1
|
Weinhardt L, Steininger R, Kreikemeyer-Lorenzo D, Mangold S, Hauschild D, Batchelor D, Spangenberg T, Heske C. X-SPEC: a 70 eV to 15 keV undulator beamline for X-ray and electron spectroscopies. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:609-617. [PMID: 33650573 PMCID: PMC7941287 DOI: 10.1107/s1600577520016318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
X-SPEC is a high-flux spectroscopy beamline at the KIT (Karlsruhe Institute of Technology) Synchrotron for electron and X-ray spectroscopy featuring a wide photon energy range. The beamline is equipped with a permanent magnet undulator with two magnetic structures of different period lengths, a focusing variable-line-space plane-grating monochromator, a double-crystal monochromator and three Kirkpatrick-Baez mirror pairs. By selectively moving these elements in or out of the beam, X-SPEC is capable of covering an energy range from 70 eV up to 15 keV. The flux of the beamline is maximized by optimizing the magnetic design of the undulator, minimizing the number of optical elements and optimizing their parameters. The beam can be focused into two experimental stations while maintaining the same spot position throughout the entire energy range. The first experimental station is optimized for measuring solid samples under ultra-high-vacuum conditions, while the second experimental station allows in situ and operando studies under ambient conditions. Measurement techniques include X-ray absorption spectroscopy (XAS), extended X-ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X-ray PES (HAXPES), as well as X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS).
Collapse
Affiliation(s)
- Lothar Weinhardt
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - Ralph Steininger
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dagmar Kreikemeyer-Lorenzo
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Mangold
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dirk Hauschild
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - David Batchelor
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Spangenberg
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Clemens Heske
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| |
Collapse
|
2
|
Fouda AEA, Seitz LC, Hauschild D, Blum M, Yang W, Heske C, Weinhardt L, Besley NA. Observation of Double Excitations in the Resonant Inelastic X-ray Scattering of Nitric Oxide. J Phys Chem Lett 2020; 11:7476-7482. [PMID: 32787301 DOI: 10.1021/acs.jpclett.0c01981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The nitrogen K-edge resonant inelastic X-ray scattering (RIXS) map of nitric oxide (NO) has been measured and simulated to provide a detailed analysis of the observed features. High-resolution experimental RIXS maps were collected using an in situ gas flow cell and a high-transmission soft X-ray spectrometer. Accurate descriptions of the ground, excited, and core-excited states are based upon restricted active space self-consistent-field calculations using second order multiconfigurational perturbation theory. The nitrogen K-edge RIXS map of NO shows a range of features that can be assigned to intermediate states arising from 1s → π* and 1s → Rydberg excitations; additional bands are attributed to doubly excited intermediate states comprising 1s → π* and π → π* excitations. These results provide a detailed picture of RIXS for an open-shell molecule and an extensive description of the core-excited electronic structure of NO, an important molecule in many chemical and biological processes.
Collapse
Affiliation(s)
- Adam E A Fouda
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Linsey C Seitz
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dirk Hauschild
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Monika Blum
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Clemens Heske
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Lothar Weinhardt
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Nicholas A Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
3
|
Qiao R, Xia Y, Feng X, Macdougall J, Pepper J, Armitage K, Borsos J, Knauss KG, Lee N, Allézy A, Gilbert B, MacDowell AA, Liu YS, Glans PA, Sun X, Chao W, Guo J. Soft x-ray spectroscopy of high pressure liquid. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:013114. [PMID: 29390687 DOI: 10.1063/1.5008444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe a new experimental technique that allows for soft x-ray spectroscopy studies (∼100-1000 eV) of high pressure liquid (∼100 bars). We achieve this through a liquid cell with a 100 nm-thick Si3N4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si3N4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si3N4 membrane increases with decreasing size and more specifically is inversely proportional to the side length of the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si3N4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si3N4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (∼350 eV) of a CaCl2 aqueous solution are collected under different pressures up to 41 bars.
Collapse
Affiliation(s)
- Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yujian Xia
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - James Macdougall
- Center for X-Ray Optic, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John Pepper
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Kevin Armitage
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Jason Borsos
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Kevin G Knauss
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Namhey Lee
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Arnaud Allézy
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Alastair A MacDowell
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Per-Anders Glans
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Xuhui Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Weilun Chao
- Center for X-Ray Optic, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Qiao R, Li Q, Zhuo Z, Sallis S, Fuchs O, Blum M, Weinhardt L, Heske C, Pepper J, Jones M, Brown A, Spucces A, Chow K, Smith B, Glans PA, Chen Y, Yan S, Pan F, Piper LFJ, Denlinger J, Guo J, Hussain Z, Chuang YD, Yang W. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:033106. [PMID: 28372380 DOI: 10.1063/1.4977592] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.
Collapse
Affiliation(s)
- Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Qinghao Li
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Shawn Sallis
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Oliver Fuchs
- Universität Würzburg, Experimentelle Physik 7, 97074 Würzburg, Germany
| | - Monika Blum
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, Nevada 89154-4003, USA
| | - Lothar Weinhardt
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, Nevada 89154-4003, USA
| | - Clemens Heske
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, Nevada 89154-4003, USA
| | - John Pepper
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Michael Jones
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Adam Brown
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Adrian Spucces
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ken Chow
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brian Smith
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Per-Anders Glans
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yanxue Chen
- School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Shishen Yan
- School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Louis F J Piper
- Department of Materials Science and Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Jonathan Denlinger
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Benkert A, Meyer F, Hauschild D, Blum M, Yang W, Wilks RG, Bär M, Reinert F, Heske C, Weinhardt L. Isotope Effects in the Resonant Inelastic Soft X-ray Scattering Maps of Gas-Phase Methanol. J Phys Chem A 2016; 120:2260-7. [DOI: 10.1021/acs.jpca.6b02636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Benkert
- Experimentelle
Physik VII, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - F. Meyer
- Experimentelle
Physik VII, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - D. Hauschild
- Experimentelle
Physik VII, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - M. Blum
- Department
of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 Maryland Parkway, NV 89154-4003, United States
| | - W. Yang
- Advanced
Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - R. G. Wilks
- Renewable
Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - M. Bär
- Department
of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 Maryland Parkway, NV 89154-4003, United States
- Renewable
Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany
| | - F. Reinert
- Experimentelle
Physik VII, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - C. Heske
- Department
of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 Maryland Parkway, NV 89154-4003, United States
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18/20, 76128 Karlsruhe, Germany
| | - L. Weinhardt
- Department
of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 Maryland Parkway, NV 89154-4003, United States
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18/20, 76128 Karlsruhe, Germany
| |
Collapse
|
6
|
Weinhardt L, Ertan E, Iannuzzi M, Weigand M, Fuchs O, Bär M, Blum M, Denlinger JD, Yang W, Umbach E, Odelius M, Heske C. Probing hydrogen bonding orbitals: resonant inelastic soft X-ray scattering of aqueous NH3. Phys Chem Chem Phys 2015; 17:27145-53. [DOI: 10.1039/c5cp04898b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resonant inelastic soft X-ray scattering was used to probe the hydrogen bonding orbitals in aqueous ammonia.
Collapse
|