1
|
Yang F, Thompson AG, McQuain AD, Gundurao D, Stando G, Kim MA, Liu H, Li L. Wetting Transparency of Single-Layer Graphene on Liquid Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403820. [PMID: 38720475 DOI: 10.1002/adma.202403820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Indexed: 05/15/2024]
Abstract
Graphene's wetting transparency offers promising avenues for creating multifunctional devices by allowing real-time wettability control on liquid substrates via the flow of different liquids beneath graphene. Despite its potential, direct measurement of floating graphene's wettability remains a challenge, hindering the exploration of these applications. The current study develops an experimental methodology to assess the wetting transparency of single-layer graphene (SLG) on liquid substrates. By employing contact angle measurements and Neumann's Triangle model, the challenge of evaluating the wettability of floating free-suspended single-layer graphene is addressed. The research reveals that for successful contact angle measurements, the testing and substrate liquids must be immiscible. Using diiodomethane as the testing liquid and ammonium persulfate solution as liquid substrate, the study demonstrates the near-complete wetting transparency of graphene. Furthermore, it successfully showcases the feasibility of real-time wettability control using graphene on liquid substrates. This work not only advances the understanding of graphene's interaction with liquid interfaces but also suggests a new avenue for the development of multifunctional materials and devices by exploiting the unique wetting transparency of graphene.
Collapse
Affiliation(s)
- Fan Yang
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Annette G Thompson
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Alex D McQuain
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Dhruthi Gundurao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Grzegorz Stando
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Min A Kim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Lei Li
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| |
Collapse
|
2
|
Verma AK, Sharma BB. Experimental and Theoretical Insights into Interfacial Properties of 2D Materials for Selective Water Transport Membranes: A Critical Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7812-7834. [PMID: 38587122 DOI: 10.1021/acs.langmuir.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Interfacial properties, such as wettability and friction, play critical roles in nanofluidics and desalination. Understanding the interfacial properties of two-dimensional (2D) materials is crucial in these applications due to the close interaction between liquids and the solid surface. The most important interfacial properties of a solid surface include the water contact angle, which quantifies the extent of interactions between the surface and water, and the water slip length, which determines how much faster water can flow on the surface beyond the predictions of continuum fluid mechanics. This Review seeks to elucidate the mechanism that governs the interfacial properties of diverse 2D materials, including transition metal dichalcogenides (e.g., MoS2), graphene, and hexagonal boron nitride (hBN). Our work consolidates existing experimental and computational insights into 2D material synthesis and modeling and explores their interfacial properties for desalination. We investigated the capabilities of density functional theory and molecular dynamics simulations in analyzing the interfacial properties of 2D materials. Specifically, we highlight how MD simulations have revolutionized our understanding of these properties, paving the way for their effective application in desalination. This Review of the synthesis and interfacial properties of 2D materials unlocks opportunities for further advancement and optimization in desalination.
Collapse
Affiliation(s)
- Ashutosh Kumar Verma
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | | |
Collapse
|
3
|
Vita Damasceno JP, Picheau E, Hof F, Zarbin AJG, Pénicaud A, Drummond C. Influence of Defects and Charges on the Colloidal Stabilization of Graphene in Water. Chemistry 2024; 30:e202303508. [PMID: 38369596 DOI: 10.1002/chem.202303508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Mastering graphene preparation is an essential step to its integration into practical applications. For large-scale purposes, full graphite exfoliation appears as a suitable route for graphene production. However, it requires overpowering attractive van der Waals forces demanding large energy input, with the risk of introducing defects in the material. This difficulty can be overcome by using graphite intercalation compounds (GICs) as starting material. The greater inter-sheet separation in GICs (compared with graphite) allows the gentler exfoliation of soluble graphenide (reduced graphene) flakes. A solvent exchange strategy, accompanied by the oxidation of graphenide to graphene, can be implemented to produce stable aqueous graphene dispersions (Eau de graphene, EdG), which can be readily incorporated into many processes or materials. In this work, we prove that electrostatic forces are responsible for the stability of fully exfoliated graphene in water, and explore the influence of the oxidation and solvent exchange procedures on the quality and stability of EdG. We show that the amount of defects in graphene is limited if graphenide oxidation is carried out before exposing the material to water, and that gas removal of water before the incorporation of pre-oxidized graphene is advantageous for the long-term stability of EdG.
Collapse
Affiliation(s)
- João Paulo Vita Damasceno
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| | - Emmanuel Picheau
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| | - Ferdinand Hof
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| | - Aldo J G Zarbin
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Alain Pénicaud
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| | - Carlos Drummond
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| |
Collapse
|
4
|
Kateb M, Isacsson A. Nanoscale Elasto-Capillarity in the Graphene-Water System under Tension: Revisiting the Assumption of a Constant Wetting Angle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12610-12617. [PMID: 37624594 PMCID: PMC10501189 DOI: 10.1021/acs.langmuir.3c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Wetting highly compliant surfaces can cause them to deform. Atomically thin materials, such as graphene, can have exceptionally small bending rigidities, leading to elasto-capillary lengths of a few nanometers. Using large-scale molecular dynamics (MD), we have studied the wetting and deformation of graphene due to nanometer-sized water droplets, focusing on the wetting angle near the vesicle transition. Recent continuum theories for wetting of flexible membranes reproduce our MD results qualitatively well. However, we find that when the curvature is large at the triple-phase contact line, the wetting angle increases with decreasing tension. This is in contrast to existing macroscopic theories but can be amended by allowing for a variable wetting angle.
Collapse
Affiliation(s)
- Movaffaq Kateb
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Andreas Isacsson
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
5
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
6
|
Zheng X, Yang Y, Xian Y, Chen H, Cai W. In Situ Grown Vertically Oriented Graphene Coating on Copper by Plasma-Enhanced CVD to Form Superhydrophobic Surface and Effectively Protect Corrosion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3202. [PMID: 36144996 PMCID: PMC9504450 DOI: 10.3390/nano12183202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Graphene exhibits great potential for the corrosion protection of metals, because of its low permeability and high chemical stability. To enhance the anticorrosion ability of Cu, we use plasma-enhanced chemical vapor deposition (PECVD) to prepare a vertically oriented few-layer graphene (VFG) coating on the surface of Cu. The Cu coated with VFG shows superhydrophobic surface with a contact angle of ~150°. The VFG coating is used to significantly increase the anticorrosion ability, enhanced by the chemical stability and the unique geometric structure of vertically oriented graphene. The corrosion rate of VFG-Cu was about two orders of magnitude lower than that of bare Cu. This work highlights the special synthesized way of PECVD and superhydrophobic surface of vertical structures of graphene as coatings for various applications.
Collapse
|
7
|
Muñoz-Rugeles L, Arenas-Blanco BA, Del Campo JM, Mejía-Ospino E. Wettability of graphene oxide functionalized with N-alkylamines: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:11412-11419. [PMID: 35504048 DOI: 10.1039/d2cp00292b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The wettability of graphene oxide functionalized with N-alkylamines was studied by molecular dynamics simulations. Six different N-alkylamines and two functionalization degrees were reviewed. The nucleophilic ring-opening reaction mechanism between the N-alkylamines and epoxy functional groups of graphene oxide was considered to generate the atomistic models. Water contact angles increased with both the alkyl chain length and substitution degree. The Wenzel model was used to access the effect of both the surface roughness and alkyl chain length on wettability. The results indicated that functionalization introduces an important increase of surface roughness but its effect on wettability is countered by the alkyl chain length.
Collapse
Affiliation(s)
- Leonardo Muñoz-Rugeles
- Universidad Industrial de Santander, Laboratorio de Espectroscopia Atómica y Molecular (LEAM), Bucaramanga, Colombia.
| | - Brayan Alberto Arenas-Blanco
- Universidad Industrial de Santander, Laboratorio de Espectroscopia Atómica y Molecular (LEAM), Bucaramanga, Colombia.
| | - Jorge M Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Enrique Mejía-Ospino
- Universidad Industrial de Santander, Laboratorio de Espectroscopia Atómica y Molecular (LEAM), Bucaramanga, Colombia.
| |
Collapse
|
8
|
Vanzo D, Luzar A, Bratko D. Reversible electrowetting transitions on superhydrophobic surfaces. Phys Chem Chem Phys 2021; 23:27005-27013. [PMID: 34846052 DOI: 10.1039/d1cp04220c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electric field applied across the interface has been shown to enable transitions from the Cassie to the Wenzel state on superhydrophobic surfaces with miniature corrugations. Molecular dynamics (MD) simulations manifest the possibility of reversible cycling between the two states when narrow surface wells support spontaneous expulsion of water in the absence of the field. With approximately 1 nm sized wells between the surface asperities, the response times to changes in the electric field are of O(0.1) ns, allowing up to GHz frequency of the cycle. Because of the orientation preferences of interfacial water in contact with the solid, the phenomenon depends on the polarity of the field normal to the interface. The threshold field strength for the Cassie-to-Wenzel transition is significantly lower for the field pointing from the aqueous phase to the surface; however, once in the Wenzel state, the opposite field direction secures tighter filling of the wells. Considerable hysteresis revealed by the delayed water retraction at decreasing field strength indicates the presence of moderate kinetic barriers to expulsion. Known to scale approximately with the square of the length scale of the corrugations, these barriers preclude the use of increased corrugation sizes while the reduction of the well diameter necessitates stronger electric fields. Field-controlled Cassie-to-Wenzel transitions are therefore optimized by using superhydrophobic surfaces with nanosized corrugations. Abrupt changes indicate a high degree of cooperativity reflecting the correlations between the wetting states of interconnected wells on the textured surface.
Collapse
Affiliation(s)
- D Vanzo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA.
| | - A Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA.
| | - D Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA.
| |
Collapse
|
9
|
Zheng L, Liu N, Liu Y, Li N, Zhang J, Wang C, Zhu W, Chen Y, Ying D, Xu J, Yang Z, Gao X, Tang J, Wang X, Liang Z, Zou R, Li Y, Gao P, Wei X, Wang HW, Peng H. Atomically Thin Bilayer Janus Membranes for Cryo-electron Microscopy. ACS NANO 2021; 15:16562-16571. [PMID: 34569229 DOI: 10.1021/acsnano.1c06233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cryo-electron microscopy (cryo-EM) has emerged as a vital tool to reveal the native structure of beam-sensitive biomolecules and materials. Yet high-resolution cryo-EM analysis is still limited by the poorly controlled specimen preparation and urgently demands a robust supporting film material to prepare desirable samples. Here, we developed a bilayer Janus graphene membrane with the top-layer graphene being functionalized to interact with target molecules on the surface, while the bottom layer being kept intact to reinforce its mechanical steadiness. The ultraclean and atomically thin bilayer Janus membrane prepared by our protocol on one hand generates almost no extra noise and on the other hand reduces the specimen motion during cryo-EM imaging, thus allowing the atomic-resolution characterization of surface functional groups. Using such Janus membranes in cryo-EM specimen preparation, we were able to directly image the lithium dendrite and reconstruct macromolecules at near-atomic resolution. Our results demonstrate the bilayer Janus design as a promising supporting material for high-resolution cryo-EM and EM imaging.
Collapse
Affiliation(s)
- Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Ning Li
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chongzhen Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles California 90095, United States
| | - Wenqing Zhu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Yanan Chen
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dongchen Ying
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zi Yang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jilin Tang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaoge Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles California 90095, United States
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing 100084, China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
10
|
Belyaeva L, Tang C, Juurlink L, Schneider GF. Macroscopic and Microscopic Wettability of Graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4049-4055. [PMID: 33651625 PMCID: PMC8047800 DOI: 10.1021/acs.langmuir.0c02817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Interactions between water and graphene can be probed on a macroscopic level through wettability by measuring the water contact angle and on a microscopic level through water desorption kinetic studies using surface science methods. The contact angle studies of graphene pinpointed the critical role of sample preparation and measurement conditions in assessing the wettability of graphene. So far, studies of water desorption from graphene under the conditions of ultrahigh vacuum provided superior control over the environment but disregarded the importance of sample preparation. Here, we systematically examined the effect of the morphology of the growth substrate and of the transfer process on the macroscopic and microscopic wettability of graphene. Remarkably, the macroscopic wetting transparency of graphene does not always translate into microscopic wetting transparency, particularly in the case of an atomically defined Cu(111) substrate. Additionally, subtle differences in the type of substrates significantly alter the interactions between graphene and the first monolayer of adsorbed water but have a negligible effect on the apparent macroscopic wettability. This work looks into the correlations between the wetting properties of graphene, both on the macroscopic and microscopic scales, and highlights the importance of sample preparation in understanding the surface chemistry of graphene.
Collapse
Affiliation(s)
- Liubov
A. Belyaeva
- Faculty of
Science, Leiden Institute
of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Chen Tang
- Faculty of
Science, Leiden Institute
of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Ludo Juurlink
- Faculty of
Science, Leiden Institute
of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Grégory F. Schneider
- Faculty of
Science, Leiden Institute
of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
11
|
Kueh TC, Yu H, Soh AK, Wu HA, Hung YM. Influence of substrate on ultrafast water transport property of multilayer graphene coatings. NANOTECHNOLOGY 2020; 31:375704. [PMID: 32480382 DOI: 10.1088/1361-6528/ab9864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ultrafast water transport in graphene nanoplatelets (GNPs) coating is attributed to the low friction passages formed by pristine graphene and the hydrophilic functional groups which provide a strong interaction force to the water molecules. Here, we examine the influence of the supporting substrate on the ultrafast water transport property of multilayer graphene coatings experimentally and by computational modelling. Thermally cured GNPs manifesting ultrafast water permeation are coated on different substrate materials, namely aluminium, copper, iron and glass. The physical and chemical structures of the GNPs coatings which are affected by the substrate materials are characterized using various spectroscopy techniques. Experimentally, the water permeation and absorption tests evidence the significant influence of the substrate on the rapid water permeation property of GNPs-coating. The water transport rates of the GNPs coatings correspond to the wettability and the free surface energy of their substrates where the most hydrophilic substrate induces the highest water transport rate. In addition, we conduct molecular dynamics (MD) simulations to investigate the transport rate of water molecules through multilayer GNPs adjacent to different substrate materials. The MD simulations results agree well with the experimental results inferring the strong influence of the substrate materials on the fast water transport of GNPs. Therefore, selection of substrate has to be taken into consideration when the GNPs-coating is placed into applications.
Collapse
Affiliation(s)
- Tze Cheng Kueh
- Advanced Engineering Platform, School of Engineering, Monash University, 47500, Bandar Sunway, Malaysia
| | | | | | | | | |
Collapse
|
12
|
Ojaghlou N, Bratko D, Salanne M, Shafiei M, Luzar A. Solvent-Solvent Correlations across Graphene: The Effect of Image Charges. ACS NANO 2020; 14:7987-7998. [PMID: 32491826 DOI: 10.1021/acsnano.9b09321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wetting experiments show pure graphene to be weakly hydrophilic, but its contact angle (CA) also reflects the character of the supporting material. Measurements and molecular dynamics simulations on suspended and supported graphene often reveal a CA reduction due to the presence of the supporting substrate. A similar reduction is consistently observed when graphene is wetted from both sides. The effect has been attributed to transparency to molecular interactions across the graphene sheet; however, the possibility of substrate-induced graphene polarization has also been considered. Computer simulations of CA on graphene have so far been determined by ignoring the material's conducting properties. We improve the graphene model by incorporating its conductivity according to the constant applied potential molecular dynamics. Using this method, we compare the wettabilities of suspended graphene and graphene supported by water by measuring the CA of cylindrical water drops on the sheets. The inclusion of graphene conductivity and concomitant polarization effects leads to a lower CA on suspended graphene, but the CA reduction is significantly bigger when the sheets are also wetted from the opposite side. The stronger adhesion is accompanied by a profound change in the correlations among water molecules across the sheet. While partial charges on water molecules interacting across an insulator sheet attract charges of the opposite sign, apparent attraction among like charges is manifested across the conducting graphene. The change is associated with graphene polarization, as the image charges inside the conductor attract equally signed partial charges of water molecules on both sides of the sheet. Additionally, using a nonpolar liquid (diiodomethane), we affirm a detectable wetting translucency when liquid-liquid forces are dominated by dispersive interactions. Our findings are important for predictive modeling toward a variety of applications including sensors, fuel cell membranes, water filtration, and graphene-based electrode materials in high-performance supercapacitors.
Collapse
Affiliation(s)
- Neda Ojaghlou
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, Phenix, F-75005 Paris, France
| | - Mahdi Shafiei
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
13
|
Deng X, Nie Q, Wu Y, Fang H, Zhang P, Xie Y. Nitrogen-Doped Unusually Superwetting, Thermally Insulating, and Elastic Graphene Aerogel for Efficient Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26200-26212. [PMID: 32394701 DOI: 10.1021/acsami.0c05666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By removing the oxygen-containing functional groups, thermal treatment in inert gas has been widely reported to improve the hydrophobicity of carbon materials. However, this work reports a contrary phenomenon for the nitrogen-doped graphene aerogel (NGA). As the temperature of thermal treatment increases from 200 to 1000 °C, NGA becomes more and more hydrophilic and the superwetting property remains for weeks in air. To uncover this unusual phenomenon, the effect of nitrogen doping is studied through both experiment and MD simulations. The effects of air exposure and air humidity are further investigated in detail to illustrate the whole physical picture clearly. The superwetting behavior is attributed to the preferential adsorption of water molecules to the nitrogen-doped sites, which significantly inhibits airborne hydrocarbon adsorption. In combination with the excellent properties including mechanical elasticity, high light absorption, and good thermal insulation, an efficient photothermal and solar steam generation performance is demonstrated by using NGA-600 as the photothermal material, presenting a high energy conversion efficiency of 86.2% and good recycling stability.
Collapse
Affiliation(s)
- Xin Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Qichun Nie
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Haisheng Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Yangsu Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
14
|
Zhang Z, Huang L, Wang Y, Yang K, Du Y, Wang Y, Kipper MJ, Belfiore LA, Tang J. Theory and simulation developments of confined mass transport through graphene-based separation membranes. Phys Chem Chem Phys 2020; 22:6032-6057. [DOI: 10.1039/c9cp05551g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The perspectives of graphene-based membranes based on confined mass transport from simulations and experiments for water desalination.
Collapse
Affiliation(s)
- Zhijie Zhang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Linjun Huang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Yanxin Wang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Kun Yang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Yingchen Du
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Yao Wang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering
- Colorado State University
- Fort Collins
- USA
| | - Laurence A. Belfiore
- Department of Chemical and Biological Engineering
- Colorado State University
- Fort Collins
- USA
| | - Jianguo Tang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| |
Collapse
|
15
|
Presel F, Gijón A, Hernández ER, Lacovig P, Lizzit S, Alfè D, Baraldi A. Translucency of Graphene to van der Waals Forces Applies to Atoms/Molecules with Different Polar Character. ACS NANO 2019; 13:12230-12241. [PMID: 31589408 DOI: 10.1021/acsnano.9b07277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene has been proposed to be either fully transparent to van der Waals interactions to the extent of allowing switching between hydrophobic and hydrophilic behavior, or partially transparent (translucent), yet there has been considerable debate on this topic, which is still ongoing. In a combined experimental and theoretical study we investigate the effects of different metal substrates on the adsorption energy of atomic (argon) and molecular (carbon monoxide) adsorbates on high-quality epitaxial graphene. We demonstrate that while the adsorption energy is certainly affected by the chemical composition of the supporting substrate and by the corrugation of the carbon lattice, the van der Waals interactions between adsorbates and the metal surfaces are partially screened by graphene. Our results indicate that the concept of graphene translucency, already introduced in the case of water droplets, is found to hold more generally also in the case of single polar molecules and atoms, which are apolar.
Collapse
Affiliation(s)
- Francesco Presel
- Physics Department , University of Trieste , Via Valerio 2 , 34127 Trieste , Italy
| | - Alfonso Gijón
- Instituto de Ciencia de Materiales de Madrid - ICMM-CSIC) , Campus de Cantoblanco , 28049 Madrid , Spain
| | - Eduardo R Hernández
- Instituto de Ciencia de Materiales de Madrid - ICMM-CSIC) , Campus de Cantoblanco , 28049 Madrid , Spain
| | - Paolo Lacovig
- Elettra-Sincrotrone Trieste S.C.p.A. , Strada Statale 14 Km 163.5 , 34149 Trieste , Italy
| | - Silvano Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A. , Strada Statale 14 Km 163.5 , 34149 Trieste , Italy
| | - Dario Alfè
- Department of Earth Sciences, Department of Physics and Astronomy , TYC@UCL , London WC1E 6BT , United Kingdom
- London Centre for Nanotechnology , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Dipartimento di Fisica Ettore Pancini , Università di Napoli Federico II , Monte S. Angelo, 80126 Napoli , Italy
| | - Alessandro Baraldi
- Physics Department , University of Trieste , Via Valerio 2 , 34127 Trieste , Italy
- Elettra-Sincrotrone Trieste S.C.p.A. , Strada Statale 14 Km 163.5 , 34149 Trieste , Italy
- IOM-CNR , Laboratorio TASC , AREA Science Park, S.S. 14 km 163.5 , 34149 Trieste , Italy
| |
Collapse
|
16
|
Lv X, Guan C, Han Z, Chen C, Sun Q. Coalescence and wetting mechanism of Al droplets on different types of carbon for developing wettable cathodes: a molecular dynamics simulation. Phys Chem Chem Phys 2019; 21:21473-21484. [PMID: 31535116 DOI: 10.1039/c9cp03673c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
So far, there have been few studies on the microscopic wetting behavior of aluminum liquid on cathode surfaces, which is critical for developing wettable cathode materials. In the present study, an investigation on the coalescence and wetting mechanism of Al droplets on different carbonaceous substrates has been performed via molecular dynamics (MD) simulation for developing wettable cathodes. The growth rate of liquid bridge, the mean squared displacement, the balanced contact angle, and the time of full coalescence were calculated to describe the coalescence and wetting of the Al droplets. The results illustrate the sequence of full coalescence time for the Al droplets: DG < HCNT < VCNT ≈ AC and the corresponding balanced contact angles were 47.98°, 53.32°, 55.02°, and 63.12°, respectively. Furthermore, the presence of defects on DG will increase the time of coalescence and the contact angle but the directions of defects have little influence. The free energy analysis indicates that the defects reduce the solid-liquid interaction and the work done for removing the Al droplet from the substrates so that the wettability is weaker than that for perfect graphene, which also explains the balanced wettability of Al droplets on the other substrates. In addition, the surface roughness increases the contact angle of Al liquid on AC (from 62° to 113°-120°) and hence, the wettability is changed from good to poor. In general, our results can improve the understanding of the wetting of AC and graphene by Al liquid at the atomic level, which can provide direction and theoretical guidance for further research on wettable cathodes.
Collapse
Affiliation(s)
- Xiaojun Lv
- School of Metallurgy and Environment, Central South University, No. 932, South Road Lushan, Changsha 410083, Hunan, China.
| | - Chaohong Guan
- School of Metallurgy and Environment, Central South University, No. 932, South Road Lushan, Changsha 410083, Hunan, China.
| | - Zexun Han
- School of Metallurgy and Environment, Central South University, No. 932, South Road Lushan, Changsha 410083, Hunan, China.
| | - Chang Chen
- School of Metallurgy and Environment, Central South University, No. 932, South Road Lushan, Changsha 410083, Hunan, China.
| | - Qidong Sun
- School of Metallurgy and Environment, Central South University, No. 932, South Road Lushan, Changsha 410083, Hunan, China.
| |
Collapse
|
17
|
Farell M, Wetherington M, Shankla M, Chae I, Subramanian S, Kim SH, Aksimentiev A, Robinson J, Kumar M. Characterization of the Lipid Structure and Fluidity of Lipid Membranes on Epitaxial Graphene and Their Correlation to Graphene Features. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4726-4735. [PMID: 30844287 PMCID: PMC6449857 DOI: 10.1021/acs.langmuir.9b00164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphene has been recognized as an enhanced platform for biosensors because of its high electron mobility. To integrate active membrane proteins into graphene-based materials for such applications, graphene's surface must be functionalized with lipids to mimic the biological environment of these proteins. Several studies have examined supported lipids on various types of graphene and obtained conflicting results for the lipid structure. Here, we present a correlative characterization technique based on fluorescence measurements in a Raman spectroscopy setup to study the lipid structure and dynamics on epitaxial graphene. Compared to other graphene variations, epitaxial graphene is grown on a substrate more conducive to production of electronics and offers unique topographic features. On the basis of experimental and computational results, we propose that a lipid sesquilayer (1.5 bilayer) forms on epitaxial graphene and demonstrate that the distinct surface features of epitaxial graphene affect the structure and diffusion of supported lipids.
Collapse
Affiliation(s)
| | | | - Manish Shankla
- Department of Physics , University of Illinois at Urbana Champaign , Urbana , Illinois 61801 , United States
| | | | | | | | - Aleksei Aksimentiev
- Department of Physics , University of Illinois at Urbana Champaign , Urbana , Illinois 61801 , United States
| | | | | |
Collapse
|
18
|
Feng J, Guo Z. Wettability of graphene: from influencing factors and reversible conversions to potential applications. NANOSCALE HORIZONS 2019; 4:339-364. [PMID: 32254088 DOI: 10.1039/c8nh00348c] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As a member of the carbon material family, graphene has long been the focus of research on account of its abundant excellent properties. Nevertheless, many previous research works have attached much importance to its mechanical capacity and electrical properties, and not to its surface wetting properties with respect to water. In this review, a series of methods are put forward for characterization of the water contact angle of graphene, such as experimental measurements, classic molecular dynamics simulations, and formula calculations. A series of factors that affect the wettability of graphene, including defects, controllable atmosphere, doping, and electric field, are also discussed in detail, and have rarely have been covered in other review articles before. Finally, with the developments of smart surfaces, a reversible wettability variation of graphene from hydrophobic to hydrophilic is important in the presence of external stimulation and is discussed in detail herein. It is anticipated that graphene could serve as a tunable wettability coating for further developments in electronic devices and brings a new perspective to the construction of smart material surfaces.
Collapse
Affiliation(s)
- Jing Feng
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | | |
Collapse
|
19
|
Ojaghlou N, Tafreshi HV, Bratko D, Luzar A. Dynamical insights into the mechanism of a droplet detachment from a fiber. SOFT MATTER 2018; 14:8924-8934. [PMID: 30232489 DOI: 10.1039/c8sm01257a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantifying the detachment behavior of a droplet from a fiber is important in many applications such as fog harvesting, oil-water separation, or water management in fuel cells. When the droplets are forcibly removed from hydrophilic fibers, the ease of detachment strongly depends on droplet volume and the rate of the process controlled by the applied force. Experiments, conducted on a ferrofluid under magnetic force, as well as continuum level calculations from fluid mechanics have so far been unable to resolve the time-dependent dynamics of droplet detachment and, most importantly, to assess the role of the applied force as the key determinant of the volume of the droplet residue remaining on the fiber after detachment. In the present work, we study the mechanism of water droplet detachment and retention of residual water on smooth hydrophilic fibers using nonequilibrium molecular dynamics simulations. We investigate how the applied force affects the breakup of a droplet and how the minimal detaching force per unit mass decreases with droplet size. We extract scaling relations that allow extrapolation of our findings to larger length scales that are not directly accessible by molecular models. We find that the volume of the residue on a fiber varies nonmonotonically with the detaching force, reaching the maximal size at an intermediate force and associated detachment time. The strength of this force decreases with the size of the drop, while the maximal residue increases with the droplet volume, V, sub-linearly, in proportion to the V2/3.
Collapse
Affiliation(s)
- Neda Ojaghlou
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA.
| | | | | | | |
Collapse
|
20
|
Rongqi S, Qingshun B, Xin H, Aimin Z, Feihu Z. Molecular dynamics simulation of the spreading of the nanosized droplet on a graphene-coated substrate: the effect of the contact line forces. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1479750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Shen Rongqi
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Bai Qingshun
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - He Xin
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Zhang Aimin
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Zhang Feihu
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| |
Collapse
|
21
|
Prydatko AV, Belyaeva LA, Jiang L, Lima LMC, Schneider GF. Contact angle measurement of free-standing square-millimeter single-layer graphene. Nat Commun 2018; 9:4185. [PMID: 30305628 PMCID: PMC6180012 DOI: 10.1038/s41467-018-06608-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/11/2018] [Indexed: 01/17/2023] Open
Abstract
Square millimeters of free-standing graphene do not exist per se because of thermal fluctuations in two-dimensional crystals and their tendency to collapse during the detachment from the substrate. Here we form millimeter-scale freely suspended graphene by injecting an air bubble underneath a graphene monolayer floating at the water-air interface, which allowed us to measure the contact angle on fully free-standing non-contaminated graphene. A captive bubble measurement shows that free-standing clean graphene is hydrophilic with a contact angle of 42° ± 3°. The proposed design provides a simple tool to probe and explore the wettability of two-dimensional materials in free-standing geometries and will expand our perception of two-dimensional materials technologies from microscopic to now millimeter scales.
Collapse
Affiliation(s)
- Anna V Prydatko
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Liubov A Belyaeva
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lin Jiang
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lia M C Lima
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Grégory F Schneider
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
22
|
Gim S, Lim HK, Kim H. Multiscale Simulation Method for Quantitative Prediction of Surface Wettability at the Atomistic Level. J Phys Chem Lett 2018; 9:1750-1758. [PMID: 29558139 DOI: 10.1021/acs.jpclett.8b00466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The solid-liquid interface is of great interest because of its highly heterogeneous character and its ubiquity in various applications. The most fundamental physical variable determining the strength of the solid-liquid interface is the solid-liquid interfacial tension, which is usually measured according to the contact angle. However, an accurate experimental measurement and a reliable theoretical prediction of the contact angle remain lacking because of many practical issues. Here, we propose a first-principles-based simulation approach to quantitatively predict the contact angle of an ideally clean surface using our recently developed multiscale simulation method of density functional theory in classical explicit solvents (DFT-CES). Using this approach, we simulate the surface wettability of a graphene and graphite surface, resulting in a reliable contact angle value that is comparable to the experimental data. From our simulation results, we find that the surface wettability is dominantly affected by the strength of the solid-liquid van der Waal's interaction. However, we further elucidate that there exists a secondary contribution from the change of water-water interaction, which is manifested by the change of liquid structure and dynamics of interfacial water layer. We expect that our proposed method can be used to quantitatively predict and understand the intriguing wetting phenomena at an atomistic level and can eventually be utilized to design a surface with a controlled hydrophobic(philic)ity.
Collapse
Affiliation(s)
- Suji Gim
- Department of Chemistry and Graduate School of EEWS , Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, Daejeon 34141 , Korea
| | - Hyung-Kyu Lim
- Department of Chemical Engineering , Kangwon National University , Chuncheon , Gangwon-do 24341 , Korea
| | - Hyungjun Kim
- Department of Chemistry and Graduate School of EEWS , Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, Daejeon 34141 , Korea
| |
Collapse
|
23
|
Ardham VR, Leroy F. Atomistic and Coarse-Grained Modeling of the Adsorption of Graphene Nanoflakes at the Oil-Water Interface. J Phys Chem B 2018; 122:2396-2407. [PMID: 29397726 DOI: 10.1021/acs.jpcb.7b11173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high interfacial tension between two immiscible liquids can provide the necessary driving force for the self-assembly of nanoparticles at the interface. Particularly, the interface between water and oily liquids (hydrocarbon chains) has been exploited to prepare networks of highly interconnected graphene sheets of only a few layers thickness, which are well suited for industrial applications. Studying such complex systems through particle-based simulations could greatly enhance the understanding of the various driving forces in action and could possibly give more control over the self-assembly process. However, the interaction potentials used in particle-based simulations are typically derived by reproducing bulk properties and are therefore not suitable for describing systems dominated by interfaces. To address this issue, we introduce a methodology to derive solid-liquid interaction potentials that yield an accurate representation of the balance between interfacial interactions at atomistic and coarse-grained resolutions. Our approach is validated through its ability to lead to the adsorption of graphene nanoflakes at the interface between water and n-hexane. The development of accurate coarse-grained potentials that our approach enables will allow us to perform large-scale simulations to study the assembly of graphene nanoparticles at the interface between immiscible liquids. Our methodology is illustrated through a simulation of many graphene nanoflakes adsorbing at the interface.
Collapse
Affiliation(s)
- Vikram Reddy Ardham
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , Alarich-Weiss-Strasse 8, 64287 Darmstadt, Hessen, Germany
| | - Frédéric Leroy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , Alarich-Weiss-Strasse 8, 64287 Darmstadt, Hessen, Germany
| |
Collapse
|
24
|
Belyaeva LA, van Deursen PMG, Barbetsea KI, Schneider GF. Hydrophilicity of Graphene in Water through Transparency to Polar and Dispersive Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1703274. [PMID: 29266470 DOI: 10.1002/adma.201703274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Establishing contact angles on graphene-on-water has been a long-standing challenge as droplet deposition causes free-floating graphene to rupture. The current work presents ice and hydrogels as substrates mimicking water while offering a stable support for graphene. The lowest water contact angles on graphene ever measured, namely on graphene-on-ice and graphene-on-hydrogel, are recorded. The contact angle measurements of liquids with a range of polarities allow the transparency of graphene toward polar and dispersive interactions to be quantified demonstrating that graphene in water is hydrophilic. These findings are anticipated to shed light on the inconsistencies reported so far on the wetting properties of graphene, and most particularly on their implications toward rationalizing how molecules interact with graphene in water.
Collapse
Affiliation(s)
- Liubov A Belyaeva
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Pauline M G van Deursen
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Kassandra I Barbetsea
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Grégory F Schneider
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| |
Collapse
|
25
|
Das SR, Srinivasan S, Stromberg LR, He Q, Garland N, Straszheim WE, Ajayan PM, Balasubramanian G, Claussen JC. Superhydrophobic inkjet printed flexible graphene circuits via direct-pulsed laser writing. NANOSCALE 2017; 9:19058-19065. [PMID: 29119163 DOI: 10.1039/c7nr06213c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solution-phase printing of exfoliated graphene flakes is emerging as a low-cost means to create flexible electronics for numerous applications. The electrical conductivity and electrochemical reactivity of printed graphene has been shown to improve with post-print processing methods such as thermal, photonic, and laser annealing. However, to date no reports have shown the manipulation of surface wettability via post-print processing of printed graphene. Herein, we demonstrate how the energy density of a direct-pulsed laser writing (DPLW) technique can be varied to tune the hydrophobicity and electrical conductivity of the inkjet-printed graphene (IPG). Experimental results demonstrate that the DPLW process can convert the IPG surface from one that is initially hydrophilic (contact angle ∼47.7°) and electrically resistive (sheet resistance ∼21 MΩ □-1) to one that is superhydrophobic (CA ∼157.2°) and electrically conductive (sheet resistance ∼1.1 kΩ □-1). Molecular dynamic (MD) simulations reveal that both the nanoscale graphene flake orientation and surface chemistry of the IPG after DPLW processing induce these changes in surface wettability. Moreover, DPLW can be performed with IPG printed on thermally and chemically sensitive substrates such as flexible paper and polymers. Hence, the developed, flexible IPG electrodes treated with DPLW could be useful for a wide range of applications such as self-cleaning, wearable, or washable electronics.
Collapse
Affiliation(s)
- Suprem R Das
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chae S, Jin Choi W, Sang Chae S, Jang S, Chang H, Lee TI, Kim YS, Lee JO. Graphene as a thin-film catalyst booster: graphene-catalyst interface plays a critical role. NANOTECHNOLOGY 2017; 28:495708. [PMID: 29048327 DOI: 10.1088/1361-6528/aa94b0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to its extreme thinness, graphene can transmit some surface properties of its underlying substrate, a phenomenon referred to as graphene transparency. Here we demonstrate the application of the transparency of graphene as a protector of thin-film catalysts and a booster of their catalytic efficiency. The photocatalytic degradation of dye molecules by ZnO thin films was chosen as a model system. A ZnO thin film coated with monolayer graphene showed greater catalytic efficiency and long-term stability than did bare ZnO. Interestingly, we found the catalytic efficiency of the graphene-coated ZnO thin film to depend critically on the nature of the bottom ZnO layer; graphene transferred to a relatively rough, sputter-coated ZnO thin film showed rather poor catalytic degradation of the dye molecules while a smooth sol-gel-synthesized ZnO covered with monolayer graphene showed enhanced catalytic degradation. Based on a systematic investigation of the interface between graphene and ZnO thin films, we concluded the transparency of graphene to be critically dependent on its interface with a supporting substrate. Graphene supported on an atomically flat substrate was found to efficiently transmit the properties of the substrate, but graphene suspended on a substrate with a rough nanoscale topography was completely opaque to the substrate properties. Our experimental observations revealed the morphology of the substrate to be a key factor affecting the transparency of graphene, and should be taken into account in order to optimally apply graphene as a protector of catalytic thin films and a booster of their catalysis.
Collapse
Affiliation(s)
- Sieun Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea. Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kanduč M. Going beyond the standard line tension: Size-dependent contact angles of water nanodroplets. J Chem Phys 2017; 147:174701. [DOI: 10.1063/1.4990741] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Matej Kanduč
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin,
Germany
| |
Collapse
|
28
|
Yang H, Bo Z, Yang J, Kong J, Chen X, Yan J, Cen K. Substrate Effects in Graphene-Based Electric Double-Layer Capacitors: The Pivotal Interplays between Ions and Solvents. ChemElectroChem 2017. [DOI: 10.1002/celc.201700733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huachao Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering; Zhejiang University; Hangzhou, Zhejiang Province 310027 China
| | - Zheng Bo
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering; Zhejiang University; Hangzhou, Zhejiang Province 310027 China
| | - Jinyuan Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering; Zhejiang University; Hangzhou, Zhejiang Province 310027 China
| | - Jing Kong
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering; Zhejiang University; Hangzhou, Zhejiang Province 310027 China
| | - Xia Chen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering; Zhejiang University; Hangzhou, Zhejiang Province 310027 China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering; Zhejiang University; Hangzhou, Zhejiang Province 310027 China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering; Zhejiang University; Hangzhou, Zhejiang Province 310027 China
| |
Collapse
|
29
|
Akaishi A, Yonemaru T, Nakamura J. Formation of Water Layers on Graphene Surfaces. ACS OMEGA 2017; 2:2184-2190. [PMID: 31457569 PMCID: PMC6641050 DOI: 10.1021/acsomega.7b00365] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 05/24/2023]
Abstract
Although graphitic materials were thought to be hydrophobic, recent experimental results based on contact angle measurements show that the hydrophobicity of graphitic surfaces stems from airborne contamination of hydrocarbons. This leads us to question whether a pristine graphitic surface is indeed hydrophobic. To investigate the water wettability of graphitic surfaces, we use molecular dynamics simulations of water molecules on the surface of a single graphene layer at room temperature. The results indicate that a water droplet spreads over the entire surface and that a double-layer structure of water molecules forms on the surface, which means that wetting of graphitic surfaces is possible, but only by two layers of water molecules. No further water layers can cohere to the double-layer structure, but the formation of three-dimensional clusters of liquid water is confirmed. The surface of the double-layer structure acts as a hydrophobic surface. Such peculiar behavior of water molecules can be reasonably explained by the formation of hydrogen bonds: The hydrogen bonds of the interfacial water molecules form between the first two layers and also within each layer. This hydrogen-bond network is confined within the double layer, which means that no "dangling hydrogen bonds" appear on the surface of the double-layer structure. This formation of hydrogen bonds stabilizes the double-layer structure and makes its surface hydrophobic. Thus, the numerical simulations indicate that a graphene surface is perfectly wettable on the atomic scale and becomes hydrophobic once it is covered by this double layer of water molecules.
Collapse
Affiliation(s)
- Akira Akaishi
- Department
of Engineering Science, The University of
Electro-Communications (UEC-Tokyo), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tomohiro Yonemaru
- Department
of Engineering Science, The University of
Electro-Communications (UEC-Tokyo), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jun Nakamura
- Department
of Engineering Science, The University of
Electro-Communications (UEC-Tokyo), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
30
|
|
31
|
Wang Y, Sinha S, Hu L, Das S. Interaction between a water drop and holey graphene: retarded imbibition and generation of novel water–graphene wetting states. Phys Chem Chem Phys 2017; 19:27421-27434. [DOI: 10.1039/c7cp04411a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Water nanodrop imbibition in holey graphene is studied unraveling novel fiber-like wetting state that enhances water–accessible graphene surface area.
Collapse
Affiliation(s)
- Yanbin Wang
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | - Shayandev Sinha
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | - Liangbing Hu
- Deapartment of Materials Science and Engineering
- University of Maryland
- College Park
- USA
| | - Siddhartha Das
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| |
Collapse
|
32
|
Jabes BS, Bratko D, Luzar A. Universal Repulsive Contribution to the Solvent-Induced Interaction Between Sizable, Curved Hydrophobes. J Phys Chem Lett 2016; 7:3158-3163. [PMID: 27463998 DOI: 10.1021/acs.jpclett.6b01442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In addition to the direct attraction, sizable hydrophobes in water experience an attractive force mediated by interfacial water. Using simple geometric arguments, we identify the conditions at which the water-induced interaction between curved hydrocarbon surfaces becomes repulsive. The repulsive contribution arises from the thermodynamic penalty due to the emergence of the liquid/vapor boundary created as water gets expelled between curved hydrophobes. By augmenting the mean field approach with atomistic simulations of pristine and alkyl-coated graphitic nanoparticles in three distinct geometries, spherical, cylindrical and planar, immersed in water, we show the macroscopic thermodynamics remarkably works down to the molecular scale. The new insights improve the prediction and control of wetting and dispersion properties for a broad class of nonpolar nanoparticles.
Collapse
Affiliation(s)
- B Shadrack Jabes
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| |
Collapse
|
33
|
Kyakuno H, Fukasawa M, Ichimura R, Matsuda K, Nakai Y, Miyata Y, Saito T, Maniwa Y. Diameter-dependent hydrophobicity in carbon nanotubes. J Chem Phys 2016. [DOI: 10.1063/1.4960609] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Haruka Kyakuno
- Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan
- Institute of Physics, Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - Mamoru Fukasawa
- Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Ryota Ichimura
- Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Kazuyuki Matsuda
- Institute of Physics, Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - Yusuke Nakai
- Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Yasumitsu Miyata
- Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan
- PRESTO, JST, Kawaguchi 332-0012, Japan
| | - Takeshi Saito
- Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Yutaka Maniwa
- Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| |
Collapse
|
34
|
Kratzer M, Teichert C. Thin film growth of aromatic rod-like molecules on graphene. NANOTECHNOLOGY 2016; 27:292001. [PMID: 27299472 DOI: 10.1088/0957-4484/27/29/292001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on graphene (Gr) is a vastly expanding field due to its potential for technological applications. Its close structural and chemical relationship to conjugated organic molecules makes it a superior candidate as a transparent electrode material in organic electronics and optoelectronics. The growth of organic thin films-intensively investigated in the past few decades-has demonstrated the complexity in growth and nucleation processes arising from the anisotropy and spatial extension of the molecular building blocks. Choosing the small, conjugated rod-like molecules para-hexaphenyl and pentacene as model representatives for small organic molecules, we review recent findings in organic thin film growth on a variety of Gr substrates. Special attention is paid to the differences in the resulting growth arising from the various methods of Gr fabrication and support that affect both the Gr-molecule interfacing and the involved molecular diffusion processes.
Collapse
Affiliation(s)
- M Kratzer
- Institute of Physics, Montanuiversität Leoben, Franz Josef Straße 18, 8700 Leoben, Austria
| | | |
Collapse
|
35
|
Ondarçuhu T, Thomas V, Nuñez M, Dujardin E, Rahman A, Black CT, Checco A. Wettability of partially suspended graphene. Sci Rep 2016; 6:24237. [PMID: 27072195 PMCID: PMC4829856 DOI: 10.1038/srep24237] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
The dependence of the wettability of graphene on the nature of the underlying substrate remains only partially understood. Here, we systematically investigate the role of liquid-substrate interactions on the wettability of graphene by varying the area fraction of suspended graphene from 0 to 95% by means of nanotextured substrates. We find that completely suspended graphene exhibits the highest water contact angle (85° ± 5°) compared to partially suspended or supported graphene, regardless of the hydrophobicity (hydrophilicity) of the substrate. Further, 80% of the long-range water-substrate interactions are screened by the graphene monolayer, the wettability of which is primarily determined by short-range graphene-liquid interactions. By its well-defined chemical and geometrical properties, supported graphene therefore provides a model system to elucidate the relative contribution of short and long range interactions to the macroscopic contact angle.
Collapse
Affiliation(s)
- Thierry Ondarçuhu
- Nanosciences group, CEMES-CNRS, 29 rue Jeanne Marvig, Toulouse 31055, France
| | - Vincent Thomas
- Nanosciences group, CEMES-CNRS, 29 rue Jeanne Marvig, Toulouse 31055, France
| | - Marc Nuñez
- Nanosciences group, CEMES-CNRS, 29 rue Jeanne Marvig, Toulouse 31055, France
| | - Erik Dujardin
- Nanosciences group, CEMES-CNRS, 29 rue Jeanne Marvig, Toulouse 31055, France
| | - Atikur Rahman
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Antonio Checco
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
36
|
Ramos-Alvarado B, Kumar S, Peterson GP. On the wettability transparency of graphene-coated silicon surfaces. J Chem Phys 2016; 144:014701. [DOI: 10.1063/1.4938499] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bladimir Ramos-Alvarado
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Satish Kumar
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - G. P. Peterson
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
37
|
Zhao Y, Wang G, Huang W, Fan X, Deng Y, Zhang J, Wei T, Duan R, Wang J, Sun L. Investigations on the wettability of graphene on a micron-scale hole array substrate. RSC Adv 2016. [DOI: 10.1039/c5ra13916c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When graphene almost completely complies with the morphology of a SiO2 micron-scale hole array (MSHA) substrate, the effect of graphene's surface morphology to the wettability of graphene will be greatly facilitated by the regulation effect of MSHA.
Collapse
Affiliation(s)
- Yun Zhao
- Semiconductor Lighting Technology Research and Development Center
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing 100083
- China
| | - Gang Wang
- National Center for Nanoscience and Technology
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Wenbin Huang
- Institute of Nanotechnology and Microsystems
- Mechanical Engineering College
- Shijiazhuang 050003
- China
| | - Xiaokun Fan
- School of Mechanical Electronic & Information Engineering
- China University of Mining & Technology (Beijing)
- Beijing 100083
- China
| | - Ya Deng
- National Center for Nanoscience and Technology
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Jian Zhang
- National Center for Nanoscience and Technology
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Tongbo Wei
- Semiconductor Lighting Technology Research and Development Center
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing 100083
- China
| | - Ruifei Duan
- Semiconductor Lighting Technology Research and Development Center
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing 100083
- China
| | - Junxi Wang
- Semiconductor Lighting Technology Research and Development Center
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing 100083
- China
| | - Lianfeng Sun
- National Center for Nanoscience and Technology
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| |
Collapse
|
38
|
Ramos-Alvarado B, Kumar S, Peterson GP. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis. J Chem Phys 2015; 143:044703. [DOI: 10.1063/1.4927083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bladimir Ramos-Alvarado
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Satish Kumar
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - G. P. Peterson
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
39
|
Moucka F, Bratko D, Luzar A. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation. J Chem Phys 2015; 142:124705. [DOI: 10.1063/1.4914461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Filip Moucka
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA
- Faculty of Science, J. E. Purkinje University, 400 96 Ústí nad Labem, Czech Republic
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA
| |
Collapse
|
40
|
Vanzo D, Bratko D, Luzar A. Dynamic Control of Nanopore Wetting in Water and Saline Solutions under an Electric Field. J Phys Chem B 2014; 119:8890-9. [DOI: 10.1021/jp506389p] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Davide Vanzo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|