1
|
Singh SP, Masiewicz E, Singh RK, Chaurasia SK, Kruk D. Dynamics of ionic liquid-polymer gel membranes-Insight from NMR relaxometry for [BMIM][BF4]-PVDF-HFP systems. J Chem Phys 2024; 161:174901. [PMID: 39494800 DOI: 10.1063/5.0231727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024] Open
Abstract
1H spin-lattice relaxation experiments have been performed for ionic liquid-polymer gel membranes, including 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) with different proportions. The experiments have been performed in a broad range of resonance frequencies (from about 5 Hz to 40 MHz) vs temperature and complemented with analogous studies for [BMIM][BF4] in bulk as a reference. A model of the relaxation processes in the membranes has been proposed. The model includes two relaxation contributions. One of them corresponds to the concept of restricted, two-dimensional translation diffusion with a residence lifetime, while the second one has the form characteristic of polymers (mathematically similar to the limiting behavior of two-dimensional translation diffusion with a very long residence lifetime). The extensive dataset has been consistently interpreted in terms of the model, revealing two dynamical processes on the time scales of 10-7 s (for the second relaxation contribution) and 10-9 s (for the first one). The relationship of these relaxation contributions to the motion of the polymer or ionic liquid-polymer complexes and to the translation diffusion of BMIM cations in the matrix has been discussed.
Collapse
Affiliation(s)
- Shitanshu Pratap Singh
- Ionic Liquid and Solid State Ionics Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Elżbieta Masiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Rajendra Kumar Singh
- Ionic Liquid and Solid State Ionics Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Sujeet Kumar Chaurasia
- Centre for Nanoscience and Technology, Prof. Rajendra Singh (RajjuBhaiya) Institute of Physical Sciences for Study and Research, V. B. S. Purvanchal University, Jaunpur 222003 UP, India
| | - Danuta Kruk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Kruk D, Masiewicz E, Markiewicz R, Singh RK. Dynamics of ionic liquids by means of nuclear magnetic resonance relaxation - overview of theoretical approaches. Phys Chem Chem Phys 2024; 26:27248-27259. [PMID: 39449266 DOI: 10.1039/d4cp03183k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This paper presents a comprehensive overview of the spin relaxation theory needed for exploring nuclear magnetic resonance (NMR) relaxometry to study the dynamical properties of ionic liquids. The term NMR relaxometry refers to relaxation experiments performed over a wide range of magnetic fields (resonance frequencies). In this way, dynamical processes occurring on timescales from milliseconds to nanoseconds can be studied, including translational and rotational dynamics of both types of ions (cations and anions). In order to take advantage of the remarkable experimental possibilities, appropriate theoretical models linking relaxation properties with ionic motion are needed. With the aim of providing such theoretical tools, 1H and 19F relaxation models for ionic liquids have been reviewed and their applications have been illustrated by several examples. The presented models are valid for an arbitrary magnetic field, include all relevant relaxation pathways and allow to extract detailed information about the translational and rotational dynamics of the ions. On the basis of the theoretical models, formulas allowing a straightforward determination of the translational diffusion coefficients of cations and anions from combined 1H and 19F relaxation studies have been derived and discussed in detail.
Collapse
Affiliation(s)
- Danuta Kruk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland.
| | - Elzbieta Masiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland.
| | - Roksana Markiewicz
- Nanobiomedical Centre Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Rajendra Kumar Singh
- Ionic Liquid and Solid State Ionics Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
3
|
Kruse L, Chiramel Tony AM, Paschek D, Stange P, Ludwig R, Strate A. Translational Dynamics of Cations and Anions in Ionic Liquids from NMR Field Cycling Relaxometry: Highlighting the Importance of Heteronuclear Contributions. J Phys Chem Lett 2024; 15:10410-10415. [PMID: 39387540 DOI: 10.1021/acs.jpclett.4c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
NMR field cycling relaxometry is a powerful method for determining the rotational and translational dynamics of ions, molecules, and dissolved particles. This is in particular true for ionic liquids (ILs) in which both ions carry NMR sensitive nuclei. In the IL triethylammonium bis(trifluoromethanesulfonyl)imide ([TEA][NTf2]), there are 1H nuclei at the [TEA]+ cations and 19F nuclei at the [NTf2]- anions. Moreover, the high viscosity of this IL leads to frequency-dependent relaxation rates, leaving the so-called extreme narrowing regime. Both the rotational and the translational dynamics of the constituents of ILs can be obtained by separating the contributions of intra- and intermolecular relaxation rates. In particular, the translational dynamics can be obtained separately by applying the so-called "low-frequency approach" (LFA), utilizing the fact that the change in the total relaxation rates at low frequencies results solely from translational motions. However, for systems containing multiple NMR active nuclei, heteronuclear interactions can also affect their relaxation rates. For [TEA][NTf2], the intermolecular relaxation rate is either the sum of 1H-1H cation-cation and 1H-19F cation-anion interactions or the sum of 19F-19F anion-anion and 19F-1H anion-cation interactions. Due to the lack of available experimental information, the 1H-19F heteronuclear intermolecular contribution has often been neglected in the past, assuming it to be negligible. Employing a suitable set of ILs and by making use of isotopic H/D substitution, we show that the 1H-19F heteronuclear intermolecular contribution in fact cannot be neglected and that the LFA cannot be applied to the total 1H and total 19F relaxation rates.
Collapse
Affiliation(s)
- Lennart Kruse
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
| | - Angel Mary Chiramel Tony
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
| | - Dietmar Paschek
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
- Department LL&M, University of Rostock, Albert-Einstein-Strasse 25, 18059 Rostock, Germany
| | - Peter Stange
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
| | - Ralf Ludwig
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
- Department LL&M, University of Rostock, Albert-Einstein-Strasse 25, 18059 Rostock, Germany
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Anne Strate
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
| |
Collapse
|
4
|
Knapkiewicz M, Jankowska I, Swiergiel J, Tritt-Goc J. Evidence for NMR Relaxation Enhancement in a Protic Ionic Liquid by the Movement of Protons Independent of the Translational Diffusion of Cations. J Phys Chem B 2024; 128:6876-6884. [PMID: 38968545 PMCID: PMC11264263 DOI: 10.1021/acs.jpcb.4c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The molecular dynamics, thermal stability, and ionic conductivity were studied in the protic ionic liquid 1-methylimidazolium bis(trifluoromethylsulfonyl)imide ([MIm][TFSI]). The relaxation of the 1H spin-lattice of cations in the measured frequency range (10 kHz to 20 MHz) and temperature (298 to 343 K) is sensitive mainly to slow processes occurring in the molecular dynamics of protic ionic liquid and dominated by the contribution of intermolecular translational diffusion. Molecular rotations give only a constant contribution and become significant in the higher frequency range. An interesting feature is the observed enhancement of the 1H spin-lattice relaxation below 0.03 MHz attributed to the exchange of protons (order of 10-5 s) between imidazolium cations. The measurements of the self-diffusion coefficient of hydrogen atoms of cation from 298 to 343 K additionally confirm the observed phenomenon. The coefficient for exchangeable protons -NH is higher than for the cation. The nuclear magnetic resonance (NMR) experiments provide unambiguous evidence for proton transport decoupled from molecular diffusion of ions and support the conclusion that the charge transport mechanism in the studied PIL includes contributions from both the vehicular and Grotthus mechanisms. The protic ionic liquid is thermally stable to about 573 K as shown by thermogravimetric analysis and its electrical conductivity is 5 × 10-2 S/cm at 423 K.
Collapse
Affiliation(s)
- Magdalena Knapkiewicz
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznań 60-179, Poland
| | - Iga Jankowska
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznań 60-179, Poland
| | - Jolanta Swiergiel
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznań 60-179, Poland
| | - Jadwiga Tritt-Goc
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznań 60-179, Poland
| |
Collapse
|
5
|
Leal Auccaise AC, Masiewicz E, Kolodziejski K, Kruk D. Dynamic of binary molecular systems-Advantages and limitations of NMR relaxometry. J Chem Phys 2024; 160:144116. [PMID: 38606737 DOI: 10.1063/5.0188257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
1H spin-lattice relaxation studies have been performed for binary systems, including glycerol as the first component and alanine, glycine, and aspartic acid (with different levels of deuteration) as the second one. The relaxation studies have been performed in the frequency range from 10 kHz to 10 MHz vs temperature. A theoretical framework, including all relevant 1H-1H and 1H-2H relaxation pathways, has been formulated. The theory has been exploited for a thorough interpretation of a large set of the experimental data. The importance of the 1H-2H relaxation contributions has been discussed, and the possibility of revealing dynamical properties of individual liquid components in binary liquids has been carefully investigated. As far as the dynamical properties of the specific binary liquids, chosen as an example, are considered, it has been shown that in the presence of the second component (alanine, glycine, and aspartic acid), both molecular fractions undergo dynamics similar to that of glycerol in bulk.
Collapse
Affiliation(s)
- Adriane Consuelo Leal Auccaise
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Elzbieta Masiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Karol Kolodziejski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Danuta Kruk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
6
|
Gholivand H, Salehi-Khojin A, Khalili-Araghi F. Phase Separation and Ion Diffusion in Ionic Liquid, Organic Solvent, and Lithium Salt Electrolyte Mixtures. J Phys Chem B 2023; 127:7531-7541. [PMID: 37589395 DOI: 10.1021/acs.jpcb.3c01618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The highly desirable characteristics of ternary mixtures of ionic liquids, organic solvents, and metal salts make them a promising candidate for use in various electrothermal energy storage and conversion systems. In this study, using large-scale classical molecular dynamics simulations, we looked into 10 different ternary electrolyte mixtures using combinations of [EMIM]+, [BMIM]+, and [OMIM]+ cations with [NO3]-, [BF4]-, [PF6]-, [ClO4]-, [TFO]-, and [NTf2]- anions, tetraglyme, and Li salt to study the effect of ionic liquid composition on the phase behavior of ternary electrolyte mixtures. We uncovered that in these electrolytes, phase separation is mainly a function of pairwise binding energy of the constituents of the mixture. To corroborate this theory, several simulations are performed at various temperatures ranging from 260 to 500 K for each mixture, followed by calculating the binding energy of ionic liquid pairs using density functional theory. Our results verify that the transition temperature for the phase separation of each system is indeed a function of the pairwise binding energy of its ionic liquid pairs. It is also found that in some cases, the diffusion coefficient of the Li+ ions decreased even with the increase in the temperature, an effect that is attributed to the presence of condensed ionic domains in the electrolyte. This study provides a new insight for the design of multicomponent electrolyte mixtures for a wide range of energy applications.
Collapse
Affiliation(s)
- Hamed Gholivand
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Amin Salehi-Khojin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
7
|
Fraenza CC, Greenbaum SG, Suarez SN. Nuclear Magnetic Resonance Relaxation Pathways in Electrolytes for Energy Storage. Int J Mol Sci 2023; 24:10373. [PMID: 37373520 PMCID: PMC10299207 DOI: 10.3390/ijms241210373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spin relaxation times have been an instrumental tool in deciphering the local environment of ionic species, the various interactions they engender and the effect of these interactions on their dynamics in conducting media. Of particular importance has been their application in studying the wide range of electrolytes for energy storage, on which this review is based. Here we highlight some of the research carried out on electrolytes in recent years using NMR relaxometry techniques. Specifically, we highlight studies on liquid electrolytes, such as ionic liquids and organic solvents; on semi-solid-state electrolytes, such as ionogels and polymer gels; and on solid electrolytes such as glasses, glass ceramics and polymers. Although this review focuses on a small selection of materials, we believe they demonstrate the breadth of application and the invaluable nature of NMR relaxometry.
Collapse
Affiliation(s)
- Carla C. Fraenza
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
| | - Steve G. Greenbaum
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Sophia N. Suarez
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Physics Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
8
|
Molecular Dynamics of Jelly Candies by Means of Nuclear Magnetic Resonance Relaxometry. Molecules 2023; 28:molecules28052230. [PMID: 36903475 PMCID: PMC10005792 DOI: 10.3390/molecules28052230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
1H spin-lattice Nuclear Magnetic Resonance relaxation studies have been performed for different kinds of Haribo jelly and Vidal jelly in a very broad frequency range from about 10 kHz to 10 MHz to obtain insight into the dynamic and structural properties of jelly candies on the molecular level. This extensive data set has been thoroughly analyzed revealing three dynamic processes, referred to as slow, intermediate and fast dynamics occurring on the timescale of 10-6 s, 10-7 s and 10-8 s, respectively. The parameters have been compared for different kinds of jelly for the purpose of revealing their characteristic dynamic and structural properties as well as to enquire into how increasing temperature affects these properties. It has been shown that dynamic processes in different kinds of Haribo jelly are similar (this can be treated as a sign of their quality and authenticity) and that the fraction of confined water molecules is reduced with increasing temperature. Two groups of Vidal jelly have been identified. For the first one, the parameters (dipolar relaxation constants and correlation times) match those for Haribo jelly. For the second group including cherry jelly, considerable differences in the parameters characterizing their dynamic properties have been revealed.
Collapse
|
9
|
Water Dynamics in Highly Concentrated Protein Systems-Insight from Nuclear Magnetic Resonance Relaxometry. Int J Mol Sci 2023; 24:ijms24044093. [PMID: 36835511 PMCID: PMC9963861 DOI: 10.3390/ijms24044093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
1H spin-lattice relaxation experiments have been performed for water-Bovine Serum Albumin (BSA) mixtures, including 20%wt and 40%wt of BSA. The experiments have been carried out in a frequency range encompassing three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. The relaxation data have been thoroughly analyzed in terms of several relaxation models with the purpose of revealing the mechanisms of water motion. For this purpose, four relaxation models have been used: the data have been decomposed into relaxation contributions expressed in terms of Lorentzian spectral densities, then three-dimensional translation diffusion has been assumed, next two-dimensional surface diffusion has been considered, and eventually, a model of surface diffusion mediated by acts of adsorption to the surface has been employed. In this way, it has been demonstrated that the last concept is the most plausible. Parameters describing the dynamics in a quantitative manner have been determined and discussed.
Collapse
|
10
|
Beckmann JB, Rauber D, Philippi F, Goloviznina K, Ward-Williams JA, Sederman AJ, Mantle MD, Pádua A, Kay CW, Welton T, Gladden LF. Molecular Dynamics of Ionic Liquids from Fast-Field Cycling NMR and Molecular Dynamics Simulations. J Phys Chem B 2022; 126:7143-7158. [PMID: 36094902 PMCID: PMC9511496 DOI: 10.1021/acs.jpcb.2c01372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Understanding the connection between the molecular structure of ionic liquids and their properties is of paramount importance for practical applications. However, this connection can only be established if a broad range of physicochemical properties on different length and time scales is already available. Even then, the interpretation of the results often remains ambiguous due to the natural limits of experimental approaches. Here we use fast-field cycling (FFC) to access both translational and rotational dynamics of ionic liquids. These combined with a comprehensive physicochemical characterization and MD simulations provide a toolkit to give insight into the mechanisms of molecular mechanics. The FFC results are consistent with the computer simulation and conventional physicochemical approaches. We show that curling of the side chains around the positively charged cationic core is essential for the properties of ether-functionalized ionic liquids, and we demonstrate that neither geometry nor polarity alone are sufficient to explain the macroscopic properties.
Collapse
Affiliation(s)
- Julian
B. B. Beckmann
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Daniel Rauber
- Department
of Chemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Frederik Philippi
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| | - Kateryna Goloviznina
- Laboratoire
de Chimie, École Normale Supérieure
de Lyon & CNRS, 69364 Lyon, France
| | - Jordan A. Ward-Williams
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Andy J. Sederman
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Mick D. Mantle
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Agílio Pádua
- Laboratoire
de Chimie, École Normale Supérieure
de Lyon & CNRS, 69364 Lyon, France
| | - Christopher W.
M. Kay
- Department
of Chemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
- London
Centre for Nanotechnology, University College
London, 17-19 Gordon
Street, London WC1H 0AH, United Kingdom
| | - Tom Welton
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| | - Lynn F. Gladden
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
11
|
Kruk D, Masiewicz E, Kołodziejski K, Markiewicz R, Jurga S. Relative Cation-Anion Diffusion in Alkyltriethylammonium-Based Ionic Liquids. Int J Mol Sci 2022; 23:ijms23115994. [PMID: 35682674 PMCID: PMC9181216 DOI: 10.3390/ijms23115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
19F Nuclear Magnetic Resonance spin-lattice relaxation experiments have been performed for a series of ionic liquids including the same anion, bis(trifluoromethanesulfonyl)imide, and cations with alkyl chains of different lengths: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, decyltriethylammonium, and hexadecyltriethylammonium. The experiments have been carried out in a frequency range of 10 kHz to 10 MHz versus temperature. A thorough analysis of the relaxation data has led to the determination of the cation–anion as a relative translation diffusion coefficient. The diffusion coefficients have been compared with the corresponding cation–cation and anion–anion diffusion coefficients, revealing a correlation in the relative translation movement of the anion and the triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, and dodecyltriethylammonium cations, whereas the relative translation diffusion between the anion and the cations with the longer alkyl chains, decyltriethylammonium and hexadecyltriethylammonium, remains rather uncorrelated (correlated to a much lesser extent).
Collapse
Affiliation(s)
- Danuta Kruk
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (K.K.)
- Correspondence:
| | - Elżbieta Masiewicz
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (K.K.)
| | - Karol Kołodziejski
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (K.K.)
| | - Roksana Markiewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (R.M.); (S.J.)
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (R.M.); (S.J.)
| |
Collapse
|
12
|
Becher M, Lichtinger A, Minikejew R, Vogel M, Rössler EA. NMR Relaxometry Accessing the Relaxation Spectrum in Molecular Glass Formers. Int J Mol Sci 2022; 23:ijms23095118. [PMID: 35563506 PMCID: PMC9105706 DOI: 10.3390/ijms23095118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
It is a longstanding question whether universality or specificity characterize the molecular dynamics underlying the glass transition of liquids. In particular, there is an ongoing debate to what degree the shape of dynamical susceptibilities is common to various molecular glass formers. Traditionally, results from dielectric spectroscopy and light scattering have dominated the discussion. Here, we show that nuclear magnetic resonance (NMR), primarily field-cycling relaxometry, has evolved into a valuable method, which provides access to both translational and rotational motions, depending on the probe nucleus. A comparison of 1H NMR results indicates that translation is more retarded with respect to rotation for liquids with fully established hydrogen-bond networks; however, the effect is not related to the slow Debye process of, for example, monohydroxy alcohols. As for the reorientation dynamics, the NMR susceptibilities of the structural (α) relaxation usually resemble those of light scattering, while the dielectric spectra of especially polar liquids have a different broadening, likely due to contributions from cross correlations between different molecules. Moreover, NMR relaxometry confirms that the excess wing on the high-frequency flank of the α-process is a generic relaxation feature of liquids approaching the glass transition. However, the relevance of this feature generally differs between various methods, possibly because of their different sensitivities to small-amplitude motions. As a major advantage, NMR is isotope specific; hence, it enables selective studies on a particular molecular entity or a particular component of a liquid mixture. Exploiting these possibilities, we show that the characteristic Cole-Davidson shape of the α-relaxation is retained in various ionic liquids and salt solutions, but the width parameter may differ for the components. In contrast, the low-frequency flank of the α-relaxation can be notably broadened for liquids in nanoscopic confinements. This effect also occurs in liquid mixtures with a prominent dynamical disparity in their components.
Collapse
Affiliation(s)
- Manuel Becher
- Nordbayerisches NMR Zentrum, Universität Bayreuth, 95440 Bayreuth, Germany; (M.B.); (A.L.); (R.M.)
| | - Anne Lichtinger
- Nordbayerisches NMR Zentrum, Universität Bayreuth, 95440 Bayreuth, Germany; (M.B.); (A.L.); (R.M.)
| | - Rafael Minikejew
- Nordbayerisches NMR Zentrum, Universität Bayreuth, 95440 Bayreuth, Germany; (M.B.); (A.L.); (R.M.)
| | - Michael Vogel
- Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, 64289 Darmstadt, Germany;
| | - Ernst A. Rössler
- Nordbayerisches NMR Zentrum, Universität Bayreuth, 95440 Bayreuth, Germany; (M.B.); (A.L.); (R.M.)
- Correspondence:
| |
Collapse
|
13
|
Kruk D, Masiewicz E, Budny J, Stankiewicz A, Lotarska S, Oztop M, Wieczorek Z. Diffusion in oils versus their viscosity – Insight from Nuclear Magnetic Resonance relaxometry. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ruiz-Martín MD, Qureshi N, González MA, Ollivier J, Frick B, Farago B. Influence of water on the microscopic dynamics of 1-butyl-3-methylimidazolium tetrafluoroborate studied by means of quasielastic neutron scattering. J Chem Phys 2022; 156:084505. [DOI: 10.1063/5.0082088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a systematic study on the effect of water on the microscopic dynamics of 1-butyl-3-methylimidazolium tetrafluoroborate by means of quasielastic neutron scattering. By mixing the ionic liquid with either heavy or light water, the different contributions to the quasielastic broadening could be identified and treated separately. This study was performed at room temperature, which is more than 15 °C above the demixing line. Our results show that even small amounts of water accelerate the diffusion mechanisms considerably. While samples with small water percentage reveal a diffusion process confined within ionic liquid nanodomains, an admixture of more than 15 wt. % water relieves the confinement. Furthermore, the presence of two water species was identified: one behaving as free water, whereas the other was interpreted as a component bound to the ionic liquid motion. Based on the fact that water preferentially binds to the BF4 anion, which itself has a negligible contribution to the scattered intensity, our experiments reveal unprecedented information about the microscopic anion dynamics.
Collapse
Affiliation(s)
- M. D. Ruiz-Martín
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - N. Qureshi
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - M. A. González
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - J. Ollivier
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - B. Frick
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - B. Farago
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| |
Collapse
|
15
|
Kruk D, Masiewicz E, Budny J, Kolodziejski K, Zulewska J, Wieczorek Z. Relationship between macroscopic properties of honey and molecular dynamics – temperature effects. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Relationship between Translational and Rotational Dynamics of Alkyltriethylammonium-Based Ionic Liquids. Int J Mol Sci 2022; 23:ijms23031688. [PMID: 35163609 PMCID: PMC8836145 DOI: 10.3390/ijms23031688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
1H spin-lattice relaxation experiments have been performed for a series of ionic liquids including bis(trifluoromethanesulfonyl)imide anion and cations of a varying alkyl chain length: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, triethyltetradecylammonium, and hexadecyltriethylammonium. The relaxation studies were carried out in abroad frequency range covering three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. On the basis of a thorough, quantitative analysis of this reach data set, parameters characterizing the relative, cation-cation, translation diffusion (relative diffusion coefficients and translational correlation times), and rotational motion of the cation (rotational correlation times) were determined. Relationships between these quantities and their dependence on the alkyl chain length were discussed in comparison to analogous properties of molecular liquids. It was shown, among other findings, that the ratio between the translational and rotational correlation times is smaller than for molecular liquids and considerably dependent on temperature. Moreover, a comparison of relative and self-diffusion coefficients indicate correlated translational dynamics of the cations.
Collapse
|
17
|
Fraenza CC, Elgammal RA, Garaga MN, Bhattacharyya S, Zawodzinski TA, Greenbaum SG. Dynamics of Glyceline and Interactions of Constituents: A Multitechnique NMR Study. J Phys Chem B 2022; 126:890-905. [DOI: 10.1021/acs.jpcb.1c09227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carla C. Fraenza
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Ramez A. Elgammal
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Mounesha N. Garaga
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Sahana Bhattacharyya
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Thomas A. Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Steven G. Greenbaum
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| |
Collapse
|
18
|
Kruk D, Jancelewicz M, Klimaszyk A, Markiewicz R, Fojud Z, Jurga S. Internal Dynamics of Ionic Liquids over a Broad Temperature Range-The Role of the Cation Structure. MATERIALS (BASEL, SWITZERLAND) 2021; 15:ma15010216. [PMID: 35009361 PMCID: PMC8746224 DOI: 10.3390/ma15010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 05/08/2023]
Abstract
1H and 19F spin-lattice relaxation experiments have been performed for a series of ionic liquids sharing the same anion: bis(trifluoromethanesulfonyl)imide but including cations of different alkyl chain lengths: butyltriethylammonium, triethyloctylammonium, dodecyltriethylammo-nium and hexadecyltriethylammonium. The studies have been carried out in the temperature range from 383 to 108 K at the resonance frequency of 200 MHz (for 1H). A quantitative analysis of the relaxation data has revealed two dynamical processes for both kinds of ions. The dynamics have been successfully modeled in terms of the Arrhenius law. The timescales of the dynamical processes and their temperature evolution have been discussed in detail, depending on the structure of the cation.
Collapse
Affiliation(s)
- Danuta Kruk
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
- Correspondence:
| | - Mariusz Jancelewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
| | - Adam Klimaszyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
| | - Roksana Markiewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
| | - Zbigniew Fojud
- Department of MacromoLecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland;
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
| |
Collapse
|
19
|
Ozel B, Kruk D, Wojciechowski M, Osuch M, Oztop MH. Water Dynamics in Whey-Protein-Based Composite Hydrogels by Means of NMR Relaxometry. Int J Mol Sci 2021; 22:9672. [PMID: 34575838 PMCID: PMC8469572 DOI: 10.3390/ijms22189672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/05/2023] Open
Abstract
Whey-protein-isolate-based composite hydrogels with encapsulated black carrot (Daucus carota) extract were prepared by heat-induced gelation. The hydrogels were blended with gum tragacanth, pectin and xanthan gum polysaccharides for modulating their properties. 1H spin-lattice relaxation experiments were performed in a broad frequency range, from 4 kHz to 30 MHz, to obtain insight into the influence of the different polysaccharides and of the presence of black carrot on dynamical properties of water molecules in the hydrogel network. The 1H spin-lattice relaxation data were decomposed into relaxation contributions associated with confined and free water fractions. The population of the confined water fraction and the value of the translation diffusion coefficient of water molecules in the vicinity of the macromolecular network were quantitatively determined on the basis of the relaxation data. Moreover, it was demonstrated that the translation diffusion is highly anisotropic (two-dimensional, 2D).
Collapse
Affiliation(s)
- Baris Ozel
- Department of Food Engineering, Middle East Technical University, Ankara 06800, Turkey; (B.O.); (M.H.O.)
- Department of Food Engineering, Ahi Evran University, Kirsehir 40100, Turkey
| | - Danuta Kruk
- Department of Physics & Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Michala Oczapowskiego 4, 10-719 Olsztyn, Poland;
| | - Milosz Wojciechowski
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, 10-710 Olsztyn, Poland;
| | - Maciej Osuch
- Department of Physics & Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Michala Oczapowskiego 4, 10-719 Olsztyn, Poland;
| | - Mecit Halil Oztop
- Department of Food Engineering, Middle East Technical University, Ankara 06800, Turkey; (B.O.); (M.H.O.)
| |
Collapse
|
20
|
Kruk D, Masiewicz E, Lotarska S, Markiewicz R, Jurga S. Correlated Dynamics in Ionic Liquids by Means of NMR Relaxometry: Butyltriethylammonium bis(Trifluoromethanesulfonyl)imide as an Example. Int J Mol Sci 2021; 22:ijms22179117. [PMID: 34502026 PMCID: PMC8431572 DOI: 10.3390/ijms22179117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
1H and 19F spin-lattice relaxation experiments have been performed for butyltriethylammonium bis(trifluoromethanesulfonyl)imide in the temperature range from 258 to 298 K and the frequency range from 10 kHz to 10 MHz. The results have thoroughly been analysed in terms of a relaxation model taking into account relaxation pathways associated with 1H–1H, 19F–19F and 1H–19F dipole–dipole interactions, rendering relative translational diffusion coefficients for the pairs of ions: cation–cation, anion–anion and cation–anion, as well as the rotational correlation time of the cation. The relevance of the 1H–19F relaxation contribution to the 1H and 19F relaxation has been demonstrated. A comparison of the diffusion coefficients has revealed correlation effects in the relative cation–anion translational movement. It has also turned out that the translational movement of the anions is faster than of cations, especially at high temperatures. Moreover, the relative cation–cation diffusion coefficients have been compared with self-diffusion coefficients obtained by means of NMR (Nuclear Magnetic Resonance) gradient diffusometry. The comparison indicates correlation effects in the relative cation–cation translational dynamics—the effects become more pronounced with decreasing temperature.
Collapse
Affiliation(s)
- Danuta Kruk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (S.L.)
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (R.M.); (S.J.)
- Correspondence:
| | - Elzbieta Masiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (S.L.)
| | - Sylwia Lotarska
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (S.L.)
| | - Roksana Markiewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (R.M.); (S.J.)
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (R.M.); (S.J.)
| |
Collapse
|
21
|
Lefroy KS, Murray BS, Ries ME. Rheological and NMR Studies of Cellulose Dissolution in the Ionic Liquid BmimAc. J Phys Chem B 2021; 125:8205-8218. [PMID: 34279933 DOI: 10.1021/acs.jpcb.1c02848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Solutions of two types of cellulose in the ionic liquid 1-butyl-3-methyl-imidazolium acetate (BmimAc) have been analyzed using rheology and fast-field cycling nuclear magnetic resonance (NMR) spectroscopy, in order to analyze the macroscopic (bulk) and microscopic environments, respectively. The degree of polymerization (DP) was observed to have a significant effect on both the overlap (c*) and entanglement (ce) concentrations and the intrinsic viscosity ([η]). For microcrystalline cellulose (MCC)/BmimAc solutions, [η] = 116 mL g-1, which is comparable to that of MCC/1-ethyl-3-methyl-imidazolium acetate (EmimAc) solutions, while [η] = 350 mL g-1 for the commercial cellulose (higher DP). Self-diffusion coefficients (D) obtained via the model-independent approach were found to decrease with cellulose concentration and increase with temperature, which can in part be explained by the changes in viscosity; however, ion interactions on a local level are also important. Both Stokes-Einstein and Stokes-Einstein-Debye analyses were carried out to directly compare rheological and relaxometry analyses. It was found that polymer entanglements affect the microscopic environment to a much lesser extent than for the macroscopic environment. Finally, the temperature dependencies of η, D, and relaxation time (T1) could be well described by Arrhenius relationships, and thus, activation energies (Ea) for flow, diffusion, and relaxation were determined. We demonstrate that temperature and cellulose concentration have different effects on short- and long-range interactions.
Collapse
Affiliation(s)
- Katherine S Lefroy
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Brent S Murray
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Michael E Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
22
|
Zhu H, O'Dell LA. Nuclear magnetic resonance characterisation of ionic liquids and organic ionic plastic crystals: common approaches and recent advances. Chem Commun (Camb) 2021; 57:5609-5625. [PMID: 34048516 DOI: 10.1039/d1cc02151f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids, and their solid-state equivalents organic ionic plastic crystals, show many useful and tailorable properties that make them interesting for a wide range of applications including as electrolytes for energy storage devices. Nuclear magnetic resonance spectroscopy and related techniques offer a powerful and versatile toolkit for the characterisation of structure, interactions and dynamics in these materials. This article summarises both commonly used methods and some recent advances in this area, including solution- and solid-state methods, dynamic nuclear polarisation, imaging, diffusion and relaxation measurements, and example applications of some less commonly studied nuclei.
Collapse
Affiliation(s)
- Haijin Zhu
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Victoria 3220, Australia.
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Victoria 3220, Australia.
| |
Collapse
|
23
|
Kruk D, Florek-Wojciechowska M, Oztop M, Ilhan E, Wieczorek Z. Water dynamics in eggs by means of Nuclear Magnetic Resonance relaxometry. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106976. [PMID: 33901897 DOI: 10.1016/j.jmr.2021.106976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
1H Nuclear Magnetic Resonance relaxometry has been applied to reveal dynamical properties of water molecules embedded into egg yolk and white of three species: turkey, chicken and quail. Two fractions of water molecules, referred to as confined-water and free-water fractions, have been revealed. It has been demonstrated that translation diffusion of the confined-water fraction is three-dimensional. The dynamics of the confined-water has been quantitatively described in terms of diffusion coefficients and rotational correlation times. The parameters have been compared for egg yolk and white for all the species. In addition to these quantities, the number of the confined-water molecules per unit volume has been provided for all cases. The obtained parameters provide insight into the dynamics of water in eggs of different origin and allow to identify similarities and differences between them in connection to the structure of the network formed by the macromolecular fraction of egg yolk and white.
Collapse
Affiliation(s)
- Danuta Kruk
- Department of Physics & Biophysics, Faculty of Food Sciences, University of Warmia & Mazury in Olsztyn, Michała Oczapowskiego 4, 10-719 Olsztyn, Poland.
| | - Małgorzata Florek-Wojciechowska
- Department of Physics & Biophysics, Faculty of Food Sciences, University of Warmia & Mazury in Olsztyn, Michała Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Mecit Oztop
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Esmanur Ilhan
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Zbigniew Wieczorek
- Department of Physics & Biophysics, Faculty of Food Sciences, University of Warmia & Mazury in Olsztyn, Michała Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
24
|
Molecular-level insights into structure and dynamics in ionic liquids and polymer gel electrolytes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Carignani E, Juszyńska-Gałązka E, Gałązka M, Forte C, Geppi M, Calucci L. Translational and rotational diffusion of three glass forming alcohols by 1H field cycling NMR relaxometry. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
|
27
|
Exploring the water mobility in gelatin based soft candies by means of Fast Field Cycling (FFC) Nuclear Magnetic Resonance relaxometry. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Judeinstein P, Zeghal M, Constantin D, Iojoiu C, Coasne B. Interplay of Structure and Dynamics in Lithium/Ionic Liquid Electrolytes: Experiment and Molecular Simulation. J Phys Chem B 2021; 125:1618-1631. [PMID: 33535754 DOI: 10.1021/acs.jpcb.0c09597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite their promising use in electrochemical and electrokinetic devices, ionic-liquid-based electrolytes often exhibit complex behavior arising from a subtle interplay of their structure and dynamics. Here, we report a joint experimental and molecular simulation study of such electrolytes obtained by mixing 1-butyl 3-methylimidazolium tetrafluoroborate with lithium tetrafluoroborate. More in detail, experiments consisting of X-ray scattering, pulsed field gradient NMR, and complex impedance spectroscopy are analyzed in the light of molecular dynamics simulations to probe the structural, dynamical, and electrochemical properties of this ionic-liquid-based electrolyte. Lithium addition promotes the nanostructuration of the liquid as evidenced from the appearance of a scattering prepeak that becomes more pronounced. Microscopically, using the partial structure factors determined from molecular dynamics, this prepeak is shown to correspond to the formation of well-ordered positive/negative charge series and also large aggregates (Lin(BF4)4-m)(4-m+n)-, which develop upon lithium addition. Such nanoscale ordering entails a drastic decrease in both the molecular mobility and ionic conductivity. In particular, the marked association of Li+ cations with four BF4- anions and long ion pairing times, which are promoted upon lithium addition, are found to severely hinder the Li+ transport properties.
Collapse
Affiliation(s)
- Patrick Judeinstein
- Université Paris-Saclay, CEA, CNRS, LLB, 91191 Gif-sur-Yvette, France.,Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Mehdi Zeghal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Doru Constantin
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Cristina Iojoiu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Benoit Coasne
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
29
|
Chang TM, Billeck SE. Structure, Molecular Interactions, and Dynamics of Aqueous [BMIM][BF 4] Mixtures: A Molecular Dynamics Study. J Phys Chem B 2021; 125:1227-1240. [PMID: 33497566 DOI: 10.1021/acs.jpcb.0c09731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations with many-body polarizable force fields were carried out to investigate the thermodynamic, structural, and dynamic properties of aqueous solutions of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). The radial distribution functions exhibit well-defined features, revealing favored structural correlations between [bmim]+, [BF4]-, and H2O. The addition of water is shown to alter ionic liquid structural organizations by replacing counterions in the coordination shells and disrupt the cation-anion network. At low water concentration, the majority of water molecules are isolated from each other and have lower average dipole moment than that in pure water. With increasing hydration level, while [bmim][BF4] ionic network breaks up and becomes isolated ion pairs or free ions in the dilute limit, water begins to form clusters of increasing sizes and eventually forms a percolating network. As a result, the average water dipole moment increases and approaches its bulk value. Water is also observed to have a substantial influence on the dynamics of ionic liquids. At low water content, the cation and anion have similar diffusion coefficients due to the correlated ionic motion of long-lived ion pairs. As the water concentration increases, both ions exhibit greater mobility and faster rotations from the breakup of ionic network. Consequently, the ionic conductivity of [bmim][BF4] aqueous solutions rises with increasing water composition.
Collapse
Affiliation(s)
- Tsun-Mei Chang
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha, Wisconsin 53141, United States
| | - Stephanie E Billeck
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha, Wisconsin 53141, United States
| |
Collapse
|
30
|
Overbeck V, Appelhagen A, Rößler R, Niemann T, Ludwig R. Rotational correlation times, diffusion coefficients and quadrupolar peaks of the protic ionic liquid ethylammonium nitrate by means of 1H fast field cycling NMR relaxometry. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Overbeck V, Schröder H, Bonsa AM, Neymeyr K, Ludwig R. Insights into the translational and rotational dynamics of cations and anions in protic ionic liquids by means of NMR fast-field-cycling relaxometry. Phys Chem Chem Phys 2021; 23:2663-2675. [PMID: 33480888 DOI: 10.1039/d0cp05440b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the translational and rotational dynamics of cations and anions in hydrogen bonded protic ionic liquids (PIls) is still a challenge. In this study, we determine self-diffusion coefficients and rotational correlation times of both ions in triethylammonium based PILs by means of NMR Fast-Field-Cycling (FFC) relaxometry. Global fits of 1H and 19F nuclear magnetic relaxation dispersion (NMRD) curves allowed proper separation into intra and inter molecular relaxation rates for both NMR sensitive nuclei and thus a reliable description of translational and rotational motion for both ions individually. The diffusion coefficients of the cations are in the order of 6 × 10-11 m2 s-1 at room temperature and about 50 per cent larger than those of the anions. The diffusion coefficients of cations and anions in both PILs were compared with those we derived from applying an universal dispersion power law and those known from pulsed field gradient (PFG) NMR studies. Considering the Nernst-Einstein equation, molar conductivities were calculated from cationic and anionic diffusion coefficients and related to directly measured molar conductivities, allowing the determination of the degree of dissociation. The rotational correlation times τR ranging from 50 ps up to 2 ns as a function of temperature were compared with those obtained from high-field NMR quadrupolar relaxation time measurements addressing explicitly the rotation of the NH vector and giving insights into the acidic proton mobility. The Stokes-Einstein and Stokes-Einstein-Debye relations were applied to relate the diffusion coefficients and rotational correlation times to the macroscopic bulk viscosity. The results were also discussed with respect to the archetypical PIL ethylammonium nitrate.
Collapse
Affiliation(s)
- Viviane Overbeck
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany. and Physical and Theoretical Chemistry, Department of Chemistry, University of Rostock, Dr-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Henning Schröder
- Department of Mathematics, University of Rostock, Ulmenstr. 69, 18057 Rostock, Germany
| | - Anne-Marie Bonsa
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany. and Physical and Theoretical Chemistry, Department of Chemistry, University of Rostock, Dr-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Klaus Neymeyr
- Department of Mathematics, University of Rostock, Ulmenstr. 69, 18057 Rostock, Germany
| | - Ralf Ludwig
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany. and Physical and Theoretical Chemistry, Department of Chemistry, University of Rostock, Dr-Lorenz-Weg 2, 18059 Rostock, Germany and Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
32
|
Veroutis E, Merz S, Eichel RA, Granwehr J. Intra- and inter-molecular interactions in choline-based ionic liquids studied by 1D and 2D NMR. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Abstract
The extent to which cations and anions in ionic liquids (ILs) and ionic liquid solutions are dissociated is of both fundamental scientific interest and practical importance because ion dissociation has been shown to impact viscosity, density, surface tension, volatility, solubility, chemical reactivity, and many other important chemical and physical properties. When mixed with solvents, ionic liquids provide the unique opportunity to investigate ion dissociation from infinite dilution in the solvent to a completely solvent-free state, even at ambient conditions. The most common way to estimate ion dissociation in ILs and IL solutions is by comparing the molar conductivity determined from ionic conductivity measurements such as electrochemical impedance spectroscopy (EIS) (which measure the movement of only the charged, i.e., dissociated, ions) with the molar conductivity calculated from ion diffusivities measured by pulse field gradient nuclear magnetic resonance spectroscopy (PFG-NMR, which gives movement of all of the ions). Because the NMR measurements are time-consuming, the number of ILs and IL solutions investigated by this method is relatively limited. We have shown that use of the Stokes-Einstein equation with estimates of the effective ion Stokes radii allows ion dissociation to be calculated from easily measured density, viscosity, and ionic conductivity data (ρ, η, λ), which is readily available in the literature for a much larger number of pure ILs and IL solutions. Therefore, in this review, we present values of ion dissociation for ILs and IL solutions (aqueous and nonaqueous) determined by both the traditional molar conductivity/PFG-NMR method and the ρ, η, λ method. We explore the effect of cation and anion alkyl chain length, structure, and interaction motifs of the cation and anion, temperature, and the strength of the solvent in IL solutions.
Collapse
Affiliation(s)
- Oscar Nordness
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joan F Brennecke
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Dynamics of Ionic Liquids in Confinement by Means of NMR Relaxometry-EMIM-FSI in a Silica Matrix as an Example. MATERIALS 2020; 13:ma13194351. [PMID: 33007881 PMCID: PMC7579494 DOI: 10.3390/ma13194351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
1H and 19F spin–lattice relaxation studies for 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide in bulk and mesoporous MCM-41 silica matrix confinement were performed under varying temperatures in a broad range of magnetic fields, corresponding to 1H resonance frequency from 5Hz to 30MHz.A thorough analysis of the relaxation data revealed a three-dimensional translation diffusion of the ions in the bulk liquid and two-dimensional diffusion in the vicinity of the confining walls in the confinement. Parameters describing the translation dynamics were determined and compared. The rotational motion of both kinds of ions in the confinement was described by two correlation times that might be attributed to anisotropic reorientation of these species.
Collapse
|
35
|
Steinrücken E, Becher M, Vogel M. On the molecular mechanisms of α and β relaxations in ionic liquids. J Chem Phys 2020; 153:104507. [DOI: 10.1063/5.0019271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Elisa Steinrücken
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Manuel Becher
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
36
|
Jayakody NK, Fraenza CC, Greenbaum SG, Ashby D, Dunn BS. NMR Relaxometry and Diffusometry Analysis of Dynamics in Ionic Liquids and Ionogels for Use in Lithium-Ion Batteries. J Phys Chem B 2020; 124:6843-6856. [DOI: 10.1021/acs.jpcb.0c02755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nishani Kanchana Jayakody
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Carla C. Fraenza
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Steven G. Greenbaum
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - David Ashby
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90024, United States
| | - Bruce S. Dunn
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90024, United States
| |
Collapse
|
37
|
Honegger P, Overbeck V, Strate A, Appelhagen A, Sappl M, Heid E, Schröder C, Ludwig R, Steinhauser O. Understanding the Nature of Nuclear Magnetic Resonance Relaxation by Means of Fast-Field-Cycling Relaxometry and Molecular Dynamics Simulations-The Validity of Relaxation Models. J Phys Chem Lett 2020; 11:2165-2170. [PMID: 32105075 DOI: 10.1021/acs.jpclett.0c00087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fast-field-cycling relaxometry is a nuclear magnetic resonance method growing in popularity; yet, theoretical interpretation is limited to analytical models of uncertain accuracy. We present the first study calculating fast-field-cycling dipolar coupling directly from a molecular dynamics simulation trajectory. In principle, the frequency-resolved dispersion contains both rotational and translational diffusion information, among others. The present joint experimental/molecular dynamics study demonstrates that nuclear magnetic resonance properties calculated from the latter reproduce measured dispersion curves and temperature trends faithfully. Furthermore, molecular dynamics simulations can verify interpretation model assumptions by providing actual diffusion coefficients and correlation times.
Collapse
Affiliation(s)
- Philipp Honegger
- Institut für Computergestützte Biologische Chemie, Universität Wien, Fakultät für Chemie, Währingerstr. 17, A-1090 Wien, Austria
| | - Viviane Overbeck
- Institut für Chemie, Abteilung für Physikalische Chemie, Universität Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Anne Strate
- Institut für Chemie, Abteilung für Physikalische Chemie, Universität Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Andreas Appelhagen
- Institut für Chemie, Abteilung für Physikalische Chemie, Universität Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Marion Sappl
- Institut für Computergestützte Biologische Chemie, Universität Wien, Fakultät für Chemie, Währingerstr. 17, A-1090 Wien, Austria
| | - Esther Heid
- Institut für Computergestützte Biologische Chemie, Universität Wien, Fakultät für Chemie, Währingerstr. 17, A-1090 Wien, Austria
| | - Christian Schröder
- Institut für Computergestützte Biologische Chemie, Universität Wien, Fakultät für Chemie, Währingerstr. 17, A-1090 Wien, Austria
| | - Ralf Ludwig
- Institut für Chemie, Abteilung für Physikalische Chemie, Universität Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Othmar Steinhauser
- Institut für Computergestützte Biologische Chemie, Universität Wien, Fakultät für Chemie, Währingerstr. 17, A-1090 Wien, Austria
| |
Collapse
|
38
|
Becher M, Steinrücken E, Vogel M. On the relation between reorientation and diffusion in glass-forming ionic liquids with micro-heterogeneous structures. J Chem Phys 2019; 151:194503. [DOI: 10.1063/1.5128420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Manuel Becher
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Elisa Steinrücken
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
39
|
Eustaquio-Armenta MDR, González-Melchor M. Self-diffusion and structure of monovalent ions in two dimensions: A molecular dynamics study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Wiedemann C, Hempel G, Bordusa F. Reorientation dynamics and ion diffusivity of neat dimethylimidazolium dimethylphosphate probed by NMR spectroscopy. RSC Adv 2019; 9:35735-35750. [PMID: 35528082 PMCID: PMC9074696 DOI: 10.1039/c9ra07731f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 11/21/2022] Open
Abstract
NMR spectroscopy at two magnetic field strengths was employed to investigate the dynamics of dimethylimidazolium dimethylphosphate ([C1C1IM][(CH3)2PO4]). [C1C1IM][(CH3)2PO4] is a low-melting, halogen-free ionic liquid comprising of only methyl groups. 13C spin-lattice relaxation rates as well as self-diffusion coefficients were measured for [C1C1IM][(CH3)2PO4] as a function of temperature. The rotational correlation times, τ c, for the cation and the anion were obtained from the 13C spin-lattice relaxation rates. Although from a theoretical point of view cations and anions are similar in size, they show different reorientation mobilities and diffusivities. The self-diffusion coefficients and the rotational correlation times were related to the radii of the diffusing spheres. The analysis reveals that the radii of the cation and the anion, respectively, are different from each other but constant at temperatures ranging from 293 to 353 K. The experimental results are rationalised by a discrete and individual cation and anion diffusion. The [(CH3)2PO4]- anion reorients faster compared to the cation but diffuses significantly slower indicating the formation of anionic aggregates. Relaxation data were acquired with standard liquid and magic-angle-spinning NMR probes to estimate residual dipolar interactions, chemical shift anisotropy or differences in magnetic susceptibility within the sample.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg Kurt-Mothes-Str. 3a D-06120 Halle (Saale) Germany
| | - Günter Hempel
- Institute of Physics, Martin Luther University Halle-Wittenberg Betty-Heimann-Str. 7 D-06120 Halle (Saale) Germany
| | - Frank Bordusa
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg Kurt-Mothes-Str. 3a D-06120 Halle (Saale) Germany
| |
Collapse
|
41
|
Flämig M, Hofmann M, Lichtinger A, Rössler EA. Application of proton field-cycling NMR relaxometry for studying translational diffusion in simple liquids and polymer melts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:805-817. [PMID: 30604576 DOI: 10.1002/mrc.4823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
With the availability of commercial field-cycling relaxometers together with progress of home-built instruments nuclear magnetic resonance relaxometry has gained new momentum as a method of investigating the dynamics in viscous liquids and polymer melts. The method provides the frequency dependence of the spin-lattice relaxation rate. In the case of protons, one distinguishes intramolecular and intermolecular relaxation pathways. Whereas the intramolecular contribution prevails at high frequencies and reflects rotational dynamics, the often ignored intermolecular relaxation contribution dominates at low-frequency and provides access to translational dynamics. A universal low-frequencies dispersion law holds which in pure systems allows determining the diffusion coefficient in a straightforward way. In addition, the rotational time constant is extracted from the high-frequency relaxation contribution. This is demonstrated for simple and ionic liquids and for polymer melts.
Collapse
Affiliation(s)
- Max Flämig
- Experimentalphysik and Nordbayerisches NMR-Zentrum, Universität Bayreuth, Bayreuth, Germany
| | - Marius Hofmann
- Experimentalphysik and Nordbayerisches NMR-Zentrum, Universität Bayreuth, Bayreuth, Germany
| | - Anne Lichtinger
- Experimentalphysik and Nordbayerisches NMR-Zentrum, Universität Bayreuth, Bayreuth, Germany
| | - Ernst A Rössler
- Experimentalphysik and Nordbayerisches NMR-Zentrum, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
42
|
Martin PA, Chen F, Forsyth M, Deschamps M, O'Dell LA. Correlating Intermolecular Cross-Relaxation Rates with Distances and Coordination Numbers in Ionic Liquids. J Phys Chem Lett 2018; 9:7072-7078. [PMID: 30395468 DOI: 10.1021/acs.jpclett.8b03021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The HOESY NMR experiment is commonly used to probe ion associations in ionic liquids and their mixtures. The parameter measured in this experiment is the heteronuclear cross-relaxation rate σ, which has dimensions of s-1. For intramolecular NOEs this scales as r-6 where r is the internuclear distance, but in the intermolecular case (as typically probed in studies of ionic liquids), theory predicts a more complex behavior including a distance dependence that is affected by the relative frequencies of the nuclei involved. Specifically, for nuclei with similar resonance frequencies such as 1H and 19F, it has been predicted that intermolecular NOEs will be sensitive to longer range distances than for nuclei with very different frequencies such as 1H and 7Li. In this contribution, we test this theory using a combination of quantitative HOESY analysis and molecular dynamics simulations carried out on two different ionic liquid electrolyte systems. In agreement with theoretical predictions, we find excellent correlations between the experimentally measured 1H-7Li NOEs and carbon-lithium distances below 4 Å, while longer distances (>6 Å) must be considered in order to obtain good correlations between 1H-19F NOEs and carbon-fluorine coordination numbers. This demonstrates the utility of HOESY NMR in understanding structure and interactions in ionic liquids while also illustrating that care must be taken in interpreting the measured cross-relaxation rates.
Collapse
Affiliation(s)
- Pierre-Alexandre Martin
- Institute for Frontier Materials , Deakin University , Geelong , Victoria 3220 , Australia
- CEMHTI, CNRS UPR 3079 , Université Orléans , F45071 Orléans , France
| | - Fangfang Chen
- Institute for Frontier Materials , Deakin University , Geelong , Victoria 3220 , Australia
| | - Maria Forsyth
- Institute for Frontier Materials , Deakin University , Geelong , Victoria 3220 , Australia
| | - Michaël Deschamps
- CEMHTI, CNRS UPR 3079 , Université Orléans , F45071 Orléans , France
| | - Luke A O'Dell
- Institute for Frontier Materials , Deakin University , Geelong , Victoria 3220 , Australia
| |
Collapse
|
43
|
Carignani E, Forte C, Juszyńska-Gałązka E, Gałązka M, Massalska-Arodź M, Mandoli A, Geppi M, Calucci L. Dynamics of Dimethylbutanols in Plastic Crystalline Phases by Field Cycling 1H NMR Relaxometry. J Phys Chem B 2018; 122:9792-9802. [PMID: 30278134 DOI: 10.1021/acs.jpcb.8b06391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,2-Dimethylbutan-1-ol (2,2-DM-1-B), 3,3-dimethylbutan-1-ol (3,3-DM-1-B), and 3,3-dimethylbutan-2-ol (3,3-DM-2-B) show a rich solid-state polymorphism, which includes one or more plastic crystalline phases (also referred to as orientationally disordered crystalline (ODIC) phases) and glass of the liquid or ODIC phases. In this work, the dynamics of the three isomeric alcohols was investigated in the liquid and plastic crystalline phases by fast field cycling 1H NMR relaxometry in the temperature range between 213 and 303 K. The analysis of the nuclear magnetic relaxation dispersion curves (i.e., longitudinal relaxation rate R1 vs 1H Larmor frequency) acquired for the different alcohols at different temperatures gave quantitative information on internal motions, overall molecular reorientations, and molecular self-diffusion. Self-diffusion coefficients were also determined in the liquid phase and in some ODIC phases of the samples from the trends of 1H R1 as a function of the frequency square root at low frequencies. Remarkable changes in the temperature trends of correlation times and self-diffusion coefficients were found at the transition between the liquid and the ODIC phase for 2,2-DM-1-B and 3,3-DM-1-B, and between ODIC phases for 3,3-DM-2-B, the latter sample showing a markedly different dynamic and phase behavior.
Collapse
Affiliation(s)
- Elisa Carignani
- Istituto di Chimica dei Composti OrganoMetallici , Consiglio Nazionale delle Ricerche-CNR , via G. Moruzzi 1 , 56124 Pisa , Italy.,Dipartimento di Chimica e Chimica Industriale , Università di Pisa , via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Claudia Forte
- Istituto di Chimica dei Composti OrganoMetallici , Consiglio Nazionale delle Ricerche-CNR , via G. Moruzzi 1 , 56124 Pisa , Italy
| | - Ewa Juszyńska-Gałązka
- Niewodniczański Institute of Nuclear Physics , Polish Academy of Sciences , Radzikowskiego 152 , 31342 Krakow , Poland
| | - Mirosław Gałązka
- Niewodniczański Institute of Nuclear Physics , Polish Academy of Sciences , Radzikowskiego 152 , 31342 Krakow , Poland
| | - Maria Massalska-Arodź
- Niewodniczański Institute of Nuclear Physics , Polish Academy of Sciences , Radzikowskiego 152 , 31342 Krakow , Poland
| | - Alessandro Mandoli
- Dipartimento di Chimica e Chimica Industriale , Università di Pisa , via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Marco Geppi
- Istituto di Chimica dei Composti OrganoMetallici , Consiglio Nazionale delle Ricerche-CNR , via G. Moruzzi 1 , 56124 Pisa , Italy.,Dipartimento di Chimica e Chimica Industriale , Università di Pisa , via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Lucia Calucci
- Istituto di Chimica dei Composti OrganoMetallici , Consiglio Nazionale delle Ricerche-CNR , via G. Moruzzi 1 , 56124 Pisa , Italy
| |
Collapse
|
44
|
Flämig M, Hofmann M, Rössler EA. Field-cycling NMR relaxometry: the benefit of constructing master curves. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1517906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. Flämig
- Experimentalphysik II, Universität Bayreuth, Bayreuth, Germany
| | - M. Hofmann
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - E. A. Rössler
- Experimentalphysik II, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
45
|
Martin PA, Salager E, Forsyth M, O’Dell LA, Deschamps M. On the measurement of intermolecular heteronuclear cross relaxation rates in ionic liquids. Phys Chem Chem Phys 2018; 20:13357-13364. [PMID: 29718051 DOI: 10.1039/c8cp00911b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The HOESY (Heteronuclear Overhauser Effect SpectroscopY) NMR experiment is commonly used to study interactions and structuring in ionic liquids (ILs) via the measurement of the cross relaxation rate σ between two spins. In the intermolecular case, σ is proportional to r-n, where r is the internuclear distance and n can vary between 1 and 6 depending on the frequency of the nuclei and their dynamics, thus σ can potentially provide detailed information on the liquid phase structure. However, in HOESY studies of ILs only relative values for σ are typically reported, making comparisons between different samples difficult. Herein we discuss the quantitative measurement of intermolecular cross relaxation rates based on the normalisation of HOESY signal intensities to the nuclear Boltzmann polarisation, demonstrated for 7Li-1H spin pairs in a lithium-containing pyrrolidinum-based ionic liquid electrolyte. We also use a simple model based on diffusing hard spheres for interpreting these quantities in terms of a distance of closest approach.
Collapse
Affiliation(s)
| | - Elodie Salager
- CEMHTI
- CNRS UPR 3079
- Université d'Orléans
- F45071 Orléans
- France
| | - Maria Forsyth
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Luke A. O’Dell
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | | |
Collapse
|
46
|
Zhukov IV, Kiryutin AS, Yurkovskaya AV, Grishin YA, Vieth HM, Ivanov KL. Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer. Phys Chem Chem Phys 2018; 20:12396-12405. [PMID: 29623979 DOI: 10.1039/c7cp08529j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.
Collapse
Affiliation(s)
- Ivan V Zhukov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
47
|
Javed MA, Ahola S, Håkansson P, Mankinen O, Aslam MK, Filippov A, Shah FU, Glavatskih S, Antzutkin ON, Telkki VV. Structure and dynamics elucidation of ionic liquids using multidimensional Laplace NMR. Chem Commun (Camb) 2018; 53:11056-11059. [PMID: 28948273 DOI: 10.1039/c7cc05493a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We demonstrate the ability of multidimensional Laplace NMR (LNMR), comprising relaxation and diffusion experiments, to reveal essential information about microscopic phase structures and dynamics of ionic liquids that is not observable using conventional NMR spectroscopy or other techniques.
Collapse
|
48
|
Sani MA, Martin PA, Yunis R, Chen F, Forsyth M, Deschamps M, O'Dell LA. Probing Ionic Liquid Electrolyte Structure via the Glassy State by Dynamic Nuclear Polarization NMR Spectroscopy. J Phys Chem Lett 2018; 9:1007-1011. [PMID: 29420892 DOI: 10.1021/acs.jpclett.8b00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamic nuclear polarization (DNP)-enhanced solid-state NMR spectroscopy has been used to study an ionic liquid salt solution (N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide, C3mpyrFSI, containing 1.0 m lithium bis(fluorosulfonyl)imide, 6LiFSI) in its glassy state at a temperature of 92 K. The incorporation of a biradical to enable DNP signal enhancement allowed the proximities of the lithium to the individual carbon sites on the pyrrolidinium cation to be probed using a 13C-6Li REDOR pulse sequence. Distributions in Li-C distances were extracted and converted into a 3D map of the locations of the Li+ relative to the C3mpyr that shows remarkably good agreement with a liquid-phase molecular dynamics simulation.
Collapse
Affiliation(s)
- Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Pierre-Alexandre Martin
- Institute for Frontier Materials, Deakin University , Geelong, Victoria 3220, Australia
- CEMHTI, CNRS UPR 3079, Université d'Orléans , F45071 Orléans, France
- RS2E, FR CNRS 3459 , 80039 Amiens, France
| | - Ruhamah Yunis
- Institute for Frontier Materials, Deakin University , Geelong, Victoria 3220, Australia
| | - Fangfang Chen
- Institute for Frontier Materials, Deakin University , Geelong, Victoria 3220, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University , Geelong, Victoria 3220, Australia
| | - Michaël Deschamps
- CEMHTI, CNRS UPR 3079, Université d'Orléans , F45071 Orléans, France
- RS2E, FR CNRS 3459 , 80039 Amiens, France
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University , Geelong, Victoria 3220, Australia
| |
Collapse
|
49
|
Wencka M, Apih T, Korošec RC, Jenczyk J, Jarek M, Szutkowski K, Jurga S, Dolinšek J. Molecular dynamics of 1-ethyl-3-methylimidazolium triflate ionic liquid studied by 1H and 19F nuclear magnetic resonances. Phys Chem Chem Phys 2018; 19:15368-15376. [PMID: 28574565 DOI: 10.1039/c7cp01045a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The molecular dynamics of an ionic liquid (IL) composed of a 1-ethyl-3-methylimidazolium cation and a triflate (trifluoromethanesulfonate) anion, abbreviated as [Emim][TfO], were studied by NMR spectroscopy. By measuring the temperature-dependent high-field 1H and 19F spin-lattice relaxation (SLR) rates, the frequency-dependent 1H and 19F SLR dispersion curves using fast-field-cycling relaxometry, and the temperature-dependent 1H and 19F diffusion constants, and by utilizing the fact that the primary NMR-active nucleus on the Emim cation is 1H, whereas on the TfO anion it is 19F, the cationic and anionic dynamics were studied separately. A single theoretical relaxation model successfully reproduced all the experimental data of both types of resonant nuclei by fitting all the data simultaneously with the same set of fit parameters. Upon cooling, [Emim][TfO] exhibited a supercooled liquid phase between TSL = 256 K and the crystallization temperature TCr ≈ 227-222 K, as confirmed by differential scanning calorimetry (DSC) experiments. Theoretical analysis revealed that within the liquid and the supercooled liquid states of [Emim][TfO], the 1H and 19F relaxation rates are affected by both the rotational and translational diffusional processes with no discontinuous change at TSL. While the rotational diffusion is well described as an Arrhenius thermally activated process, the translational diffusion undergoes strong freezing dynamics that are well described by the Vogel-Fulcher model assuming a freezing temperature of T0 = 157 K. The existence of the supercooled liquid region in the [Emim][TfO] IL should be taken into account when using this IL for a specific application.
Collapse
Affiliation(s)
- Magdalena Wencka
- Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, PL-60-179 Poznan, Poland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu TY, Su SG, Chiu CL, Kuo CW, Tung YH. Impact of polyethyleneglycol addition on diffusion coefficients in binary ionic liquid electrolytes composed of dicationic ionic liquid and polyethyleneglycol. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:86-94. [PMID: 28499327 DOI: 10.1002/mrc.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
We conduct a comparative study of conductivity and diffusion coefficient of two dicationic ionic liquids (3,3'-(octane-1,8-diyl)bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMCI][TFSI], S1) and 3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMOI][TFSI], S2)) at various temperatures. The diffusion coefficients of cation and anion in ionic liquids are determined by using pulse gradient spin-echo nuclear magnetic resonance method. S2 shows lower viscosity, higher conductivity, and higher diffusion coefficient than those of S1. Moreover, the influence of polyethyleneglycol (PEG200, Mw = 200) addition in PEG200/IL binary solutions is investigated. PEG200/S1 binary solutions show lower viscosity, higher conductivity, and higher diffusion coefficient than those of neat S1. The experimental molar conductivity (Λ) of neat IL and PEG200/IL binary solutions is lower than that of the calculated molar conductivity (ΛNMR ) from pulse gradient spin-echo nuclear magnetic resonance method at various temperatures, indicating that not all the diffusion species belong to the ionic conduction. In other words, NMR diffusion measurements comprise charged and paired (without charge) ions. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tzi-Yi Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Shyh-Gang Su
- Department of Chemistry, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chuen-Lin Chiu
- Department of Chemistry, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chung-Wen Kuo
- Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 80778, Taiwan
| | - Yi-Hsuan Tung
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| |
Collapse
|