1
|
Nandi S, Ghosh S, Garg S, Ghosh S. Unveiling the Human Brain on a Chip: An Odyssey to Reconstitute Neuronal Ensembles and Explore Plausible Applications in Neuroscience. ACS Chem Neurosci 2024. [PMID: 39436813 DOI: 10.1021/acschemneuro.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The brain is an incredibly complex structure that consists of millions of neural networks. In developmental and cellular neuroscience, probing the highly complex dynamics of the brain remains a challenge. Furthermore, deciphering how several cues can influence neuronal growth and its interactions with different brain cell types (such as astrocytes and microglia) is also a formidable task. Traditional in vitro macroscopic cell culture techniques offer simple and straightforward methods. However, they often fall short of providing insights into the complex phenomena of neuronal network formation and the relevant microenvironments. To circumvent the drawbacks of conventional cell culture methods, recent advancements in the development of microfluidic device-based microplatforms have emerged as promising alternatives. Microfluidic devices enable precise spatiotemporal control over compartmentalized cell cultures. This feature facilitates researchers in reconstituting the intricacies of the neuronal cytoarchitecture within a regulated environment. Therefore, in this review, we focus primarily on modeling neuronal development in a microfluidic device and the various strategies that researchers have adopted to mimic neurogenesis on a chip. Additionally, we have presented an overview of the application of brain-on-chip models for the recapitulation of the blood-brain barrier and neurodegenerative diseases, followed by subsequent high-throughput drug screening. These lab-on-a-chip technologies have tremendous potential to mimic the brain on a chip, providing valuable insights into fundamental brain processes. The brain-on-chip models will also serve as innovative platforms for developing novel neurotherapeutics to address several neurological disorders.
Collapse
Affiliation(s)
- Subhadra Nandi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| |
Collapse
|
2
|
Nebuloni F, Do QB, Cook PR, Walsh EJ, Wade-Martins R. A fluid-walled microfluidic platform for human neuron microcircuits and directed axotomy. LAB ON A CHIP 2024; 24:3252-3264. [PMID: 38841815 PMCID: PMC11198392 DOI: 10.1039/d4lc00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
In our brains, different neurons make appropriate connections; however, there remain few in vitro models of such circuits. We use an open microfluidic approach to build and study neuronal circuits in vitro in ways that fit easily into existing bio-medical workflows. Dumbbell-shaped circuits are built in minutes in standard Petri dishes; the aqueous phase is confined by fluid walls - interfaces between cell-growth medium and an immiscible fluorocarbon, FC40. Conditions are established that ensure post-mitotic neurons derived from human induced pluripotent stem cells (iPSCs) plated in one chamber of a dumbbell remain where deposited. After seeding cortical neurons on one side, axons grow through the connecting conduit to ramify amongst striatal neurons on the other - an arrangement mimicking unidirectional cortico-striatal connectivity. We also develop a moderate-throughput non-contact axotomy assay. Cortical axons in conduits are severed by a media jet; then, brain-derived neurotrophic factor and striatal neurons in distal chambers promote axon regeneration. As additional conduits and chambers are easily added, this opens up the possibility of mimicking complex neuronal networks, and screening drugs for their effects on connectivity.
Collapse
Affiliation(s)
- Federico Nebuloni
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK.
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Quyen B Do
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Peter R Cook
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Edmond J Walsh
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK.
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
3
|
Sullivan D, Vaglio BJ, Cararo-Lopes MM, Wong RDP, Graudejus O, Firestein BL. Stretch-Induced Injury Affects Cortical Neuronal Networks in a Time- and Severity-Dependent Manner. Ann Biomed Eng 2024; 52:1021-1038. [PMID: 38294641 DOI: 10.1007/s10439-023-03438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Traumatic brain injury (TBI) is the leading cause of accident-related death and disability in the world and can lead to long-term neuropsychiatric symptoms, such as a decline in cognitive function and neurodegeneration. TBI includes primary and secondary injury, with head trauma and deformation of the brain caused by the physical force of the impact as primary injury, and cellular and molecular cascades that lead to cell death as secondary injury. Currently, there is no treatment for TBI-induced cell damage and neural circuit dysfunction in the brain, and thus, it is important to understand the underlying cellular mechanisms that lead to cell damage. In the current study, we use stretchable microelectrode arrays (sMEAs) to model the primary injury of TBI to study the electrophysiological effects of physically injuring cortical cells. We recorded electrophysiological activity before injury and then stretched the flexible membrane of the sMEAs to injure the cells to varying degrees. At 1, 24, and 72 h post-stretch, we recorded activity to analyze differences in spike rate, Fano factor, burstlet rate, burstlet width, synchrony of firing, local network efficiency, and Q statistic. Our results demonstrate that mechanical injury changes the firing properties of cortical neuron networks in culture in a time- and severity-dependent manner. Our results suggest that changes to electrophysiological properties after stretch are dependent on the strength of synchronization between neurons prior to injury.
Collapse
Affiliation(s)
- Dylan Sullivan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marina M Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ruben D Ponce Wong
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
| | - Oliver Graudejus
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
- School of Molecular Science, Arizona State University, Tempe, AZ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
4
|
Lee D, Yang K, Xie J. Advances in Nerve Injury Models on a Chip. Adv Biol (Weinh) 2023; 7:e2200227. [PMID: 36709421 DOI: 10.1002/adbi.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/19/2022] [Indexed: 01/30/2023]
Abstract
Regeneration and functional recovery of the damaged nerve are challenging due to the need for effective therapeutic drugs, biomaterials, and approaches. The poor outcome of the treatment of nerve injury stems from the incomplete understanding of axonal biology and interactions between neurons and the surrounding environment, such as glial cells and extracellular matrix. Microfluidic devices, in combination with various injury techniques, have been applied to test biological hypotheses in nerve injury and nerve regeneration. The microfluidic devices provide multiple advantages over the in vitro cell culture on a petri dish and in vivo animal models because a specific part of the neuronal environment can be manipulated using physical and chemical interventions. In addition, single-cell behavior and interactions between neurons and glial cells can be visualized and quantified on microfluidic platforms. In this article, current in vitro nerve injury models on a chip that mimics in vivo axonal injuries and the regeneration process of axons are summarized. The microfluidic-based nerve injury models could enhance the understanding of the physiological and pathophysiological mechanisms of nerve tissues and simultaneously serve as powerful drug and biomaterial screening platforms.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kai Yang
- Department of Surgery-Plastic Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
5
|
Pan X, Li J, Li W, Wang H, Durisic N, Li Z, Feng Y, Liu Y, Zhao CX, Wang T. Axons-on-a-chip for mimicking non-disruptive diffuse axonal injury underlying traumatic brain injury. LAB ON A CHIP 2022; 22:4541-4555. [PMID: 36318066 DOI: 10.1039/d2lc00730d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diffuse axonal injury (DAI) is the most severe pathological feature of traumatic brain injury (TBI). However, how primary axonal injury is induced by transient mechanical impacts remains unknown, mainly due to the low temporal and spatial resolution of medical imaging approaches. Here we established an axon-on-a-chip (AoC) model for mimicking DAI and monitoring instant cellular responses. Integrating computational fluid dynamics and microfluidic techniques, DAI was induced by injecting a precisely controlled micro-flux in the transverse direction. The clear correlation between the flow speed of injecting flux and the severity of DAI was elucidated. We next used the AoC to investigate the instant intracellular responses underlying DAI and found that the dynamic formation of focal axonal swellings (FAS) accompanied by Ca2+ surge occurs during the flux. Surprisingly, periodic axonal cytoskeleton disruption also occurs rapidly after the flux. These instant injury responses are spatially restricted to the fluxed axon, not affecting the overall viability of the neuron in the acute stage. Compatible with high-resolution live microscopy, the AoC provides a versatile system to identify early mechanisms underlying DAI, offering a platform for screening effective treatments to alleviate TBI.
Collapse
Affiliation(s)
- Xiaorong Pan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jie Li
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haofei Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nela Durisic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenyu Li
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yu Feng
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yifan Liu
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Shao X, Liu Z, Mao S, Han L. Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Adv Healthc Mater 2022; 11:e2200760. [PMID: 35841392 DOI: 10.1002/adhm.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health and socioeconomic problem, associated with prolonged and complex neurological aftermaths, including a variety of functional deficits and neurodegenerative disorders. Research on the long-term effects has highlighted that TBI shall be regarded as a chronic health condition. The initiation and exacerbation of TBI involve a series of mechanical stimulations and perturbations, accompanied by mechanotransduction events within the brain tissues. Mechanobiology thus offers a unique perspective and likely promising approach to unravel the underlying molecular and biochemical mechanisms leading to neural cells dysfunction after TBI, which may contribute to the discovery of novel targets for future clinical treatment. This article investigates TBI and the subsequent brain dysfunction from a lens of neuromechanobiology. Following an introduction, the mechanobiological insights are examined into the molecular pathology of TBI, and then an overview is given of the latest research technologies to explore neuromechanobiology, with particular focus on microfluidics and biomaterials. Challenges and prospects in the current field are also discussed. Through this article, it is hoped that extensive technical innovation in biomedical devices and materials can be encouraged to advance the field of neuromechanobiology, paving potential ways for the research and rehabilitation of neurotrauma and neurological diseases.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China
| | - Zhongqian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
7
|
A Review on Microfluidic Platforms Applied to Nerve Regeneration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent decades, microfluidics have significantly advanced nerve regeneration research. Microfluidic devices can provide an accurate simulation of in vivo microenvironment for different research purposes such as analyzing myelin growth inhibitory factors, screening drugs, assessing nerve growth factors, and exploring mechanisms of neural injury and regeneration. The microfluidic platform offers technical supports for nerve regeneration that enable precise spatio-temporal control of cells, such as neuron isolation, single-cell manipulation, neural patterning, and axon guidance. In this paper, we review the development and recent advances of microfluidic platforms for nerve regeneration research.
Collapse
|
8
|
Carvalho E, Morais M, Ferreira H, Silva M, Guimarães S, Pêgo A. A paradigm shift: Bioengineering meets mechanobiology towards overcoming remyelination failure. Biomaterials 2022; 283:121427. [DOI: 10.1016/j.biomaterials.2022.121427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
9
|
Wu YH, Rosset S, Lee TR, Dragunow M, Park T, Shim V. In Vitro Models of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2021; 38:2336-2372. [PMID: 33563092 DOI: 10.1089/neu.2020.7402] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health challenge that is also the third leading cause of death worldwide. It is also the leading cause of long-term disability in children and young adults worldwide. Despite a large body of research using predominantly in vivo and in vitro rodent models of brain injury, there is no medication that can reduce brain damage or promote brain repair mainly due to our lack of understanding in the mechanisms and pathophysiology of the TBI. The aim of this review is to examine in vitro TBI studies conducted from 2008-2018 to better understand the TBI in vitro model available in the literature. Specifically, our focus was to perform a detailed analysis of the in vitro experimental protocols used and their subsequent biological findings. Our review showed that the uniaxial stretch is the most frequently used way of load application, accounting for more than two-thirds of the studies reviewed. The rate and magnitude of the loading were varied significantly from study to study but can generally be categorized into mild, moderate, and severe injuries. The in vitro studies reviewed here examined key processes in TBI pathophysiology such as membrane disruptions leading to ionic dysregulation, inflammation, and the subsequent damages to the microtubules and axons, as well as cell death. Overall, the studies examined in this review contributed to the betterment of our understanding of TBI as a disease process. Yet, our review also revealed the areas where more work needs to be done such as: 1) diversification of load application methods that will include complex loading that mimics in vivo head impacts; 2) more widespread use of human brain cells, especially patient-matched human cells in the experimental set-up; and 3) need for building a more high-throughput system to be able to discover effective therapeutic targets for TBI.
Collapse
Affiliation(s)
- Yi-Han Wu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Tae-Rin Lee
- Advanced Institute of Convergence Technology, Seoul National University, Seoul, Korea
| | - Mike Dragunow
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Thomas Park
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Parittotokkaporn S, Dravid A, Raos BJ, Rosset S, Svirskis D, O'Carroll SJ. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury. J Neurosci Methods 2021; 362:109302. [PMID: 34343573 DOI: 10.1016/j.jneumeth.2021.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S) This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand
| | - Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
11
|
Tahk D, Bang S, Hyung S, Lim J, Yu J, Kim J, Jeon NL, Kim HN. Self-detachable UV-curable polymers for open-access microfluidic platforms. LAB ON A CHIP 2020; 20:4215-4224. [PMID: 33170919 DOI: 10.1039/d0lc00604a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study presents an ultraviolet (UV)-curable polymer which is applicable to open-access microfluidic platforms. The UV-curable polymer was prepared by mixing trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), polyethylene glycol-diacrylate (PEG-DA), and Irgacure 184. The polymer resin is optically transparent before and after UV-assisted curing and showed good biocompatibility when culturing multiple types of cells on the nanopatterned polymer substrate. The polymer has good adhesion with poly(dimethylsiloxane) (PDMS) even under large deformation and showed a low swelling ratio when exposed to water, suggesting a possibility to be used as a substrate for an organ on a chip. Furthermore, because the polymers have controllable hydrolysis ability depending on the composition, long-term 3D cell culture and subsequent biological analysis with harvested cells are possible. The self-detachable synthesized UV-curable polymer may help the advancement of biomedical studies using in vitro cell culture.
Collapse
Affiliation(s)
- Dongha Tahk
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Sujin Hyung
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jungeun Lim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - James Yu
- Interdisciplinary Program for Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea. and Interdisciplinary Program for Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea and World Class University Program on Multiscale Mechanical Design, Seoul National University, Seoul 08826, Republic of Korea and Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. and Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
12
|
Sousa SC, Sousa MM. The cytoskeleton as a modulator of tension driven axon elongation. Dev Neurobiol 2020; 81:300-309. [PMID: 32302060 DOI: 10.1002/dneu.22747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Throughout development, neurons are capable of integrating external and internal signals leading to the morphological changes required for neuronal polarization and axon growth. The first phase of axon elongation occurs during neuronal polarization. At this stage, membrane remodeling and cytoskeleton dynamics are crucial for the growth cone to advance and guide axon elongation. When a target is recognized, the growth cone collapses to form the presynaptic terminal. Once a synapse is established, the growth of the organism results in an increased distance between the neuronal cell bodies and their targets. In this second phase of axon elongation, growth cone-independent molecular mechanisms and cytoskeleton changes must occur to enable axon growth to accompany the increase in body size. While the field has mainly focused on growth-cone mediated axon elongation during development, tension driven axon growth remains largely unexplored. In this review, we will discuss in a critical perspective the current knowledge on the mechanisms guiding axon growth following synaptogenesis, with a particular focus on the putative role played by the axonal cytoskeleton.
Collapse
Affiliation(s)
- Sara C Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and i3S, Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal.,Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, Porto, Portugal
| | - Mónica M Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and i3S, Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Pneumatically Actuated Microfluidic Platform for Reconstituting 3D Vascular Tissue Compression. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In vivo, blood vessels constitutively experience mechanical stresses exerted by adjacent tissues and other structural elements. Vascular collapse, a structural failure of vascular tissues, may stem from any number of possible compressive forces ranging from injury to tumor growth and can promote inflammation. In particular, endothelial cells are continuously exposed to varying mechanical stimuli, internally and externally, resulting in blood vessel deformation and injury. This study proposed a method to model biomechanical-stimuli-induced blood vessel compression in vitro within a polydimethylsiloxane (PDMS) microfluidic 3D microvascular tissue culture platform with an integrated pneumatically actuated compression mechanism. 3D microvascular tissues were cultured within the device. Histological reactions to compressive forces were quantified and shown to be the following: live/dead assays indicated the presence of a microvascular dead zone within high-stress regions and reactive oxygen species (ROS) quantification exhibited a stress-dependent increase. Fluorescein isothiocyanate (FITC)-dextran flow assays showed that compressed vessels developed structural failures and increased leakiness; finite element analysis (FEA) corroborated the experimental data, indicating that the suggested model of vascular tissue deformation and stress distribution was conceptually sound. As such, this study provides a powerful and accessible in vitro method of modeling microphysiological reactions of microvascular tissues to compressive stress, paving the way for further studies into vascular failure as a result of external stress.
Collapse
|
14
|
van de Wijdeven R, Ramstad OH, Valderhaug VD, Köllensperger P, Sandvig A, Sandvig I, Halaas Ø. A novel lab-on-chip platform enabling axotomy and neuromodulation in a multi-nodal network. Biosens Bioelectron 2019; 140:111329. [DOI: 10.1016/j.bios.2019.111329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
|
15
|
Mobini S, Song YH, McCrary MW, Schmidt CE. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 2019; 198:146-166. [PMID: 29880219 PMCID: PMC6957334 DOI: 10.1016/j.biomaterials.2018.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The technologies related to ex vivo models and lab-on-a-chip devices for studying the regeneration of brain, spinal cord, and peripheral nerve tissues are essential tools for neural tissue engineering and regenerative medicine research. The need for ex vivo systems, lab-on-a-chip technologies and disease models for neural tissue engineering applications are emerging to overcome the shortages and drawbacks of traditional in vitro systems and animal models. Ex vivo models have evolved from traditional 2D cell culture models to 3D tissue-engineered scaffold systems, bioreactors, and recently organoid test beds. In addition to ex vivo model systems, we discuss lab-on-a-chip devices and technologies specifically for neural tissue engineering applications. Finally, we review current commercial products that mimic diseased and normal neural tissues, and discuss the future directions in this field.
Collapse
Affiliation(s)
- Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Bianchi F, George JH, Malboubi M, Jerusalem A, Thompson MS, Ye H. Engineering a uniaxial substrate-stretching device for simultaneous electrophysiological measurements and imaging of strained peripheral neurons. Med Eng Phys 2019; 67:1-10. [PMID: 30878301 DOI: 10.1016/j.medengphy.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
Peripheral nerves are continuously subjected to mechanical strain during everyday movements, but excessive stretch can lead to damage and neuronal cell functionality can also be impaired. To better understand cellular processes triggered by stretch, it is necessary to develop in vitro experimental methods that allow multiple concurrent measurements and replicate in vivo mechanical conditions. Current commercially available cell stretching devices do not allow flexible experimental design, restricting the range of possible multi-physics measurements. Here, we describe and characterise a custom-built uniaxial substrate-straining device, with which neurons cultured on aligned patterned surfaces (50 µm wide grooves) can be strained up to 70% and simultaneously imaged with widefield and confocal imaging (up to 100x magnification). Furthermore, direct and indirect electrophysiological measurements by patch clamping and calcium imaging can be made during strain application. We characterise the strain applied to cells cultured in deformable wells by using finite element method simulations and experimental data, showing local surface strains of up to 60% with applied strains of up to 25%. We also show how patterned substrates do not alter the mechanical properties of the system compared to unpatterned surfaces whilst still inducing a homogeneous cell response to strain. The characterisation of this device will be useful for research into investigating the effect of whole-cell mechanical stretch on neurons at both single cell and network scales, with applications found in peripheral neuropathy modelling and in platforms for preventive and regenerative studies.
Collapse
Affiliation(s)
- Fabio Bianchi
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Julian H George
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; Department of Mechanical Engineering, The University of Birmingham, Birmingham B15 2TT, UK
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Mark S Thompson
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
17
|
Shrirao AB, Kung FH, Omelchenko A, Schloss RS, Boustany NN, Zahn JD, Yarmush ML, Firestein BL. Microfluidic platforms for the study of neuronal injury in vitro. Biotechnol Bioeng 2018; 115:815-830. [PMID: 29251352 DOI: 10.1002/bit.26519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) affects 5.3 million people in the United States, and there are 12,500 new cases of spinal cord injury (SCI) every year. There is yet a significant need for in vitro models of TBI and SCI in order to understand the biological mechanisms underlying central nervous system (CNS) injury and to identify and test therapeutics to aid in recovery from neuronal injuries. While TBI or SCI studies have been aided with traditional in vivo and in vitro models, the innate limitations in specificity of injury, isolation of neuronal regions, and reproducibility of these models can decrease their usefulness in examining the neurobiology of injury. Microfluidic devices provide several advantages over traditional methods by allowing researchers to (1) examine the effect of injury on specific neural components, (2) fluidically isolate neuronal regions to examine specific effects on subcellular components, and (3) reproducibly create a variety of injuries to model TBI and SCI. These microfluidic devices are adaptable for modeling a wide range of injuries, and in this review, we will examine different methodologies and models recently utilized to examine neuronal injury. Specifically, we will examine vacuum-assisted axotomy, physical injury, chemical injury, and laser-based axotomy. Finally, we will discuss the benefits and downsides to each type of injury model and discuss how researchers can use these parameters to pick a particular microfluidic device to model CNS injury.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Frank H Kung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
18
|
Szydzik C, Gavela AF, Herranz S, Roccisano J, Knoerzer M, Thurgood P, Khoshmanesh K, Mitchell A, Lechuga LM. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics. LAB ON A CHIP 2017; 17:2793-2804. [PMID: 28682395 DOI: 10.1039/c7lc00524e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.
Collapse
Affiliation(s)
- C Szydzik
- School of Engineering, RMIT University, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yap YC, King AE, Guijt RM, Jiang T, Blizzard CA, Breadmore MC, Dickson TC. Mild and repetitive very mild axonal stretch injury triggers cystoskeletal mislocalization and growth cone collapse. PLoS One 2017; 12:e0176997. [PMID: 28472086 PMCID: PMC5417565 DOI: 10.1371/journal.pone.0176997] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 04/20/2017] [Indexed: 12/28/2022] Open
Abstract
Diffuse axonal injury is a hallmark pathological consequence of non-penetrative traumatic brain injury (TBI) and yet the axonal responses to stretch injury are not fully understood at the cellular level. Here, we investigated the effects of mild (5%), very mild (0.5%) and repetitive very mild (2×0.5%) axonal stretch injury on primary cortical neurons using a recently developed compartmentalized in vitro model. We found that very mild and mild levels of stretch injury resulted in the formation of smaller growth cones at the tips of axons and a significantly higher number of collapsed structures compared to those present in uninjured cultures, when measured at both 24 h and 72 h post injury. Immunocytochemistry studies revealed that at 72 h following mild injury the axonal growth cones had a significantly higher colocalization of βIII tubulin and F-actin and higher percentage of collapsed morphology than those present following a very mild injury. Interestingly, cultures that received a second very mild stretch injury, 24 h after the first insult, had a further increased proportion of growth cone collapse and increased βIII tubulin and F-actin colocalization, compared with a single very mild injury at 72 h PI. In addition, our results demonstrated that microtubule stabilization of axons using brain penetrant Epothilone D (EpoD) (100 nM) resulted in a significant reduction in the number of fragmented axons following mild injury. Collectively, these results suggest that mild and very mild stretch injury to a very localized region of the cortical axon is able to trigger a degenerative response characterized by growth cone collapse and significant abnormal cytoskeletal rearrangement. Furthermore, repetitive very mild stretch injury significantly exacerbated this response. Results suggest that axonal degeneration following stretch injury involves destabilization of the microtubule cytoskeleton and hence treatment with EpoD reduced fragmentation. Together, these results contribute a better understanding of the pathogenesis of mild and repetitive TBI and highlight the therapeutic effect of microtubule targeted drugs on distal part of neurons using a compartmentalized culturing model.
Collapse
Affiliation(s)
- Yiing C. Yap
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
- Pharmacy School of Medicine, Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
- ACROSS, School of Physical Sciences, University of Tasmania, Tasmania, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Rosanne M. Guijt
- Pharmacy School of Medicine, Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
| | - Tongcui Jiang
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | | | - Michael C. Breadmore
- ACROSS, School of Physical Sciences, University of Tasmania, Tasmania, Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
- * E-mail:
| |
Collapse
|
20
|
Yap YC, Dickson TC, King AE, Breadmore MC, Guijt RM. Microfluidic Device for Studying Traumatic Brain Injury. NEUROMETHODS 2017. [DOI: 10.1007/978-1-4939-7024-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Abstract
It has been recently known that not only the presence of inhibitory molecules associated with myelin but also the reduced growth capability of the axons limit mature central nervous system (CNS) axonal regeneration after injury. Conventional axon growth studies are typically conducted using multi-well cell culture plates that are very difficult to use for investigating localized effects of drugs and limited to low throughput. Unfortunately, there is currently no other in vitro tool that allows investigating localized axonal responses to biomolecules in high-throughput for screening potential drugs that might promote axonal growth. We have developed a compartmentalized neuron culture platform enabling localized biomolecular treatments in parallel to axons that are physically and fluidically isolated from their neuronal somata. The 24 axon compartments in the developed platform are designed to perform four sets of six different localized biomolecular treatments simultaneously on a single device. In addition, the novel microfluidic configuration allows culture medium of 24 axon compartments to be replenished altogether by a single aspiration process, making high-throughput drug screening a reality.
Collapse
|