1
|
Taguas I, Doval S, Maestú F, López-Sanz D. Toward a more comprehensive understanding of network centrality disruption in amnestic mild cognitive impairment: a MEG multilayer approach. Alzheimers Res Ther 2024; 16:216. [PMID: 39385281 PMCID: PMC11462918 DOI: 10.1186/s13195-024-01576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common form of dementia. Its early stage, amnestic Mild Cognitive Impairment (aMCI), is characterized by disrupted information flow in the brain. Previous studies have yielded inconsistent results when using electrophysiological techniques to investigate functional connectivity changes in AD, and a contributing factor may be the study of brain activity divided into frequencies. METHODS Our study aimed to address this issue by employing a cross-frequency approach to compare the functional networks of 172 healthy subjects and 105 aMCI patients. Using magnetoencephalography, we constructed source-based multilayer graphs considering both intra- and inter-frequency functional connectivity. We then assessed changes in network organization through three centrality measures, and combined them into a unified centrality score to provide a comprehensive assessment of centrality disruption in aMCI. RESULTS The results revealed a noteworthy shift in centrality distribution in aMCI patients, both in terms of spatial distribution and frequency. Posterior brain regions decrease synchrony between their high-frequency oscillations and other regions' activity across all frequencies, while anterior regions increase synchrony between their low-frequency oscillations and other regions' activity across all frequencies. Thus, posterior regions reduce their relative importance in favor of anterior regions. CONCLUSIONS Our findings provide valuable insights into the intricate changes that occur in functional brain networks during the early stages of AD, demonstrating that considering the interplays between different frequency bands enhances our understanding of AD network dynamics and setting a precedent for the study of functional networks using a multilayer approach.
Collapse
Affiliation(s)
- Ignacio Taguas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain.
- Department of Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain.
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain.
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, 28240, Spain.
| | - David López-Sanz
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain
| |
Collapse
|
2
|
Vecchio F, Miraglia F, Pappalettera C, Nucci L, Cacciotti A, Rossini PM. Small World derived index to distinguish Alzheimer's type dementia and healthy subjects. Age Ageing 2024; 53:afae121. [PMID: 38935531 PMCID: PMC11210397 DOI: 10.1093/ageing/afae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND This article introduces a novel index aimed at uncovering specific brain connectivity patterns associated with Alzheimer's disease (AD), defined according to neuropsychological patterns. METHODS Electroencephalographic (EEG) recordings of 370 people, including 170 healthy subjects and 200 mild-AD patients, were acquired in different clinical centres using different acquisition equipment by harmonising acquisition settings. The study employed a new derived Small World (SW) index, SWcomb, that serves as a comprehensive metric designed to integrate the seven SW parameters, computed across the typical EEG frequency bands. The objective is to create a unified index that effectively distinguishes individuals with a neuropsychological pattern compatible with AD from healthy ones. RESULTS Results showed that the healthy group exhibited the lowest SWcomb values, while the AD group displayed the highest SWcomb ones. CONCLUSIONS These findings suggest that SWcomb index represents an easy-to-perform, low-cost, widely available and non-invasive biomarker for distinguishing between healthy individuals and AD patients.
Collapse
Affiliation(s)
- Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
3
|
Amato LG, Vergani AA, Lassi M, Fabbiani C, Mazzeo S, Burali R, Nacmias B, Sorbi S, Mannella R, Grippo A, Bessi V, Mazzoni A. Personalized modeling of Alzheimer's disease progression estimates neurodegeneration severity from EEG recordings. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12526. [PMID: 38371358 PMCID: PMC10870085 DOI: 10.1002/dad2.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Early identification of Alzheimer's disease (AD) is necessary for a timely onset of therapeutic care. However, cortical structural alterations associated with AD are difficult to discern. METHODS We developed a cortical model of AD-related neurodegeneration accounting for slowing of local dynamics and global connectivity degradation. In a monocentric study we collected electroencephalography (EEG) recordings at rest from participants in healthy (HC, n = 17), subjective cognitive decline (SCD, n = 58), and mild cognitive impairment (MCI, n = 44) conditions. For each patient, we estimated neurodegeneration model parameters based on individual EEG recordings. RESULTS Our model outperformed standard EEG analysis not only in discriminating between HC and MCI conditions (F1 score 0.95 vs 0.75) but also in identifying SCD patients with biological hallmarks of AD in the cerebrospinal fluid (recall 0.87 vs 0.50). DISCUSSION Personalized models could (1) support classification of MCI, (2) assess the presence of AD pathology, and (3) estimate the risk of cognitive decline progression, based only on economical and non-invasive EEG recordings. Highlights Personalized cortical model estimating structural alterations from EEG recordings.Discrimination of Mild Cognitive Impairment (MCI) and Healthy (HC) subjects (95%)Prediction of biological markers of Alzheimer's in Subjective Decline (SCD) Subjects (87%)Transition correctly predicted for 3/3 subjects that converted from SCD to MCI after 1y.
Collapse
Affiliation(s)
- Lorenzo Gaetano Amato
- The BioRobotics InstituteSant'Anna School of Advanced StudiesPisaItaly
- Department of Excellence in Robotics and AISant'Anna School of Advanced StudiesPisaItaly
| | - Alberto Arturo Vergani
- The BioRobotics InstituteSant'Anna School of Advanced StudiesPisaItaly
- Department of Excellence in Robotics and AISant'Anna School of Advanced StudiesPisaItaly
| | - Michael Lassi
- The BioRobotics InstituteSant'Anna School of Advanced StudiesPisaItaly
- Department of Excellence in Robotics and AISant'Anna School of Advanced StudiesPisaItaly
| | - Carlo Fabbiani
- IRCSS Fondazione Don Carlo GnocchiFlorenceItaly
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | - Salvatore Mazzeo
- IRCSS Fondazione Don Carlo GnocchiFlorenceItaly
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | | | - Benedetta Nacmias
- IRCSS Fondazione Don Carlo GnocchiFlorenceItaly
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | - Sandro Sorbi
- IRCSS Fondazione Don Carlo GnocchiFlorenceItaly
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | | | | | - Valentina Bessi
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | - Alberto Mazzoni
- The BioRobotics InstituteSant'Anna School of Advanced StudiesPisaItaly
- Department of Excellence in Robotics and AISant'Anna School of Advanced StudiesPisaItaly
| |
Collapse
|
4
|
Trinh TT, Liu YH, Wu CT, Peng WH, Hou CL, Weng CH, Lee CY. PLI-Based Connectivity in Resting-EEG is a Robust and Generalizable Feature for Detecting MCI and AD: A Validation on a Diverse Multisite Clinical Dataset. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083569 DOI: 10.1109/embc40787.2023.10340854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The high prevalence rate of Alzheimer's disease (AD) and mild cognitive impairment (MCI) has been a serious public health threat to the modern society. Recently, many studies have demonstrated the potential of using non-invasive electroencephalography (EEG) and machine learning to assist the diagnosis of AD/MCI. However, the majority of these research recorded EEG signals from a single center, leading to significant concerns regarding the generalizability of the findings in clinical settings. The current study aims to reevaluate the effectiveness of EEG-based machine learning model for the detection of AD/MCI in the case of a relatively large and diverse data set. We collected resting-state EEG data from 150 participants across six hospitals and examined the classification performances of Linear Discriminative Analysis (LDA) classifiers on the phase lag index (PLI) feature. We also compared the performance of PLI over the other commonly-used EEG features and other classifiers. The model was first tested on a training set to select the feature subset and then further validated with an independent test set. The results demonstrate that PLI performs the best compared to other features. The LDA classifier trained with the optimal PLI features can provide 82.50% leave-one-participant-out cross-validation (LOPO-CV) accuracy on the training set and maintain a good enough performance with 75.00% accuracy on the test set. Our results suggest that PLI-based functional connectivity could be considered as a reliable bio-maker to detect AD/MCI in the real-world clinical settings.
Collapse
|
5
|
Wang R, Wang H, Shi L, Han C, He Q, Che Y, Luo L. A novel framework of MOPSO-GDM in recognition of Alzheimer's EEG-based functional network. Front Aging Neurosci 2023; 15:1160534. [PMID: 37455939 PMCID: PMC10339813 DOI: 10.3389/fnagi.2023.1160534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Background Most patients with Alzheimer's disease (AD) have an insidious onset and frequently atypical clinical symptoms, which are considered a normal consequence of aging, making it difficult to diagnose AD medically. But then again, accurate diagnosis is critical to prevent degeneration and provide early treatment for AD patients. Objective This study aims to establish a novel EEG-based classification framework with deep learning methods for AD recognition. Methods First, considering the network interactions in different frequency bands (δ, θ, α, β, and γ), multiplex networks are reconstructed by the phase synchronization index (PSI) method, and fourteen topology features are extracted subsequently, forming a high-dimensional feature vector. However, in feature combination, not all features can provide effective information for recognition. Moreover, combining features by manual selection is time-consuming and laborious. Thus, a feature selection optimization algorithm called MOPSO-GDM was proposed by combining multi-objective particle swarm optimization (MOPSO) algorithm with Gaussian differential mutation (GDM) algorithm. In addition to considering the classification error rates of support vector machine, naive bayes, and discriminant analysis classifiers, our algorithm also considers distance measure as an optimization objective. Results Finally, this method proposed achieves an excellent classification error rate of 0.0531 (5.31%) with the feature vector size of 8, by a ten-fold cross-validation strategy. Conclusion These findings show that our framework can adaptively combine the best brain network features to explore network synchronization, functional interactions, and characterize brain functional abnormalities, which can improve the recognition efficiency of diseases. While improving the classification accuracy of application algorithms, we aim to expand our understanding of the brain function of patients with neurological disorders through the analysis of brain networks.
Collapse
Affiliation(s)
- Ruofan Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Haodong Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Lianshuan Shi
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Chunxiao Han
- Tianjin Key Laboratory of Information Sensing and Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Qiguang He
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Yanqiu Che
- Tianjin Key Laboratory of Information Sensing and Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Li Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Fischer MHF, Zibrandtsen IC, Høgh P, Musaeus CS. Systematic Review of EEG Coherence in Alzheimer's Disease. J Alzheimers Dis 2023; 91:1261-1272. [PMID: 36641665 DOI: 10.3233/jad-220508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Magnitude-squared coherence (MSCOH) is an electroencephalography (EEG) measure of functional connectivity. MSCOH has been widely applied to investigate pathological changes in patients with Alzheimer's disease (AD). However, significant heterogeneity exists between the studies using MSOCH. OBJECTIVE We systematically reviewed the literature on MSCOH changes in AD as compared to healthy controls to investigate the clinical utility of MSCOH as a marker of AD. METHODS We searched PubMed, Embase, and Scopus to identify studies reporting EEG MSCOH used in patients with AD. The identified studies were independently screened by two researchers and the data was extracted, which included cognitive scores, preprocessing steps, and changes in MSCOH across frequency bands. RESULTS A total of 35 studies investigating changes in MSCOH in patients with AD were included in the review. Alpha coherence was significantly decreased in patients with AD in 24 out of 34 studies. Differences in other frequency bands were less consistent. Some studies showed that MSCOH may serve as a diagnostic marker of AD. CONCLUSION Reduced alpha MSCOH is present in patients with AD and MSCOH may serve as a diagnostic marker. However, studies validating MSCOH as a diagnostic marker are needed.
Collapse
Affiliation(s)
| | | | - Peter Høgh
- Department of Neurology, University Hospital of Zealand, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Plaza-Rosales I, Brunetti E, Montefusco-Siegmund R, Madariaga S, Hafelin R, Ponce DP, Behrens MI, Maldonado PE, Paula-Lima A. Visual-spatial processing impairment in the occipital-frontal connectivity network at early stages of Alzheimer's disease. Front Aging Neurosci 2023; 15:1097577. [PMID: 36845655 PMCID: PMC9947357 DOI: 10.3389/fnagi.2023.1097577] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the leading cause of dementia worldwide, but its pathophysiological phenomena are not fully elucidated. Many neurophysiological markers have been suggested to identify early cognitive impairments of AD. However, the diagnosis of this disease remains a challenge for specialists. In the present cross-sectional study, our objective was to evaluate the manifestations and mechanisms underlying visual-spatial deficits at the early stages of AD. Methods We combined behavioral, electroencephalography (EEG), and eye movement recordings during the performance of a spatial navigation task (a virtual version of the Morris Water Maze adapted to humans). Participants (69-88 years old) with amnesic mild cognitive impairment-Clinical Dementia Rating scale (aMCI-CDR 0.5) were selected as probable early AD (eAD) by a neurologist specialized in dementia. All patients included in this study were evaluated at the CDR 0.5 stage but progressed to probable AD during clinical follow-up. An equal number of matching healthy controls (HCs) were evaluated while performing the navigation task. Data were collected at the Department of Neurology of the Clinical Hospital of the Universidad de Chile and the Department of Neuroscience of the Faculty of Universidad de Chile. Results Participants with aMCI preceding AD (eAD) showed impaired spatial learning and their visual exploration differed from the control group. eAD group did not clearly prefer regions of interest that could guide solving the task, while controls did. The eAD group showed decreased visual occipital evoked potentials associated with eye fixations, recorded at occipital electrodes. They also showed an alteration of the spatial spread of activity to parietal and frontal regions at the end of the task. The control group presented marked occipital activity in the beta band (15-20 Hz) at early visual processing time. The eAD group showed a reduction in beta band functional connectivity in the prefrontal cortices reflecting poor planning of navigation strategies. Discussion We found that EEG signals combined with visual-spatial navigation analysis, yielded early and specific features that may underlie the basis for understanding the loss of functional connectivity in AD. Still, our results are clinically promising for early diagnosis required to improve quality of life and decrease healthcare costs.
Collapse
Affiliation(s)
- Iván Plaza-Rosales
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Enzo Brunetti
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Institute of Neurosurgery and Brain Research Dr. Alfonso Asenjo, Santiago, Chile,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Montefusco-Siegmund
- Faculty of Medicine, Institute of Locomotor System and Rehabilitation, Universidad Austral de Chile, Valdivia, Chile
| | - Samuel Madariaga
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Hafelin
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela P. Ponce
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile,Faculty of Medicine, Center for Advanced Clinical Research, Universidad de Chile, Santiago, Chile
| | - María Isabel Behrens
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile,Faculty of Medicine, Center for Advanced Clinical Research, Universidad de Chile, Santiago, Chile,Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Pedro E. Maldonado
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Pedro E. Maldonado,
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile,*Correspondence: Andrea Paula-Lima,
| |
Collapse
|
8
|
Pappalettera C, Cacciotti A, Nucci L, Miraglia F, Rossini PM, Vecchio F. Approximate entropy analysis across electroencephalographic rhythmic frequency bands during physiological aging of human brain. GeroScience 2022; 45:1131-1145. [PMID: 36538178 PMCID: PMC9886767 DOI: 10.1007/s11357-022-00710-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Aging is the inevitable biological process that results in a progressive structural and functional decline associated with alterations in the resting/task-related brain activity, morphology, plasticity, and functionality. In the present study, we analyzed the effects of physiological aging on the human brain through entropy measures of electroencephalographic (EEG) signals. One hundred sixty-one participants were recruited and divided according to their age into young (n = 72) and elderly (n = 89) groups. Approximate entropy (ApEn) values were calculated in each participant for each EEG recording channel and both for the total EEG spectrum and for each of the main EEG frequency rhythms: delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-11 Hz), alpha 2 (11-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-45 Hz), to identify eventual statistical differences between young and elderly. To demonstrate that the ApEn represents the age-related brain changes, the computed ApEn values were used as features in an age-related classification of subjects (young vs elderly), through linear, quadratic, and cubic support vector machine (SVM). Topographic maps of the statistical results showed statistically significant difference between the ApEn values of the two groups found in the total spectrum and in delta, theta, beta 2, and gamma. The classifiers (linear, quadratic, and cubic SVMs) revealed high levels of accuracy (respectively 93.20 ± 0.37, 93.16 ± 0.30, 90.62 ± 0.62) and area under the curve (respectively 0.95, 0.94, 0.93). ApEn seems to be a powerful, very sensitive-specific measure for the study of cognitive decline and global cortical alteration/degeneration in the elderly EEG activity.
Collapse
Affiliation(s)
- Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy ,Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy ,Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy ,Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166, Rome, Italy. .,Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.
| |
Collapse
|
9
|
Ismail L, Karwowski W, Farahani FV, Rahman M, Alhujailli A, Fernandez-Sumano R, Hancock PA. Modeling Brain Functional Connectivity Patterns during an Isometric Arm Force Exertion Task at Different Levels of Perceived Exertion: A Graph Theoretical Approach. Brain Sci 2022; 12:1575. [PMID: 36421899 PMCID: PMC9688629 DOI: 10.3390/brainsci12111575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 09/29/2023] Open
Abstract
The perception of physical exertion is the cognitive sensation of work demands associated with voluntary muscular actions. Measurements of exerted force are crucial for avoiding the risk of overexertion and understanding human physical capability. For this purpose, various physiological measures have been used; however, the state-of-the-art in-force exertion evaluation lacks assessments of underlying neurophysiological signals. The current study applied a graph theoretical approach to investigate the topological changes in the functional brain network induced by predefined force exertion levels for twelve female participants during an isometric arm task and rated their perceived physical comfort levels. The functional connectivity under predefined force exertion levels was assessed using the coherence method for 84 anatomical brain regions of interest at the electroencephalogram (EEG) source level. Then, graph measures were calculated to quantify the network topology for two frequency bands. The results showed that high-level force exertions are associated with brain networks characterized by more significant clustering coefficients (6%), greater modularity (5%), higher global efficiency (9%), and less distance synchronization (25%) under alpha coherence. This study on the neurophysiological basis of physical exertions with various force levels suggests that brain regions communicate and cooperate higher when muscle force exertions increase to meet the demands of physically challenging tasks.
Collapse
Affiliation(s)
- Lina Ismail
- Department of Industrial and Management Engineering, Arab Academy for Science Technology & Maritime Transport, Alexandria 2913, Egypt
| | - Waldemar Karwowski
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mahjabeen Rahman
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Ashraf Alhujailli
- Department of Management Science, Yanbu Industrial College, Yanbu 46452, Saudi Arabia
| | - Raul Fernandez-Sumano
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
10
|
Kuang Y, Wu Z, Xia R, Li X, Liu J, Dai Y, Wang D, Chen S. Phase Lag Index of Resting-State EEG for Identification of Mild Cognitive Impairment Patients with Type 2 Diabetes. Brain Sci 2022; 12:brainsci12101399. [PMID: 36291332 PMCID: PMC9599801 DOI: 10.3390/brainsci12101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Mild cognitive impairment (MCI) is one of the important comorbidities of type 2 diabetes mellitus (T2DM). It is critical to find appropriate methods for early diagnosis and objective assessment of mild cognitive impairment patients with type 2 diabetes (T2DM-MCI). Our study aimed to investigate potential early alterations in phase lag index (PLI) and determine whether it can distinguish between T2DM-MCI and normal controls with T2DM (T2DM-NC). EEG was recorded in 30 T2DM-MCI patients and 30 T2DM-NC patients. The phase lag index was computed and used in a logistic regression model to discriminate between groups. The correlation between the phase lag index and Montreal Cognitive Assessment (MoCA) score was assessed. The α-band phase lag index was significantly decreased in the T2DM-MCI group compared with the T2DM-NC group and showed a moderate degree of classification accuracy. The MoCA score was positively correlated with the α-band phase lag index (r = 0.4812, moderate association, p = 0.015). This work shows that the functional connectivity analysis of EEG may offer an effective way to track the cortical dysfunction linked to the cognitive deterioration of T2DM patients, and the α-band phase lag index may have a role in guiding the diagnosis of T2DM-MCI.
Collapse
Affiliation(s)
- Yuxing Kuang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University (The People’s Hospital of Baoan Shenzhen), Shenzhen 518101, China
| | - Ziyi Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University (The People’s Hospital of Baoan Shenzhen), Shenzhen 518101, China
| | - Rui Xia
- Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University (The People’s Hospital of Baoan Shenzhen), Shenzhen 518101, China
| | - Xingjie Li
- Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University (The People’s Hospital of Baoan Shenzhen), Shenzhen 518101, China
| | - Jun Liu
- Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University (The People’s Hospital of Baoan Shenzhen), Shenzhen 518101, China
| | - Yalan Dai
- Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University (The People’s Hospital of Baoan Shenzhen), Shenzhen 518101, China
| | - Dan Wang
- Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University (The People’s Hospital of Baoan Shenzhen), Shenzhen 518101, China
| | - Shangjie Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University (The People’s Hospital of Baoan Shenzhen), Shenzhen 518101, China
- Correspondence: ; Tel.: +86-0755-27788311
| |
Collapse
|
11
|
Kim J, Jeong M, Stiles WR, Choi HS. Neuroimaging Modalities in Alzheimer's Disease: Diagnosis and Clinical Features. Int J Mol Sci 2022; 23:6079. [PMID: 35682758 PMCID: PMC9181385 DOI: 10.3390/ijms23116079] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease causing progressive cognitive decline until eventual death. AD affects millions of individuals worldwide in the absence of effective treatment options, and its clinical causes are still uncertain. The onset of dementia symptoms indicates severe neurodegeneration has already taken place. Therefore, AD diagnosis at an early stage is essential as it results in more effective therapy to slow its progression. The current clinical diagnosis of AD relies on mental examinations and brain imaging to determine whether patients meet diagnostic criteria, and biomedical research focuses on finding associated biomarkers by using neuroimaging techniques. Multiple clinical brain imaging modalities emerged as potential techniques to study AD, showing a range of capacity in their preciseness to identify the disease. This review presents the advantages and limitations of brain imaging modalities for AD diagnosis and discusses their clinical value.
Collapse
Affiliation(s)
- JunHyun Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.K.); (M.J.); (W.R.S.)
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Minhong Jeong
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.K.); (M.J.); (W.R.S.)
| | - Wesley R. Stiles
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.K.); (M.J.); (W.R.S.)
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.K.); (M.J.); (W.R.S.)
| |
Collapse
|
12
|
Brain Connectivity and Graph Theory Analysis in Alzheimer’s and Parkinson’s Disease: The Contribution of Electrophysiological Techniques. Brain Sci 2022; 12:brainsci12030402. [PMID: 35326358 PMCID: PMC8946843 DOI: 10.3390/brainsci12030402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
In recent years, applications of the network science to electrophysiological data have increased as electrophysiological techniques are not only relatively low cost, largely available on the territory and non-invasive, but also potential tools for large population screening. One of the emergent methods for the study of functional connectivity in electrophysiological recordings is graph theory: it allows to describe the brain through a mathematic model, the graph, and provides a simple representation of a complex system. As Alzheimer’s and Parkinson’s disease are associated with synaptic disruptions and changes in the strength of functional connectivity, they can be well described by functional connectivity analysis computed via graph theory. The aim of the present review is to provide an overview of the most recent applications of the graph theory to electrophysiological data in the two by far most frequent neurodegenerative disorders, Alzheimer’s and Parkinson’s diseases.
Collapse
|
13
|
Kotlarz P, Nino JC, Febo M. Connectomic analysis of Alzheimer's disease using percolation theory. Netw Neurosci 2022; 6:213-233. [PMID: 36605889 PMCID: PMC9810282 DOI: 10.1162/netn_a_00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder that affects a growing worldwide elderly population. Identification of brain functional biomarkers is expected to help determine preclinical stages for targeted mechanistic studies and development of therapeutic interventions to deter disease progression. Connectomic analysis, a graph theory-based methodology used in the analysis of brain-derived connectivity matrices was used in conjunction with percolation theory targeted attack model to investigate the network effects of AD-related amyloid deposition. We used matrices derived from resting-state functional magnetic resonance imaging collected on mice with extracellular amyloidosis (TgCRND8 mice, n = 17) and control littermates (n = 17). Global, nodal, spatial, and percolation-based analysis was performed comparing AD and control mice. These data indicate a short-term compensatory response to neurodegeneration in the AD brain via a strongly connected core network with highly vulnerable or disconnected hubs. Targeted attacks demonstrated a greater vulnerability of AD brains to all types of attacks and identified progression models to mimic AD brain functional connectivity through betweenness centrality and collective influence metrics. Furthermore, both spatial analysis and percolation theory identified a key disconnect between the anterior brain of the AD mice to the rest of the brain network.
Collapse
Affiliation(s)
- Parker Kotlarz
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA,* Corresponding Author:
| | - Juan C. Nino
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Wang R, Su X, Chang Z, Lin P, Wu Y. Flexible brain transitions between hierarchical network segregation and integration associated with cognitive performance during a multisource interference task. IEEE J Biomed Health Inform 2021; 26:1835-1846. [PMID: 34648461 DOI: 10.1109/jbhi.2021.3119940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cognition involves locally segregated and globally integrated processing. This process is hierarchically organized and linked to evidence from hierarchical modules in brain networks. However, researchers have not clearly determined how flexible transitions between these hierarchical processes are associated with cognitive behavior. Here, we designed a multisource interference task (MSIT) and introduced the nested-spectral partition (NSP) method to detect hierarchical modules in brain functional networks. By defining hierarchical segregation and integration across multiple levels, we showed that the MSIT requires higher network segregation in the whole brain and most functional systems but generates higher integration in the control system. Meanwhile, brain networks have more flexible transitions between segregated and integrated configurations in the task state. Crucially, higher functional flexibility in the resting state, less flexibility in the task state and more efficient switching of the brain from resting to task states were associated with better task performance. Our hierarchical modular analysis was more effective at detecting alterations in functional organization and the phenotype of cognitive performance than graph-based network measures at a single level.
Collapse
|
15
|
Fodor Z, Horváth A, Hidasi Z, Gouw AA, Stam CJ, Csukly G. EEG Alpha and Beta Band Functional Connectivity and Network Structure Mark Hub Overload in Mild Cognitive Impairment During Memory Maintenance. Front Aging Neurosci 2021; 13:680200. [PMID: 34690735 PMCID: PMC8529331 DOI: 10.3389/fnagi.2021.680200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background: While decreased alpha and beta-band functional connectivity (FC) and changes in network topology have been reported in Alzheimer's disease, it is not yet entirely known whether these differences can mark cognitive decline in the early stages of the disease. Our study aimed to analyze electroencephalography (EEG) FC and network differences in the alpha and beta frequency band during visuospatial memory maintenance between Mild Cognitive Impairment (MCI) patients and healthy elderly with subjective memory complaints. Methods: Functional connectivity and network structure of 17 MCI patients and 20 control participants were studied with 128-channel EEG during a visuospatial memory task with varying memory load. FC between EEG channels was measured by amplitude envelope correlation with leakage correction (AEC-c), while network analysis was performed by applying the Minimum Spanning Tree (MST) approach, which reconstructs the critical backbone of the original network. Results: Memory load (increasing number of to-be-learned items) enhanced the mean AEC-c in the control group in both frequency bands. In contrast to that, after an initial increase, the MCI group showed significantly (p < 0.05) diminished FC in the alpha band in the highest memory load condition, while in the beta band this modulation was absent. Moreover, mean alpha and beta AEC-c correlated significantly with the size of medial temporal lobe structures in the entire sample. The network analysis revealed increased maximum degree, betweenness centrality, and degree divergence, and decreased diameter and eccentricity in the MCI group compared to the control group in both frequency bands independently of the memory load. This suggests a rerouted network in the MCI group with a more centralized topology and a more unequal traffic load distribution. Conclusion: Alpha- and beta-band FC measured by AEC-c correlates with cognitive load-related modulation, with subtle medial temporal lobe atrophy, and with the disruption of hippocampal fiber integrity in the earliest stages of cognitive decline. The more integrated network topology of the MCI group is in line with the "hub overload and failure" framework and might be part of a compensatory mechanism or a consequence of neural disinhibition.
Collapse
Affiliation(s)
- Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - András Horváth
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Zoltán Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Alida A. Gouw
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Yan Y, Zhao A, Ying W, Qiu Y, Ding Y, Wang Y, Xu W, Deng Y. Functional Connectivity Alterations Based on the Weighted Phase Lag Index: An Exploratory Electroencephalography Study on Alzheimer's Disease. Curr Alzheimer Res 2021; 18:513-522. [PMID: 34598666 DOI: 10.2174/1567205018666211001110824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/24/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Numerous electroencephalography (EEG) studies focus on the alteration of electrical activity in patients with Alzheimer's Disease (AD), but there are no consistent results especially regarding functional connectivity. We supposed that the weighted Phase Lag Index (w- PLI), as phase-based measures of functional connectivity, may be used as an auxiliary diagnostic method for AD. METHODS We enrolled 30 patients with AD, 30 patients with Mild Cognitive Impairment (MCI), and 30 Healthy Controls (HC). EEGs were recorded in all participants at baseline during relaxed wakefulness. Following EEG preprocessing, Power Spectral Density (PSD) and wPLI parameters were determined to further analyze whether they were correlated to cognitive scores. RESULTS In the patients with AD, the increased PSD in theta band was presented compared with MCI and HC groups, which was associated with disturbances of the directional, computational, and delayed memory capacity. Furthermore, the wPLI revealed a distinctly lower connection strength between frontal and distant areas in the delta band and a higher connection strength of the central and temporo-occipital region in the theta band for AD patients. Moreover,we found a significant negative correlation between theta functional connectivity and cognitive scores. CONCLUSION Increased theta PSD and decreased delta wPLI may be one of the earliest changes in AD and associated with disease severity. The parameter wPLI is a novel measurement of phase synchronization and has potentials in understanding underlying functional connectivity and aiding in the diagnostics of AD.
Collapse
Affiliation(s)
- Yi Yan
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aonan Zhao
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weina Ying
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qiu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Ding
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Trinh TT, Tsai CF, Hsiao YT, Lee CY, Wu CT, Liu YH. Identifying Individuals With Mild Cognitive Impairment Using Working Memory-Induced Intra-Subject Variability of Resting-State EEGs. Front Comput Neurosci 2021; 15:700467. [PMID: 34421565 PMCID: PMC8373435 DOI: 10.3389/fncom.2021.700467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022] Open
Abstract
Individuals with mild cognitive impairment (MCI) are at high risk of developing into dementia (e. g., Alzheimer's disease, AD). A reliable and effective approach for early detection of MCI has become a critical challenge. Although compared with other costly or risky lab tests, electroencephalogram (EEG) seems to be an ideal alternative measure for early detection of MCI, searching for valid EEG features for classification between healthy controls (HCs) and individuals with MCI remains to be largely unexplored. Here, we design a novel feature extraction framework and propose that the spectral-power-based task-induced intra-subject variability extracted by this framework can be an encouraging candidate EEG feature for the early detection of MCI. In this framework, we extracted the task-induced intra-subject spectral power variability of resting-state EEGs (as measured by a between-run similarity) before and after participants performing cognitively exhausted working memory tasks as the candidate feature. The results from 74 participants (23 individuals with AD, 24 individuals with MCI, 27 HC) showed that the between-run similarity over the frontal and central scalp regions in the HC group is higher than that in the AD or MCI group. Furthermore, using a feature selection scheme and a support vector machine (SVM) classifier, the between-run similarity showed encouraging leave-one-participant-out cross-validation (LOPO-CV) classification performance for the classification between the MCI and HC (80.39%) groups and between the AD vs. HC groups (78%), and its classification performance is superior to other widely-used features such as spectral powers, coherence, and the complexity estimated by Katz's method extracted from single-run resting-state EEGs (a common approach in previous studies). The results based on LOPO-CV, therefore, suggest that the spectral-power-based task-induced intra-subject EEG variability extracted by the proposed feature extraction framework has the potential to serve as a neurophysiological feature for the early detection of MCI in individuals.
Collapse
Affiliation(s)
- Thanh-Tung Trinh
- Neural Engineering and Smart Systems Laboratory, Graduate Institute of Manufacturing Technology, College of Mechanical and Electrical Engineering, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Chia-Fen Tsai
- Department of Psychiatry, Division of Geriatric Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Hsiao
- Neural Engineering and Smart Systems Laboratory, Graduate Institute of Mechatronic Engineering, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Chun-Ying Lee
- Department of Mechanical Engineering, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Chien-Te Wu
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Yi-Hung Liu
- Department of Mechanical Engineering, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| |
Collapse
|
18
|
Jiménez-Grande D, Atashzar SF, Martinez-Valdes E, Falla D. Muscle network topology analysis for the classification of chronic neck pain based on EMG biomarkers extracted during walking. PLoS One 2021; 16:e0252657. [PMID: 34153069 PMCID: PMC8216529 DOI: 10.1371/journal.pone.0252657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Neuromuscular impairments are frequently observed in patients with chronic neck pain (CNP). This study uniquely investigates whether changes in neck muscle synergies detected during gait are sensitive enough to differentiate between people with and without CNP. Surface electromyography (EMG) was recorded from the sternocleidomastoid, splenius capitis, and upper trapezius muscles bilaterally from 20 asymptomatic individuals and 20 people with CNP as they performed rectilinear and curvilinear gait. Intermuscular coherence was computed to generate the functional inter-muscle connectivity network, the topology of which is quantified based on a set of graph measures. Besides the functional network, spectrotemporal analysis of each EMG was used to form the feature set. With the use of Neighbourhood Component Analysis (NCA), we identified the most significant features and muscles for the classification/differentiation task conducted using K-Nearest Neighbourhood (K-NN), Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA) algorithms. The NCA algorithm selected features from muscle network topology as one of the most relevant feature sets, which further emphasize the presence of major differences in muscle network topology between people with and without CNP. Curvilinear gait achieved the best classification performance through NCA-SVM based on only 16 features (accuracy: 85.00%, specificity: 81.81%, and sensitivity: 88.88%). Intermuscular muscle networks can be considered as a new sensitive tool for the classification of people with CNP. These findings further our understanding of how fundamental muscle networks are altered in people with CNP.
Collapse
Affiliation(s)
- David Jiménez-Grande
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - S Farokh Atashzar
- Electrical & Computer Engineering as well as Mechanical & Aerospace Engineering, New York University, New York City, New York, United States of America
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
19
|
Jouzizadeh M, Ghaderi AH, Cheraghmakani H, Baghbanian SM, Khanbabaie R. Resting-State Brain Network Deficits in Multiple Sclerosis Participants: Evidence from Electroencephalography and Graph Theoretical Analysis. Brain Connect 2021; 11:359-367. [PMID: 33780635 DOI: 10.1089/brain.2020.0857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Multiple sclerosis (MS) is a chronic inflammatory disease leading to demyelination and axonal loss in the central nervous system that causes focal lesions of gray and white matter. However, the functional impairments of brain networks in this disease are still unspecified and need to be clearer. Materials and Methods: In the present study, we investigate the resting-state brain network impairments for MS participants in comparison to a normal group using electroencephalography (EEG) and graph theoretical analysis with a source localization method. Thirty-four age- and gender-matched participants from each MS group and normal group participated in this study. We recorded 5 min of EEG in the resting-state eyes open condition for each participant. One min (15 equal 4-sec artifact-free segments) of the EEG signals were selected for each participant, and the Low-Resolution Electromagnetic Tomography software was employed to calculate the functional connectivity among whole cortical regions in six frequency bands (delta, theta, alpha, beta1, beta2, and beta3). Graph theoretical analysis was used to calculate the clustering coefficient (CL), betweenness centrality (BC), shortest path length (SPL), and small-world propensity (SWP) for weighted connectivity matrices. Nonparametric permutation tests were utilized to compare these measures between groups. Results: Significant differences between the MS group and the normal group in the average of BC and SWP were found in the alpha band. The significant differences in the BC were spread over all lobes. Conclusion: These results suggest that the resting-state brain network for the MS group is disrupted in local and global scales, and EEG has the capability of revealing these impairments.
Collapse
Affiliation(s)
- Mojtaba Jouzizadeh
- Department of Physics, Babol Noshirvani University of Technology, Babol, Iran
| | - Amir Hossein Ghaderi
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hamed Cheraghmakani
- Department of Neurology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Reza Khanbabaie
- Department of Physics, Babol Noshirvani University of Technology, Babol, Iran.,Department of Physics, I.K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
20
|
Musaeus CS, Salem LC, Kjaer TW, Waldemar G. Electroencephalographic functional connectivity is altered in persons with Down syndrome and Alzheimer's disease. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:236-245. [PMID: 33336867 DOI: 10.1111/jir.12803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/06/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Persons with Down syndrome (DS) are at increased risk of developing Alzheimer's dementia (DS-AD). Due to heterogeneity in the functioning in persons with DS, it is difficult to use cognitive testing to assess whether a person with DS has developed dementia due to AD. Electroencephalography (EEG) functional connectivity has shown promising results as a diagnostic tool for AD in persons without DS. In the current exploratory study, we investigated whether EEG functional connectivity could be used as a diagnostic marker of AD in persons with DS and the association with symptoms. METHODS Electroencephalography from 12 persons with DS and 16 persons with DS-AD were analysed, and both coherence and weighted phase lag index were calculated. In addition, we calculated the average coherence for fronto-parietal and temporo-parietal connections. Lastly, we investigated the correlation between the informant-based Dementia Screening Questionnaire in Intellectual Disability (DSQIID) and total alpha coherence. RESULTS Decreased alpha and increased delta coherence and weighted phase lag index were observed in DS-AD as compared with DS. The decrease in alpha coherence was more marked in the fronto-parietal connections as compared with the temporo-parietal connections. No significant correlation was found between DSQIID and total alpha coherence (P value = 0.095, rho = -0.335). CONCLUSION The decreased alpha coherence and weighted phase lag index have previously been found in AD. The increased delta coherence and weighted phase lag index may indicate a different initial neurophysiological presentation as compared with patients with AD or may be a sign of more advanced disease. Larger studies are needed to confirm the current findings.
Collapse
Affiliation(s)
- C S Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - L C Salem
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - T W Kjaer
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Neurophysiology Center, Zealand University Hospital, Roskilde, Denmark
| | - G Waldemar
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Ruiz-Gómez SJ, Hornero R, Poza J, Santamaría-Vázquez E, Rodríguez-González V, Maturana-Candelas A, Gomez C. A new method to build multiplex networks using Canonical Correlation Analysis for the characterization of the Alzheimer's disease continuum. J Neural Eng 2021; 18. [PMID: 33395667 DOI: 10.1088/1741-2552/abd82c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aim of this study was to solve one of the current limitations for the characterization of the brain network in the Alzheimer's disease (AD) continuum. Nowadays, frequency-dependent approaches have reached contradictory results depending on the frequency band under study, tangling the possible clinical interpretations. APPROACH To overcome this issue, we proposed a new method to build multiplex networks based on canonical correlation analysis (CCA). Our method determines two basis vectors using the source and electrodelevel frequency-specific network parameters for a reference group, and then project the results for the rest of the groups into these hyperplanes to make them comparable. It was applied to: (i) synthetic signals generated with a Kuramoto-based model; and (ii) a resting-state EEG database formed by recordings from 51 cognitively healthy controls, 51 mild cognitive impairment subjects, 51 mild AD patients, 50 moderate AD patients, and 50 severe AD patients. MAIN RESULTS Our results using synthetic signals showed that the interpretation of the proposed CCA-based multiplex parameters (multiplex average node degree, multiplex characteristic path length and multiplex clustering coefficient) can be analogous to their frequency-specific counterparts, as they displayed similar behaviors in terms of average connectivity, integration, and segregation. Findings using real EEG recordings revealed that dementia due to AD is characterized by a significant increase in average connectivity, and by a loss of integration and segregation. SIGNIFICANCE We can conclude that CCA can be used to build multiplex networks based from frequency-specific results, summarizing all the available information and avoiding the limitations of possible frequency-specific conflicts. Additionally, our method supposes a novel approach for the construction and analysis of multiplex networks during AD continuum.
Collapse
Affiliation(s)
- Saúl J Ruiz-Gómez
- Teoría de la señal y comunicaciones e Ingeniería telemática, Universidad de Valladolid, Paseo de Belén 15, Valladolid, Valladolid, 47011, SPAIN
| | - Roberto Hornero
- Biomedical Engineering Group, Universidad de Valladolid, ETSI Telecomunicacion, Paseo Belen 15, Valladolid, 47011, SPAIN
| | - Jesus Poza
- Communications and Signal Theory, Universidad de Valladolid, E.T.S. Ingenieros de Telecomunicacion, Paseo de Belen 15, 47011 - Valladolid, Valladolid, Valladolid, 47011, SPAIN
| | - Eduardo Santamaría-Vázquez
- Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, Plaza de Santa Cruz, 8, Valladolid, Valladolid, 47002, SPAIN
| | - Víctor Rodríguez-González
- Teoría de la señal y comunicaciones e ingeniería telemática, Universidad de Valladolid, Paseo Belen 15, Valladolid, 47011, SPAIN
| | | | - Carlos Gomez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, E. T. S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén, 15, Valladolid, Valladolid, 47011, SPAIN
| |
Collapse
|
22
|
Sedghizadeh MJ, Hojjati H, Ezzatdoost K, Aghajan H, Vahabi Z, Tarighatnia H. Olfactory response as a marker for Alzheimer's disease: Evidence from perceptual and frontal lobe oscillation coherence deficit. PLoS One 2020; 15:e0243535. [PMID: 33320870 PMCID: PMC7737889 DOI: 10.1371/journal.pone.0243535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
High-frequency oscillations of the frontal cortex are involved in functions of the brain that fuse processed data from different sensory modules or bind them with elements stored in the memory. These oscillations also provide inhibitory connections to neural circuits that perform lower-level processes. Deficit in the performance of these oscillations has been examined as a marker for Alzheimer's disease (AD). Additionally, the neurodegenerative processes associated with AD, such as the deposition of amyloid-beta plaques, do not occur in a spatially homogeneous fashion and progress more prominently in the medial temporal lobe in the early stages of the disease. This region of the brain contains neural circuitry involved in olfactory perception. Several studies have suggested that olfactory deficit can be used as a marker for early diagnosis of AD. A quantitative assessment of the performance of the olfactory system can hence serve as a potential biomarker for Alzheimer's disease, offering a relatively convenient and inexpensive diagnosis method. This study examines the decline in the perception of olfactory stimuli and the deficit in the performance of high-frequency frontal oscillations in response to olfactory stimulation as markers for AD. Two measurement modalities are employed for assessing the olfactory performance: 1) An interactive smell identification test is used to sample the response to a sizable variety of odorants, and 2) Electroencephalography data are collected in an olfactory perception task with a pair of selected odorants in order to assess the connectivity of frontal cortex regions. Statistical analysis methods are used to assess the significance of selected features extracted from the recorded modalities as Alzheimer's biomarkers. Olfactory decline regressed to age in both healthy and mild AD groups are evaluated, and single- and multi-modal classifiers are also developed. The novel aspects of this study include: 1) Combining EEG response to olfactory stimulation with behavioral assessment of olfactory perception as a marker of AD, 2) Identification of odorants most significantly affected in mild AD patients, 3) Identification of odorants which are still adequately perceived by mild AD patients, 4) Analysis of the decline in the spatial coherence of different oscillatory bands in response to olfactory stimulation, and 5) Being the first study to quantitatively assess the performance of olfactory decline due to aging and AD in the Iranian population.
Collapse
Affiliation(s)
| | - Hadi Hojjati
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Kiana Ezzatdoost
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid Aghajan
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Heliya Tarighatnia
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Faber PL, Milz P, Reininghaus EZ, Mörkl S, Holl AK, Kapfhammer HP, Pascual-Marqui RD, Kochi K, Achermann P, Painold A. Fundamentally altered global- and microstate EEG characteristics in Huntington's disease. Clin Neurophysiol 2020; 132:13-22. [PMID: 33249251 DOI: 10.1016/j.clinph.2020.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/25/2020] [Accepted: 10/14/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Huntington's disease (HD) is characterized by psychiatric, cognitive, and motor disturbances. The study aimed to determine electroencephalography (EEG) global state and microstate changes in HD and their relationship with cognitive and behavioral impairments. METHODS EEGs from 20 unmedicated HD patients and 20 controls were compared using global state properties (connectivity and dimensionality) and microstate properties (EEG microstate analysis). For four microstate classes (A, B, C, D), three parameters were computed: duration, occurrence, coverage. Global- and microstate properties were compared between groups and correlated with cognitive test scores for patients. RESULTS Global state analysis showed reduced connectivity in HD and an increasing dimensionality with increasing HD severity. Microstate analysis revealed parameter increases for classes A and B (coverage), decreases for C (occurrence) and D (coverage and occurrence). Disease severity and poorer test performances correlated with parameter increases for class A (coverage and occurrence), decreases for C (coverage and duration) and a dimensionality increase. CONCLUSIONS Global state changes may reflect higher functional dissociation between brain areas and the complex microstate changes possibly the widespread neuronal death and corresponding functional deficits in brain regions associated with HD symptomatology. SIGNIFICANCE Combining global- and microstate analyses can be useful for a better understanding of progressive brain deterioration in HD.
Collapse
Affiliation(s)
- Pascal L Faber
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
| | - Patricia Milz
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Sabrina Mörkl
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Anna K Holl
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Roberto D Pascual-Marqui
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
| | - Kieko Kochi
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
| | - Peter Achermann
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
| | - Annamaria Painold
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria.
| |
Collapse
|
24
|
Päeske L, Hinrikus H, Lass J, Raik J, Bachmann M. Negative Correlation Between Functional Connectivity and Small-Worldness in the Alpha Frequency Band of a Healthy Brain. Front Physiol 2020; 11:910. [PMID: 32903521 PMCID: PMC7437013 DOI: 10.3389/fphys.2020.00910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/08/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to analyze the relationship between resting state electroencephalographic (EEG) alpha functional connectivity (FC) and small-world organization. For that purpose, Pearson correlation was calculated between FC and small-worldness (SW). Three undirected FC measures were used: magnitude-squared coherence (MSC), imaginary part of coherency (ICOH), and synchronization likelihood (SL). As a result, statistically significant negative correlation occurred between FC and SW for all three FC measures. Small-worldness of MSC and SL were mostly above 1, but lower than 1 for ICOH, suggesting that functional EEG networks did not have small-world properties. Based on the results of the current study, we suggest that decreased alpha small-world organization is compensated with increased connectivity of alpha oscillations in a healthy brain.
Collapse
Affiliation(s)
- Laura Päeske
- Centre for Biomedical Engineering, Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Hiie Hinrikus
- Centre for Biomedical Engineering, Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Jaanus Lass
- Centre for Biomedical Engineering, Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Jaan Raik
- Department of Computer Systems, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Maie Bachmann
- Centre for Biomedical Engineering, Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
25
|
Musaeus CS, Nielsen MS, Høgh P. Altered Low-Frequency EEG Connectivity in Mild Cognitive Impairment as a Sign of Clinical Progression. J Alzheimers Dis 2020; 68:947-960. [PMID: 30883355 DOI: 10.3233/jad-181081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is associated with clinical progression to Alzheimer's disease (AD) but not all patients with MCI convert to AD. However, it is important to have methods that can differentiate between patients with MCI who progress (pMCI) and those who remain stable (sMCI), i.e., for timely administration of disease-modifying drugs. OBJECTIVE In the current study, we wanted to investigate whether quantitative EEG coherence and imaginary part of coherency (iCoh) could be used to differentiate between pMCI and sMCI. METHODS 17 patients with AD, 27 patients with MCI, and 38 older healthy controls were recruited and followed for three years and 2nd year was used to determine progression. EEGs were recorded at baseline and coherence and iCoh were calculated after thorough preprocessing. RESULTS Between pMCI and sMCI, the largest difference in total coherence was found in the theta and delta bands. Here, the significant differences for coherence and iCoh were found in the lower frequency bands involving the temporal-frontal connections for coherence and parietal-frontal connections for iCoh. Furthermore, we found a significant negative correlation between theta coherence and the Addenbrooke's Cognitive Examination (ACE) (p = 0.0378; rho = -0.2388). CONCLUSION These findings suggest that low frequency coherence and iCoh can be used to determine, which patients with MCI will progress to AD and is associated with the ACE score. Low-frequency coherence has previously been associated with increased hippocampal atrophy and degeneration of the cholinergic system and may be an early marker of AD pathology.
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Malene Schjønning Nielsen
- Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Peter Høgh
- Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Yu H, Zhu L, Cai L, Wang J, Liu J, Wang R, Zhang Z. Identification of Alzheimer's EEG With a WVG Network-Based Fuzzy Learning Approach. Front Neurosci 2020; 14:641. [PMID: 32848530 PMCID: PMC7396629 DOI: 10.3389/fnins.2020.00641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
A novel analytical framework combined fuzzy learning and complex network approaches is proposed for the identification of Alzheimer's disease (AD) with multichannel scalp-recorded electroencephalograph (EEG) signals. Weighted visibility graph (WVG) algorithm is first applied to transform each channel EEG into network and its topological parameters were further extracted. Statistical analysis indicates that AD and normal subjects show significant difference in the structure of WVG network and thus can be used to identify Alzheimer's disease. Taking network parameters as input features, a Takagi-Sugeno-Kang (TSK) fuzzy model is established to identify AD's EEG signal. Three feature sets-single parameter from multi-networks, multi-parameters from single network, and multi-parameters from multi-networks-are considered as input vectors. The number and order of input features in each set is optimized with various feature selection methods. Classification results demonstrate the ability of network-based TSK fuzzy classifiers and the feasibility of three input feature sets. The highest accuracy that can be achieved is 95.28% for single parameter from four networks, 93.41% for three parameters from single network. In particular, multi-parameters from the multi-networks set obtained the best result. The highest accuracy, 97.12%, is achieved with five features selected from four networks. The combination of network and fuzzy learning can highly improve the efficiency of AD's EEG identification.
Collapse
Affiliation(s)
- Haitao Yu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Lin Zhu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jing Liu
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Ruofan Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Zhiyong Zhang
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
27
|
Li X, Zhang J, Li XD, Cui W, Su R. Neurofeedback Training for Brain Functional Connectivity Improvement in Mild Cognitive Impairment. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00531-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Das S, Puthankattil SD. Complex network analysis of MCI-AD EEG signals under cognitive and resting state. Brain Res 2020; 1735:146743. [PMID: 32114060 DOI: 10.1016/j.brainres.2020.146743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/09/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The purpose of this study is to characterize functional connectivity changes in mild cognitive impaired Alzheimer's disease (MCI-AD) under resting and cognitive task conditions. METHOD EEG signals were recorded under resting states (Eyes closed (EC) and Eyes open (EO)) and cognitive states (Mental Arithmetic Eyes closed (MAEC) and Mental Arithmetic Eyes open (MAEO)) conditions. Functional connectivity metrics were calculated using weighted phase lag index (WPLI). Topological features of the functional connectivity network were analyzed through minimum spanning tree (MST) algorithm. Betweenness centrality was estimated in five different regions of the brain to study hub importance. RESULTS An increase in values of eccentricity and diameter were observed in patient group in five frequency bands of delta, theta, alpha1, alpha 2 and beta bands under resting and cognitive states. A reduction in leaf fraction was observed in alpha 1 band of EO condition. The results indicated a reduction in functional integration in the brain network of MCI-AD patients. Analysis of MST parameters revealed a higher disintegrated network for the alpha band under EO protocol. The study of hub status in the network displayed an elevated hub status in the central region for the patient group under cognitive task. The study also observed increased integration in gamma band in MCI - AD subjects than healthy controls under cognitive load. CONCLUSION Disintegration of functional network in alpha band under eyes open protocol and elevated hub strength in central region during cognitive task could be distinguishing features that could aid early detection of AD.
Collapse
Affiliation(s)
- Surya Das
- Department of Electrical Engineering, National Institute of Technology, Calicut 673601, Kerala, India.
| | - Subha D Puthankattil
- Department of Electrical Engineering, National Institute of Technology, Calicut 673601, Kerala, India.
| |
Collapse
|
29
|
Cai L, Wei X, Liu J, Zhu L, Wang J, Deng B, Yu H, Wang R. Functional Integration and Segregation in Multiplex Brain Networks for Alzheimer's Disease. Front Neurosci 2020; 14:51. [PMID: 32132892 PMCID: PMC7040198 DOI: 10.3389/fnins.2020.00051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023] Open
Abstract
Growing evidence links impairment of brain functions in Alzheimer's disease (AD) with disruptions of brain functional connectivity. However, whether the AD brain shows similar changes from a dynamic or cross-frequency view remains poorly explored. This paper provides an effective framework to investigate the properties of multiplex brain networks in AD considering inter-frequency and temporal dynamics. Using resting-state EEG signals, two types of multiplex networks were reconstructed separately considering the network interactions between different frequency bands or time points. We further applied multiplex network features to characterize functional integration and segregation of the cross-frequency or time-varying networks. Finally, machine learning methods were employed to evaluate the performance of multiplex-network-based indexes for detection of AD. Results revealed that the brain networks of AD patients are disrupted with reduced segregation particularly in the left occipital area for both cross-frequency and time-varying networks. However, the alteration of integration differs among brain regions and may show an increasing trend in the frontal area of AD brain. By combining the features of integration and segregation in time-varying networks, the best classification performance was achieved with an accuracy of 92.5%. These findings suggest that our multiplex framework can be applied to explore functional integration and segregation of brain networks and characterize the abnormalities of brain function. This may shed new light on the brain network analysis and extend our understanding of brain function in patients with neurological diseases.
Collapse
Affiliation(s)
- Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jing Liu
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Lin Zhu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Haitao Yu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Ruofan Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| |
Collapse
|
30
|
Gao ZK, Li YL, Yang YX, Ma C. A recurrence network-based convolutional neural network for fatigue driving detection from EEG. CHAOS (WOODBURY, N.Y.) 2019; 29:113126. [PMID: 31779352 DOI: 10.1063/1.5120538] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Driver fatigue is an important cause of traffic accidents, which has triggered great concern for detecting drivers' fatigue. Numerous methods have been proposed to fulfill this challenging task, including feature methods and machine learning methods. Recently, with the development of deep learning techniques, many studies achieved better results than traditional feature methods, and the combination of traditional methods and deep learning techniques gradually received attention. In this paper, we propose a recurrence network-based convolutional neural network (RN-CNN) method to detect fatigue driving. To be specific, we first conduct a simulated driving experiment to collect electroencephalogram (EEG) signals of subjects under alert state and fatigue state. Then, we construct the multiplex recurrence network (RN) from EEG signals to fuse information from the original time series. Finally, CNN is employed to extract and learn the features of a multiplex RN for realizing a classification task. The results indicate that the proposed RN-CNN method can achieve an average accuracy of 92.95%. To verify the effectiveness of our method, some existing competitive methods are compared with ours. The results show that our method outperforms the existing methods, which demonstrate the effect of the RN-CNN method.
Collapse
Affiliation(s)
- Zhong-Ke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Yan-Li Li
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Yu-Xuan Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Chao Ma
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Pusil S, López ME, Cuesta P, Bruña R, Pereda E, Maestú F. Hypersynchronization in mild cognitive impairment: the ‘X’ model. Brain 2019; 142:3936-3950. [DOI: 10.1093/brain/awz320] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
Hypersynchronization has been considered as a biomarker of synaptic dysfunction along the Alzheimeŕs disease continuum. In a longitudinal MEG study, Pusil et al. reveal changes in functional connectivity upon progression from MCI to Alzheimer’s disease. They propose the ‘X’ model to explain their findings, and suggest that hypersynchronization predicts conversion.
Collapse
Affiliation(s)
- Sandra Pusil
- Laboratory of Neuropsychology, University of the Balearic Islands, Spain
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
| | - María Eugenia López
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Pablo Cuesta
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
- Electrical Engineering and Bioengineering Lab, Department of Industrial Engineering and IUNE Universidad de La Laguna, Tenerife, Spain
| | - Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ernesto Pereda
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
- Electrical Engineering and Bioengineering Lab, Department of Industrial Engineering and IUNE Universidad de La Laguna, Tenerife, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
32
|
Musaeus CS, Engedal K, Høgh P, Jelic V, Mørup M, Naik M, Oeksengaard AR, Snaedal J, Wahlund LO, Waldemar G, Andersen BB. Oscillatory connectivity as a diagnostic marker of dementia due to Alzheimer’s disease. Clin Neurophysiol 2019; 130:1889-1899. [DOI: 10.1016/j.clinph.2019.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/26/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
|
33
|
High-Density EEG Signal Processing Based on Active-Source Reconstruction for Brain Network Analysis in Alzheimer’s Disease. ELECTRONICS 2019. [DOI: 10.3390/electronics8091031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alzheimer’s Disease (AD) is a neurological disorder characterized by a progressive deterioration of brain functions that affects, above all, older adults. It can be difficult to make an early diagnosis because its first symptoms are often associated with normal aging. Electroencephalography (EEG) can be used for evaluating the loss of brain functional connectivity in AD patients. The purpose of this paper is to study the brain network parameters through the estimation of Lagged Linear Connectivity (LLC), computed by eLORETA software, applied to High-Density EEG (HD-EEG) for 84 regions of interest (ROIs). The analysis involved three groups of subjects: 10 controls (CNT), 21 Mild Cognitive Impairment patients (MCI) and 9 AD patients. In particular, the purpose is to compare the results obtained using a 256-channel EEG, the corresponding 10–10 system 64-channel EEG and the corresponding 10–20 system 18-channel EEG, both of which are extracted from the 256-electrode configuration. The computation of the Characteristic Path Length, the Clustering Coefficient, and the Connection Density from HD-EEG configuration reveals a weakening of small-world properties of MCI and AD patients in comparison to healthy subjects. On the contrary, the variation of the network parameters was not detected correctly when we employed the standard 10–20 configuration. Only the results from HD-EEG are consistent with the expected behavior of the AD brain network.
Collapse
|
34
|
Tait L, Stothart G, Coulthard E, Brown JT, Kazanina N, Goodfellow M. Network substrates of cognitive impairment in Alzheimer’s Disease. Clin Neurophysiol 2019; 130:1581-1595. [DOI: 10.1016/j.clinph.2019.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022]
|
35
|
Cai L, Wei X, Wang J, Yu H, Deng B, Wang R. Reconstruction of functional brain network in Alzheimer's disease via cross-frequency phase synchronization. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH. Systematic Review on Resting-State EEG for Alzheimer's Disease Diagnosis and Progression Assessment. DISEASE MARKERS 2018; 2018:5174815. [PMID: 30405860 PMCID: PMC6200063 DOI: 10.1155/2018/5174815] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that accounts for nearly 70% of the more than 46 million dementia cases estimated worldwide. Although there is no cure for AD, early diagnosis and an accurate characterization of the disease progression can improve the quality of life of AD patients and their caregivers. Currently, AD diagnosis is carried out using standardized mental status examinations, which are commonly assisted by expensive neuroimaging scans and invasive laboratory tests, thus rendering the diagnosis time consuming and costly. Notwithstanding, over the last decade, electroencephalography (EEG) has emerged as a noninvasive alternative technique for the study of AD, competing with more expensive neuroimaging tools, such as MRI and PET. This paper reports on the results of a systematic review on the utilization of resting-state EEG signals for AD diagnosis and progression assessment. Recent journal articles obtained from four major bibliographic databases were analyzed. A total of 112 journal articles published from January 2010 to February 2018 were meticulously reviewed, and relevant aspects of these papers were compared across articles to provide a general overview of the research on this noninvasive AD diagnosis technique. Finally, recommendations for future studies with resting-state EEG were presented to improve and facilitate the knowledge transfer among research groups.
Collapse
Affiliation(s)
- Raymundo Cassani
- Institut national de la recherche scientifique (INRS-EMT), University of Québec, Montreal, Canada
| | - Mar Estarellas
- Institut national de la recherche scientifique (INRS-EMT), University of Québec, Montreal, Canada
- Department of Bioengineering, Imperial College London, London, UK
| | - Rodrigo San-Martin
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Francisco J. Fraga
- Engineering, Modeling and Applied Social Sciences Center, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Tiago H. Falk
- Institut national de la recherche scientifique (INRS-EMT), University of Québec, Montreal, Canada
| |
Collapse
|
37
|
Abnormal organization of white matter networks in patients with subjective cognitive decline and mild cognitive impairment. Oncotarget 2018; 7:48953-48962. [PMID: 27418146 PMCID: PMC5226483 DOI: 10.18632/oncotarget.10601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 06/29/2016] [Indexed: 11/25/2022] Open
Abstract
Network analysis has been widely used in studying Alzheimer's disease (AD). However, how the white matter network changes in cognitive impaired patients with subjective cognitive decline (SCD) (a symptom emerging during early stage of AD) and amnestic mild cognitive impairment (aMCI) (a pre-dementia stage of AD) is still unclear. Here, structural networks were constructed respectively based on FA and FN for 36 normal controls, 21 SCD patients, and 33 aMCI patients by diffusion tensor imaging and graph theory. Significantly lower efficiency was found in aMCI patients than normal controls (NC). Though not significant, the values in those with SCD were intermediate between aMCI and NC. In addition, our results showed significantly altered betweenness centrality located in right precuneus, calcarine, putamen, and left anterior cingulate in aMCI patients. Furthermore, association was found between network metrics and cognitive impairment. Our study suggests that the structural network properties might be preserved in SCD stage and disrupted in aMCI stage, which may provide novel insights into pathological mechanisms of AD.
Collapse
|
38
|
Abstract
This article presents a review of recent advances in neuroscience research in the specific area of brain connectivity as a potential biomarker of Alzheimer's disease with a focus on the application of graph theory. The review will begin with a brief overview of connectivity and graph theory. Then resent advances in connectivity as a biomarker for Alzheimer's disease will be presented and analyzed.
Collapse
Affiliation(s)
- Jon delEtoile
- 1 Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Hojjat Adeli
- 2 Departments of Biomedical Engineering, Biomedical Informatics, Neurological Surgery, and Neuroscience, and Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Li G, Zhang T, Chen X, Shang C, Wang Y. Effect of intermittent hypoxic training on hypoxia tolerance based on brain functional connectivity. Physiol Meas 2016; 37:2299-2316. [DOI: 10.1088/1361-6579/37/12/2299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Liu X, Zhang C, Ji Z, Ma Y, Shang X, Zhang Q, Zheng W, Li X, Gao J, Wang R, Wang J, Yu H. Multiple characteristics analysis of Alzheimer's electroencephalogram by power spectral density and Lempel-Ziv complexity. Cogn Neurodyn 2016; 10:121-33. [PMID: 27066150 PMCID: PMC4805689 DOI: 10.1007/s11571-015-9367-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022] Open
Abstract
To investigate the electroencephalograph (EEG) background activity in patients with Alzheimer's disease (AD), power spectrum density (PSD) and Lempel-Ziv (LZ) complexity analysis are proposed to extract multiple effective features of EEG signals from AD patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared with the control group, the relative PSD of AD group is significantly higher in the theta frequency band while lower in the alpha frequency bands. In order to explore the nonlinear information, Lempel-Ziv complexity (LZC) and multi-scale LZC is further applied to all electrodes for the four frequency bands. Analysis results demonstrate that the group difference is significant in the alpha frequency band by LZC and multi-scale LZC analysis. However, the group difference of multi-scale LZC is much more remarkable, manifesting as more channels undergo notable changes, particularly in electrodes O1 and O2 in the occipital area. Moreover, the multi-scale LZC value provided a better classification between the two groups with an accuracy of 85.7 %. In addition, we combine both features of the relative PSD and multi-scale LZC to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature, reaching 91.4 %. The obtained results show that analysis of PSD and multi-scale LZC can be taken as a potential comprehensive measure to distinguish AD patients from the normal controls, which may benefit our understanding of the disease.
Collapse
Affiliation(s)
- Xiaokun Liu
- />Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000 Hebei People’s Republic of China
| | - Chunlai Zhang
- />Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000 Hebei People’s Republic of China
| | - Zheng Ji
- />Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000 Hebei People’s Republic of China
| | - Yi Ma
- />Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000 Hebei People’s Republic of China
| | - Xiaoming Shang
- />Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000 Hebei People’s Republic of China
| | - Qi Zhang
- />Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000 Hebei People’s Republic of China
| | - Wencheng Zheng
- />Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000 Hebei People’s Republic of China
| | - Xia Li
- />Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000 Hebei People’s Republic of China
| | - Jun Gao
- />Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000 Hebei People’s Republic of China
| | - Ruofan Wang
- />School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Jiang Wang
- />School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Haitao Yu
- />School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
41
|
Marceglia S, Mrakic-Sposta S, Rosa M, Ferrucci R, Mameli F, Vergari M, Arlotti M, Ruggiero F, Scarpini E, Galimberti D, Barbieri S, Priori A. Transcranial Direct Current Stimulation Modulates Cortical Neuronal Activity in Alzheimer's Disease. Front Neurosci 2016; 10:134. [PMID: 27065792 PMCID: PMC4814712 DOI: 10.3389/fnins.2016.00134] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/16/2016] [Indexed: 02/02/2023] Open
Abstract
Quantitative electroencephalography (qEEG) showed that Alzheimer's disease (AD) is characterized by increased theta power, decreased alpha and beta power, and decreased coherence in the alpha and theta band in posterior regions. These abnormalities are thought to be associated with functional disconnections among cortical areas, death of cortical neurons, axonal pathology, and cholinergic deficits. Since transcranial Direct Current Stimulation (tDCS) over the temporo-parietal area is thought to have beneficial effects in patients with AD, in this study we aimed to investigate whether tDCS benefits are related to tDCS-induced changes in cortical activity, as represented by qEEG. A weak anodal current (1.5 mA, 15 min) was delivered bilaterally over the temporal-parietal lobe to seven subjects with probable AD (Mini-Mental State Examination, MMSE score >20). EEG (21 electrodes, 10–20 international system) was recorded for 5 min with eyes closed before (baseline, t0) and 30 min after anodal and cathodal tDCS ended (t1). At the same time points, patients performed a Word Recognition Task (WRT) to assess working memory functions. The spectral power and the inter- and intra-hemispheric EEG coherence in different frequency bands (e.g., low frequencies, including delta and theta; high frequencies, including alpha and beta) were calculated for each subject at t0 and t1. tDCS-induced changes in EEG neurophysiological markers were correlated with the performance of patients at the WRT. At baseline, qEEG features in AD patients confirmed that the decreased high frequency power was correlated with lower MMSE. After anodal tDCS, we observed an increase in the high-frequency power in the temporo-parietal area and an increase in the temporo-parieto-occipital coherence that correlated with the improvement at the WRT. In addition, cathodal tDCS produced a non-specific effect of decreased theta power all over the scalp that was not correlated with the clinical observation at the WRT. Our findings disclosed that tDCS induces significant modulations in the cortical EEG activity in AD patients. The abnormal pattern of EEG activity observed in AD during memory processing is partially reversed by applying anodal tDCS, suggesting that anodal tDCS benefits in AD patients during working memory tasks are supported by the modulation of cortical activity.
Collapse
Affiliation(s)
- Sara Marceglia
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement DisordersMilano, Italia; Dipartimento di Ingegneria e Architettura, Università degli Studi di TriesteTrieste, Italia
| | - Simona Mrakic-Sposta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement DisordersMilano, Italia; Istituto di Bioimmagini e di Fisiologia Molecolare, Consiglio Nazionale delle RicercheSegrate, Italia
| | - Manuela Rosa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders Milano, Italia
| | - Roberta Ferrucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders Milano, Italia
| | - Francesca Mameli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders Milano, Italia
| | - Maurizio Vergari
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders Milano, Italia
| | - Mattia Arlotti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement DisordersMilano, Italia; Dipartimento di Ingegneria Elettrica e dell'Informazione "Guglielmo Marconi," Università di BolognaCesena, Italia
| | - Fabiana Ruggiero
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders Milano, Italia
| | - Elio Scarpini
- Unità di Neurologia, Dipartimento di Fisiologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Italia
| | - Daniela Galimberti
- Unità di Neurologia, Dipartimento di Fisiologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Italia
| | - Sergio Barbieri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders Milano, Italia
| | - Alberto Priori
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Clinical Center for Neurostimulation, Neurotechnology, and Movement DisordersMilano, Italia; Dipartimento di Scienze della Salute, Università degli Studi di Milano, Polo Ospedaliero San PaoloMilano, Italia
| |
Collapse
|
42
|
Wavelet Energy and Wavelet Coherence as EEG Biomarkers for the Diagnosis of Parkinson’s Disease-Related Dementia and Alzheimer’s Disease. ENTROPY 2015. [DOI: 10.3390/e18010008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Zippo AG, Castiglioni I, Borsa VM, Biella GEM. The Compression Flow as a Measure to Estimate the Brain Connectivity Changes in Resting State fMRI and 18FDG-PET Alzheimer's Disease Connectomes. Front Comput Neurosci 2015; 9:148. [PMID: 26733855 PMCID: PMC4679878 DOI: 10.3389/fncom.2015.00148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/24/2015] [Indexed: 11/13/2022] Open
Abstract
The human brain appears organized in compartments characterized by seemingly specific functional purposes on many spatial scales. A complementary functional state binds information from specialized districts to return what is called integrated information. These fundamental network dynamics undergoes to severe disarrays in diverse degenerative conditions such as Alzheimer's Diseases (AD). The AD represents a multifarious syndrome characterized by structural, functional, and metabolic landmarks. In particular, in the early stages of AD, adaptive functional modifications of the brain networks mislead initial diagnoses because cognitive abilities may result indiscernible from normal subjects. As a matter of facts, current measures of functional integration fail to catch significant differences among normal, mild cognitive impairment (MCI) and even AD subjects. The aim of this work is to introduce a new topological feature called Compression Flow (CF) to finely estimate the extent of the functional integration in the brain networks. The method uses a Monte Carlo-like estimation of the information integration flows returning the compression ratio between the size of the injected information and the size of the condensed information within the network. We analyzed the resting state connectomes of 75 subjects of the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI) repository. Our analyses are focused on the 18FGD-PET and functional MRI (fMRI) acquisitions in several clinical screening conditions. Results indicated that CF effectively discriminate MCI, AD and normal subjects by showing a significant decrease of the functional integration in the AD and MCI brain connectomes. This result did not emerge by using a set of common complex network statistics. Furthermore, CF was best correlated with individual clinical scoring scales. In conclusion, we presented a novel measure to quantify the functional integration that resulted efficient to discriminate different stages of dementia and to track the individual progression of the impairments prospecting a proficient usage in a wide range of pathophysiological and physiological studies as well.
Collapse
Affiliation(s)
- Antonio G Zippo
- Institute of Molecular Bioimaging and Physiology, Department of Biomedical Sciences, National Research Council Segrate, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology, Department of Biomedical Sciences, National Research Council Segrate, Italy
| | - Virginia M Borsa
- Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| | - Gabriele E M Biella
- Institute of Molecular Bioimaging and Physiology, Department of Biomedical Sciences, National Research Council Segrate, Italy
| |
Collapse
|
44
|
Cao Y, Cai L, Wang J, Wang R, Yu H, Cao Y, Liu J. Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy. CHAOS (WOODBURY, N.Y.) 2015; 25:083116. [PMID: 26328567 DOI: 10.1063/1.4929148] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.
Collapse
Affiliation(s)
- Yuzhen Cao
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Lihui Cai
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Ruofan Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Haitao Yu
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Yibin Cao
- Tangshan Gongren Hospital, Tangshan Medical College of Hebei Medical University, Tangshan 063000, Hebei, People's Republic of China
| | - Jing Liu
- Tangshan Gongren Hospital, Tangshan Medical College of Hebei Medical University, Tangshan 063000, Hebei, People's Republic of China
| |
Collapse
|
45
|
Wang R, Wang J, Li S, Yu H, Deng B, Wei X. Multiple feature extraction and classification of electroencephalograph signal for Alzheimers' with spectrum and bispectrum. CHAOS (WOODBURY, N.Y.) 2015; 25:013110. [PMID: 25637921 DOI: 10.1063/1.4906038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we have combined experimental neurophysiologic recording and statistical analysis to investigate the nonlinear characteristic and the cognitive function of the brain. Spectrum and bispectrum analyses are proposed to extract multiple effective features of electroencephalograph (EEG) signals from Alzheimer's disease (AD) patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared to the control group, the relative power spectral density of AD group is significantly higher in the theta frequency band, while lower in the alpha frequency bands. In addition, median frequency of spectrum is decreased, and spectral entropy ratio of these two frequency bands undergoes drastic changes at the P3 electrode in the central-parietal brain region, implying that the electrophysiological behavior in AD brain is much slower and less irregular. In order to explore the nonlinear high order information, bispectral analysis which measures the complexity of phase-coupling is further applied to P3 electrode in the whole frequency band. It is demonstrated that less bispectral peaks appear and the amplitudes of peaks fall, suggesting a decrease of non-Gaussianity and nonlinearity of EEG in ADs. Notably, the application of this method to five brain regions shows higher concentration of the weighted center of bispectrum and lower complexity reflecting phase-coupling by bispectral entropy. Based on spectrum and bispectrum analyses, six efficient features are extracted and then applied to discriminate AD from the normal in the five brain regions. The classification results indicate that all these features could differentiate AD patients from the normal controls with a maximum accuracy of 90.2%. Particularly, different brain regions are sensitive to different features. Moreover, the optimal combination of features obtained by discriminant analysis may improve the classification accuracy. These results demonstrate the great promise for scape EEG spectral and bispectral features as a potential effective method for detection of AD, which may facilitate our understanding of the pathological mechanism of the disease.
Collapse
Affiliation(s)
- Ruofan Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Shunan Li
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Haitao Yu
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Bin Deng
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Xile Wei
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| |
Collapse
|
46
|
Power spectral density and coherence analysis of Alzheimer's EEG. Cogn Neurodyn 2014; 9:291-304. [PMID: 25972978 DOI: 10.1007/s11571-014-9325-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022] Open
Abstract
In this paper, we investigate the abnormalities of electroencephalograph (EEG) signals in the Alzheimer's disease (AD) by analyzing 16-scalp electrodes EEG signals and make a comparison with the normal controls. The power spectral density (PSD) which represents the power distribution of EEG series in the frequency domain is used to evaluate the abnormalities of AD brain. Spectrum analysis based on autoregressive Burg method shows that the relative PSD of AD group is increased in the theta frequency band while significantly reduced in the alpha2 frequency bands, particularly in parietal, temporal, and occipital areas. Furthermore, the coherence of two EEG series among different electrodes is analyzed in the alpha2 frequency band. It is demonstrated that the pair-wise coherence between different brain areas in AD group are remarkably decreased. Interestingly, this decrease of pair-wise electrodes is much more significant in inter-hemispheric areas than that in intra-hemispheric areas. Moreover, the linear cortico-cortical functional connectivity can be extracted based on coherence matrix, from which it is shown that the functional connections are obviously decreased, the same variation trend as relative PSD. In addition, we combine both features of the relative PSD and the normalized degree of functional network to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha2 frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature. The obtained results show that analysis of PSD and coherence-based functional network can be taken as a potential comprehensive measure to distinguish AD patients from the normal, which may benefit our understanding of the disease.
Collapse
|