1
|
Riehn R. Probing protein-DNA interactions and compaction in nanochannels. Curr Opin Struct Biol 2024; 88:102914. [PMID: 39163794 DOI: 10.1016/j.sbi.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
DNA confined to nanofluidic channels with a cross-section from tens to hundreds of nm wide and hundreds of microns long stretches in an equilibrium process free of flow or end tethering. Because DNA is free to move along the channel axis, its extension is exquisitely sensitive to DNA-DNA interactions and the DNA persistence length, as well as the contour length. We discuss how this sensitivity has been used to probe DNA-protein interactions at physiological concentrations of both DNA and proteins.
Collapse
Affiliation(s)
- Robert Riehn
- Department of Physics, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
2
|
Möller C, Sharma R, Öz R, Reginato G, Cannavo E, Ceppi I, Sriram KK, Cejka P, Westerlund F. Xrs2/NBS1 promote end-bridging activity of the MRE11-RAD50 complex. Biochem Biophys Res Commun 2024; 695:149464. [PMID: 38217957 DOI: 10.1016/j.bbrc.2023.149464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
DNA double strand breaks (DSBs) can be detrimental to the cell and need to be efficiently repaired. A first step in DSB repair is to bring the free ends in close proximity to enable ligation by non-homologous end-joining (NHEJ), while the more precise, but less available, repair by homologous recombination (HR) requires close proximity of a sister chromatid. The human MRE11-RAD50-NBS1 (MRN) complex, Mre11-Rad50-Xrs2 (MRX) in yeast, is involved in both repair pathways. Here we use nanofluidic channels to study, on the single DNA molecule level, how MRN, MRX and their constituents interact with long DNA and promote DNA bridging. Nanofluidics is a suitable method to study reactions on DNA ends since no anchoring of the DNA end(s) is required. We demonstrate that NBS1 and Xrs2 play important, but differing, roles in the DNA tethering by MRN and MRX. NBS1 promotes DNA bridging by MRN consistent with tethering of a repair template. MRX shows a "synapsis-like" DNA end-bridging, stimulated by the Xrs2 subunit. Our results highlight the different ways MRN and MRX bridge DNA, and the results are in agreement with their key roles in HR and NHEJ, respectively, and contribute to the understanding of the roles of NBS1 and Xrs2 in DSB repair.
Collapse
Affiliation(s)
- Carl Möller
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Rajhans Sharma
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Robin Öz
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Giordano Reginato
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland
| | - Elda Cannavo
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland
| | - K K Sriram
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Petr Cejka
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden.
| |
Collapse
|
3
|
Qian J, Xu W, Dunlap D, Finzi L. Single-molecule insights into torsion and roadblocks in bacterial transcript elongation. Transcription 2021; 12:219-231. [PMID: 34719335 PMCID: PMC8632135 DOI: 10.1080/21541264.2021.1997315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
During transcription, RNA polymerase (RNAP) translocates along the helical template DNA while maintaining high transcriptional fidelity. However, all genomes are dynamically twisted, writhed, and decorated by bound proteins and motor enzymes. In prokaryotes, proteins bound to DNA, specifically or not, frequently compact DNA into conformations that may silence genes by obstructing RNAP. Collision of RNAPs with these architectural proteins, may result in RNAP stalling and/or displacement of the protein roadblock. It is important to understand how rapidly transcribing RNAPs operate under different levels of supercoiling or in the presence of roadblocks. Given the broad range of asynchronous dynamics exhibited by transcriptional complexes, single-molecule assays, such as atomic force microscopy, fluorescence detection, optical and magnetic tweezers, etc. are well suited for detecting and quantifying activity with adequate spatial and temporal resolution. Here, we summarize current understanding of the effects of torsion and roadblocks on prokaryotic transcription, with a focus on single-molecule assays that provide real-time detection and readout.
Collapse
Affiliation(s)
- Jin Qian
- Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
4
|
Nikoubashman A. Ordering, phase behavior, and correlations of semiflexible polymers in confinement. J Chem Phys 2021; 154:090901. [DOI: 10.1063/5.0038052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
5
|
Krog J, Alizadehheidari M, Werner E, Bikkarolla SK, Tegenfeldt JO, Mehlig B, Lomholt MA, Westerlund F, Ambjörnsson T. Stochastic unfolding of nanoconfined DNA: Experiments, model and Bayesian analysis. J Chem Phys 2019; 149:215101. [PMID: 30525714 DOI: 10.1063/1.5051319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanochannels provide a means for detailed experiments on the effect of confinement on biomacromolecules, such as DNA. Here we introduce a model for the complete unfolding of DNA from the circular to linear configuration. Two main ingredients are the entropic unfolding force and the friction coefficient for the unfolding process, and we describe the associated dynamics by a non-linear Langevin equation. By analyzing experimental data where DNA molecules are photo-cut and unfolded inside a nanochannel, our model allows us to extract values for the unfolding force as well as the friction coefficient for the first time. In order to extract numerical values for these physical quantities, we employ a recently introduced Bayesian inference framework. We find that the determined unfolding force is in agreement with estimates from a simple Flory-type argument. The estimated friction coefficient is in agreement with theoretical estimates for motion of a cylinder in a channel. We further validate the estimated friction constant by extracting this parameter from DNA's center-of-mass motion before and after unfolding, yielding decent agreement. We provide publically available software for performing the required image and Bayesian analysis.
Collapse
Affiliation(s)
- Jens Krog
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Erik Werner
- Department of Physics, Gothenburg University, Gothenburg, Sweden
| | - Santosh Kumar Bikkarolla
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Bernhard Mehlig
- Department of Physics, Gothenburg University, Gothenburg, Sweden
| | - Michael A Lomholt
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Dangi S, Riehn R. Nanoplumbing with 2D Metamaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803478. [PMID: 30537130 PMCID: PMC6785347 DOI: 10.1002/smll.201803478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Complex manipulations of DNA in a nanofluidic device require channels with branches and junctions. However, the dynamic response of DNA in such nanofluidic networks is relatively unexplored. Here, the transport of DNA in a 2D metamaterial made by arrays of nanochannel junctions is investigated. The mechanism of transport is explained as Brownian motion through an energy landscape formed by the combination of the confinement free energy of DNA and the effective potential of hydrodynamic flow, which both can be tuned independently within the device. For the quantitative understanding of DNA transport, a dynamic mean-field model of DNA at a nanochannel junction is proposed. It is shown that the dynamics of DNA in a nanofluidic device with branched channels and junctions is well described by the model.
Collapse
|
7
|
Roushan M, Azad Z, Movahed S, Ray PD, Livshits GI, Lim SF, Weninger KR, Riehn R. Motor-like DNA motion due to an ATP-hydrolyzing protein under nanoconfinement. Sci Rep 2018; 8:10036. [PMID: 29968756 PMCID: PMC6030079 DOI: 10.1038/s41598-018-28278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/20/2018] [Indexed: 01/23/2023] Open
Abstract
We report that long double-stranded DNA confined to quasi-1D nanochannels undergoes superdiffusive motion under the action of the enzyme T4 DNA ligase in the presence of necessary co-factors. Inside the confined environment of the nanochannel, double-stranded DNA molecules stretch out due to self-avoiding interactions. In absence of a catalytically active enzyme, we see classical diffusion of the center of mass. However, cooperative interactions of proteins with the DNA can lead to directed motion of DNA molecules inside the nanochannel. Here we show directed motion in this configuration for three different proteins (T4 DNA ligase, MutS, E. coli DNA ligase) in the presence of their energetic co-factors (ATP, NAD+).
Collapse
Affiliation(s)
- Maedeh Roushan
- Department of Physics, North Carolina State University, Raleigh, NC, USA
| | - Zubair Azad
- Department of Physics, North Carolina State University, Raleigh, NC, USA
| | - Saeid Movahed
- Department of Physics, North Carolina State University, Raleigh, NC, USA
| | - Paul D Ray
- Department of Physics, North Carolina State University, Raleigh, NC, USA
| | - Gideon I Livshits
- Department of Physics, North Carolina State University, Raleigh, NC, USA.,Department of Chemistry, Osaka University, Osaka, 560-0043, Japan
| | - Shuang Fang Lim
- Department of Physics, North Carolina State University, Raleigh, NC, USA
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, USA
| | - Robert Riehn
- Department of Physics, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
8
|
Abstract
Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.
Collapse
|
9
|
Frykholm K, Nyberg LK, Westerlund F. Exploring DNA–protein interactions on the single DNA molecule level using nanofluidic tools. Integr Biol (Camb) 2017; 9:650-661. [DOI: 10.1039/c7ib00085e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review highlights the use of nanofluidic channels for studying DNA–protein interactions on the single DNA molecule level.
Collapse
Affiliation(s)
- Karolin Frykholm
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Lena K. Nyberg
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| |
Collapse
|
10
|
Dai L, Renner CB, Doyle PS. The polymer physics of single DNA confined in nanochannels. Adv Colloid Interface Sci 2016; 232:80-100. [PMID: 26782150 DOI: 10.1016/j.cis.2015.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given.
Collapse
Affiliation(s)
- Liang Dai
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Singapore
| | - C Benjamin Renner
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, United States
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, United States.
| |
Collapse
|
11
|
Azad Z, Roushan M, Riehn R. DNA Brushing Shoulders: Targeted Looping and Scanning of Large DNA Strands. NANO LETTERS 2015; 15:5641-6. [PMID: 26156085 PMCID: PMC4684187 DOI: 10.1021/acs.nanolett.5b02476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present a nanofluidic device for targeted manipulations in the quarternary structure of single DNA molecules. We demonstrate the folding and unfolding of hairpin-shaped regions, similar to chromatin loops. These loops are stable for minutes at nanochannel junctions. We demonstrate continuous scanning of two DNA segments that occupy a common nanovolume. We present a model governing the stability of loop folds and discuss how the system achieves specific DNA configurations without operator intervention.
Collapse
|
12
|
Roushan M, Azad Z, Lim SF, Wang H, Riehn R. Interference of ATP with the fluorescent probes YOYO-1 andYOYO-3 modifies the mechanical properties of intercalator-stained DNA confined in nanochannels. Mikrochim Acta 2015; 182:1561-1565. [PMID: 27134313 DOI: 10.1007/s00604-015-1495-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intercalating fluorescent probes are widely used to visualize DNA in studies on DNA-protein interactions. Some require the presence of adenosine triphosphate (ATP). We have investigated the mechanical properties of DNA stained with the fluorescent intercalating dyes YOYO-1 and YOYO-3 as a function of ATP concentrations (up to 2 mM) by stretching single molecules in nanofluidic channels with a channel cross-section as small as roughly 100×100 nm2. The presence of ATP reduces the length of the DNA by up to 11 %. On the other hand, negligible effects are found if DNA is visualized with the minor groove-binding probe 4',6-diamidino-2-phenylindole. The apparent drop in extension under nanoconfinement is attributed to an interaction of the dye and ATP, and the resulting expulsion of YOYO-1 from the double helix.
Collapse
Affiliation(s)
- Maedeh Roushan
- Department of Physics, NC State University, Raleigh, NC 27695-8202, USA
| | - Zubair Azad
- Department of Physics, NC State University, Raleigh, NC 27695-8202, USA
| | - Shuang Fang Lim
- Department of Physics, NC State University, Raleigh, NC 27695-8202, USA
| | - Hong Wang
- Department of Physics, NC State University, Raleigh, NC 27695-8202, USA
| | - Robert Riehn
- Department of Physics, NC State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
13
|
Alizadehheidari M, Werner E, Noble C, Reiter-Schad M, Nyberg LK, Fritzsche J, Mehlig B, Tegenfeldt JO, Ambjörnsson T, Persson F, Westerlund F. Nanoconfined Circular and Linear DNA: Equilibrium Conformations and Unfolding Kinetics. Macromolecules 2015. [DOI: 10.1021/ma5022067] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Erik Werner
- Department
of Physics, Gothenburg University, Gothenburg, Sweden
| | | | | | | | | | - Bernhard Mehlig
- Department
of Physics, Gothenburg University, Gothenburg, Sweden
| | | | | | - Fredrik Persson
- Department of Cell and
Molecular Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|