trabelsi T, Al Mogren MM, Hochlaf M, Francisco JS. Electronic and spectroscopic characterizations of SNP isomers. J Chem Phys 2018; 148:054305. [PMID: 29421883 DOI: 10.1063/1.5013208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ∼2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.
Collapse
Affiliation(s)
- Tarek Trabelsi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Muneerah Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Majdi Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Joseph S Francisco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
8
|
Cheraki M, Al-Mogren MM, Chambaud G, Francisco JS, Hochlaf M. Identification of Key Intermediates during the NO and H2S Crosstalk Signaling Pathways. J Phys Chem A 2018; 122:2877-2883. [DOI: 10.1021/acs.jpca.7b11821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed Cheraki
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, France
| | - Muneerah Mogren Al-Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Gilberte Chambaud
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, France
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska—Lincoln, 433 Hamilton Hall, Lincoln, Nebraska 68588-0304, United States
| | - Majdi Hochlaf
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
9
|
Ayari T, Hochlaf M, Mogren Al-Mogren M, Francisco JS. Characterization of the electronic states of the biological relevant SSNO molecule. J Chem Phys 2017; 146:074301. [PMID: 28228028 DOI: 10.1063/1.4975989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using configuration interaction ab initio methods, we investigate the lowest electronic states of doublet and quartet spin multiplicities of SSNO where the one-dimensional cuts of the six-dimensional potential energy surfaces of these electronic states along the stretching and bending coordinates are computed. Mainly, these electronic states are found to be repulsive along the central SN distance. A high density of electronic states is computed even at low excitation energies that may favor their couplings. Therefore, the dynamics of the SSNO electronic states is expected to be very complex. We also characterized the bound electronic states spectroscopically where we derived their equilibrium structures and vibrational frequencies. Our calculations show the importance of taking into account of dynamical correlation, in addition to static correlation, for the accurate description of SSNO electronic excited states and more generally for those of R-NO molecular species. Finally, we highlighted the potential role of SSNO in light-induced NO delivery from SSNO related species in biological media.
Collapse
Affiliation(s)
- Tarek Ayari
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Majdi Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Muneerah Mogren Al-Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Joseph S Francisco
- Department of Chemistry, University of Nebraska-Lincoln, 433 Hamilton Hall, Lincoln, Nebraska 68588-0304, USA
| |
Collapse
|
10
|
Ayari T, Jaidane NE, Al Mogren MM, Francisco JS, Hochlaf M. Toward the laboratory identification of [O,N,S,S] isomers: Implications for biological NO chemistry. J Chem Phys 2016; 144:234316. [PMID: 27334171 DOI: 10.1063/1.4954062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Benchmark ab initio calculations are performed to investigate the stable isomers of [O,N,S,S]. These computations are carried out using coupled cluster (RCCSD(T)) and explicitly correlated coupled cluster methods (RCCSD(T)-F12). In addition to the already known cis isomer of SSNO, nine other stable forms are predicted. The most stable isomer is cis-OSNS. Nine structures are chain bent-bent with relatively large dipole moments which make them detectable, as cis-SSNO, by infrared, far-infrared, and microwave spectroscopies. We found also a C2v isomer (NS2O). Since these species are strongly suggested to play an important role as intermediates during the bioactive reaction products of the NO/H2S interaction, the rotational and vibrational spectroscopic parameters are presented to help aid the in vivo identification and assignment of these spectra. Results from this work show that [O,N,S,S] may play key roles during nitric oxide transport and deliver in biological media, as well as, provide an explanation for the weak characteristic of disulfide bridges within proteins.
Collapse
Affiliation(s)
- Tarek Ayari
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-la-Vallée, France and Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA Université de Tunis Al Manar, Tunis, Tunisia
| | - Nejm-Eddine Jaidane
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA Université de Tunis Al Manar, Tunis, Tunisia
| | - Muneerah Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Joseph S Francisco
- Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47906, USA
| | - Majdi Hochlaf
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
11
|
Viana RB. Tailoring the electronic properties among oxoarsine, arsinoyl and arsine oxide isomers: the simplest molecular systems with an arsenic–oxygen bond. RSC Adv 2016. [DOI: 10.1039/c6ra09517h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The main goal of this investigation is to understand the reaction pathways and the electronic and spectroscopy properties of AsOHn radicals (n = 0–3), which are some of the simplest compound models with an arsenic–oxygen bond.
Collapse
Affiliation(s)
- Rommel B. Viana
- Departamento de Química e Física Molecular
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
12
|
Ben Yaghlane S, Jaidane NE, Cotton CE, Francisco JS, Al Mogren MM, Linguerri R, Hochlaf M. Theoretical spectroscopic investigations of HNS(q) and HSN(q) (q = 0, +1, -1) in the gas phase. J Chem Phys 2015; 140:244309. [PMID: 24985640 DOI: 10.1063/1.4883915] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed accurate ab initio investigations of the geometric parameters and the vibrational structure of neutral HNS/HSN triatomics and their singly charged anions and cations. We used standard and explicitly correlated coupled cluster approaches in connection with large basis sets. At the highest levels of description, we show that results nicely approach those obtained at the complete basis set limit. Moreover, we generated the three-dimensional potential energy surfaces (3D PESs) for these molecular entities at the coupled cluster level with singles and doubles and a perturbative treatment of triple excitations, along with a basis set of augmented quintuple-zeta quality (aug-cc-pV5Z). A full set of spectroscopic constants are deduced from these potentials by applying perturbation theory. In addition, these 3D PESs are incorporated into variational treatment of the nuclear motions. The pattern of the lowest vibrational levels and corresponding wavefunctions, up to around 4000 cm(-1) above the corresponding potential energy minimum, is presented for the first time.
Collapse
Affiliation(s)
- S Ben Yaghlane
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis El Manar, Tunis, Tunisia
| | - N-E Jaidane
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis El Manar, Tunis, Tunisia
| | - C E Cotton
- Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707, USA
| | - J S Francisco
- Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707, USA
| | - M M Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - R Linguerri
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - M Hochlaf
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
13
|
Dalbouha S, Prakash M, Timón V, Komiha N, Hochlaf M, Senent ML. Explicitly correlated interaction potential energy profile of imidazole + CO2 complex. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1657-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hochlaf M, Puzzarini C, Senent M. Towards the computations of accurate spectroscopic parameters and vibrational spectra for organic compounds. Mol Phys 2015. [DOI: 10.1080/00268976.2014.1003986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- M. Hochlaf
- Laboratoire NSMEUMR 8208 CNRS, Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, Marne-la-Vallée, France
| | - C. Puzzarini
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Bologna, Italy
| | - M.L. Senent
- Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-CSIC Madrid, Spain
| |
Collapse
|
15
|
Mok DKW, Lee EPF, Chau FT, Dyke JM. Simulation of the single-vibronic-level emission spectrum of HPS. J Chem Phys 2014; 140:194311. [DOI: 10.1063/1.4875806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|