1
|
Microvalve array fabrication using selective PDMS (polydimethylsiloxane) bonding through Perfluorooctyl-trichlorosilane passivation for long-term space exploration. Sci Rep 2022; 12:12398. [PMID: 35858972 PMCID: PMC9300634 DOI: 10.1038/s41598-022-16574-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
To improve the versatility and robustness of microfluidic analytical devices for space exploration, a programmable microfluidic array (PMA) has been implemented to support a variety of missions. When designing a PMA, normally closed valves are advantageous to avoid cross contamination and leaking. However, a stable fabrication method is required to prevent these valves from sticking and bonding over time. This work presents how polydimethylsiloxane (PDMS) can be bonded selectively using chemical passivation to overcome PDMS sticking issue during long-term space exploration. First, on a PDMS stamp, the vaporized perfluorooctyl-trichlorosilane (PFTCS) are deposited under − 80 kPa and 150 °C conditions. The PFTCS was then transferred onto PDMS or glass substrates by controlling temperature and time and 15 min at 150 °C provides the optimal PFTCS transfer for selective bonding. With these characterized parameters, we successfully demonstrated the fabrication of PMA to support long-term space missions. To estimate the stability of the stamped PFTCS, a PMA has been tested regularly for three years and no stiction or performance alteration was observed. A flight test has been done with a Cessaroni L1395 rocket for high g-force and vibration test and there is no difference on PMA performance after exposure of launch and landing conditions. This work shows promise as a simple and robust technique that will expand the stability and capability of PMA for space exploration.
Collapse
|
2
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
3
|
Zhang Y, Tseng TM, Schlichtmann U. ColoriSens: An open-source and low-cost portable color sensor board for microfluidic integration with wireless communication and fluorescence detection. HARDWAREX 2022; 11:e00312. [PMID: 35572858 PMCID: PMC9095929 DOI: 10.1016/j.ohx.2022.e00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Microfluidic colorimetric biosensors have shown promising potential for detecting metal cations, anions, organic dyes, drugs, pesticides. As for today, most colorimetric sensors are read by a smartphone or professional optical imaging system, and there is still a lack of an affordable and reliable colorimetric detector for the microfluidic chip. Integrating those reading and detection capabilities into a microfluidic system is essential for point-of-care (POC) detection and can enable more complex microfluidic operations, such as lab-on-a-chip experiments or programmable microfluidics. We developed an open-source colorimetric detection sensor board that can be integrated into the existing microfluidic system. This sensor board has a built-in UV source that enables fluorescence detection. With built-in USB and Wi-Fi connectivity and a set of simple APIs, microfluidic systems can communicate directly with this sensor board, even wirelessly. The sensor was designed for low-cost. With a total build cost of less than 12 EUR per unit, it is ideal for low-cost systems and DIY microfluidic users. Along with the sensor board, we also designed a companion microfluidic chip carrier cartridge which can be modified depending on the chip's dimension. To demonstrate the sensor, we also developed a cross-platform open-source client application to demonstrate the communication APIs and the functionality of the sensor board.
Collapse
|
4
|
Haghayegh F, Salahandish R, Zare A, Khalghollah M, Sanati-Nezhad A. Immuno-biosensor on a chip: a self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins. LAB ON A CHIP 2021; 22:108-120. [PMID: 34860233 DOI: 10.1039/d1lc00879j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The realization of true point-of-care (PoC) systems profoundly relies on integrating the bioanalytical assays into "on-chip" fluid handing platforms, with autonomous performance, reproducible functionality, and capacity in scalable production. Specifically for electrochemical immuno-biosensing, the complexity of the procedure used for ultrasensitive protein detection using screen-printed biosensors necessitates a lab-centralized practice, hindering the path towards near-patient use. This work develops a self-powered microfluidic chip that automates the entire assay of electrochemical immuno-biosensing, enabling controlled and sequential delivery of the biofluid sample and the sensing reagents to the surface of the embedded electrochemical biosensor. Without any need for active fluid handling, this novel sample-to-result testing kit offers antibody-antigen immunoreaction within 15 min followed by the subsequent automatic washing, redox probe delivery, and electrochemical signal recording. The redox molecules ([Fe(CN)6]3-/4-) are pre-soaked and dried in fiber and embedded inside the chip. The dimensions of the fluidic design and the parameters of the electrochemical bioassay are optimized to warrant a consistent and reproducible performance of the autonomous sensing device. The uniform diffusion of the dried redox into the injected solution and its controlled delivery onto the biosensor are modeled via a two-phase flow computational fluid dynamics simulation, determining the suitable time for electrochemical signal measurement from the biosensor. The microfluidic chip performs well with both water-based fluids and human plasma with the optimized sample volume to offer a proof-of-concept ultrasensitive biosensing of SARS-CoV-2 nucleocapsid proteins spiked in phosphate buffer saline within 15 min. The on-chip N-protein biosensing demonstrates a linear detection range of 10 to 1000 pg mL-1 with a limit of detection of 3.1 pg mL-1. This is the first self-powered microfluidic-integrated electrochemical immuno-biosensor that promises quantitative and ultrasensitive PoC biosensing. Once it is modified for its design and dimensions, it can be further used for autonomous detection of one or multiple proteins in diverse biofluid samples.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
- Center for BioEngineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Azam Zare
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Mahmood Khalghollah
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
- Center for BioEngineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
5
|
Sampad MJN, Zhang H, Yuzvinsky TD, Stott MA, Hawkins AR, Schmidt H. Optical trapping assisted label-free and amplification-free detection of SARS-CoV-2 RNAs with an optofluidic nanopore sensor. Biosens Bioelectron 2021; 194:113588. [PMID: 34474277 PMCID: PMC8400458 DOI: 10.1016/j.bios.2021.113588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Ultrasensitive, versatile sensors for molecular biomarkers are a critical component of disease diagnostics and personalized medicine as the COVID-19 pandemic has revealed in dramatic fashion. Integrated electrical nanopore sensors can fill this need via label-free, direct detection of individual biomolecules, but a fully functional device for clinical sample analysis has yet to be developed. Here, we report amplification-free detection of SARS-CoV-2 RNAs with single molecule sensitivity from clinical nasopharyngeal swab samples on an electro-optofluidic chip. The device relies on optically assisted delivery of target carrying microbeads to the nanopore for single RNA detection after release. A sensing rate enhancement of over 2,000x with favorable scaling towards lower concentrations is demonstrated. The combination of target specificity, chip-scale integration and rapid detection ensures the practicality of this approach for COVID-19 diagnosis over the entire clinically relevant concentration range from 104-109 copies/mL.
Collapse
Affiliation(s)
| | - Han Zhang
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Thomas D Yuzvinsky
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Matthew A Stott
- ECEn Department, Brigham Young University, 450 Engineering Building, Provo, UT, 84602, USA
| | - Aaron R Hawkins
- ECEn Department, Brigham Young University, 450 Engineering Building, Provo, UT, 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
6
|
Sathish S, Shen AQ. Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. JACS AU 2021; 1:1815-1833. [PMID: 34841402 PMCID: PMC8611667 DOI: 10.1021/jacsau.1c00318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in nano/microfluidics have led to the miniaturization of surface-based chemical and biochemical sensors, with applications ranging from environmental monitoring to disease diagnostics. These systems rely on the detection of analytes flowing in a liquid sample, by exploiting their innate nature to react with specific receptors immobilized on the microchannel walls. The efficiency of these systems is defined by the cumulative effect of analyte detection speed, sensitivity, and specificity. In this perspective, we provide a fresh outlook on the use of important parameters obtained from well-characterized analytical models, by connecting the mass transport and reaction limits with the experimentally attainable limits of analyte detection efficiency. Specifically, we breakdown when and how the operational (e.g., flow rates, channel geometries, mode of detection, etc.) and molecular (e.g., receptor affinity and functionality) variables can be tailored to enhance the analyte detection time, analytical specificity, and sensitivity of the system (i.e., limit of detection). Finally, we present a simple yet cohesive blueprint for the development of high-efficiency surface-based microfluidic sensors for rapid, sensitive, and specific detection of chemical and biochemical analytes, pertinent to a variety of applications.
Collapse
Affiliation(s)
- Shivani Sathish
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Rahman M, Sampad MJN, Hawkins A, Schmidt H. Recent advances in integrated solid-state nanopore sensors. LAB ON A CHIP 2021; 21:3030-3052. [PMID: 34137407 PMCID: PMC8372664 DOI: 10.1039/d1lc00294e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The advent of single-molecule probing techniques has revolutionized the biomedical and life science fields and has spurred the development of a new class of labs-on-chip based on powerful biosensors. Nanopores represent one of the most recent and most promising single molecule sensing paradigms that is seeing increased chip-scale integration for improved convenience and performance. Due to their physical structure, nanopores are highly sensitive, require low sample volume, and offer label-free, amplification-free, high-throughput real-time detection and identification of biomolecules. Over the last 25 years, nanopores have been extensively employed to detect a variety of biomolecules with a growing range of applicatons ranging from nucleic acid sequencing to ultrasensitive diagnostics to single-molecule biophysics. Nanopores, in particular those in solid-state membranes, also have the potential for integration with other technologies such as optics, plasmonics, microfluidics, and optofluidics to perform more complex tasks for an ever-expanding demand. A number of breakthrough results using integrated nanopore platforms have already been reported, and more can be expected as nanopores remain the focus of innovative research and are finding their way into commercial instruments. This review provides an overview of different aspects and challenges of nanopore technology with a focus on chip-scale integration of solid-state nanopores for biosensing and bioanalytical applications.
Collapse
Affiliation(s)
- Mahmudur Rahman
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064 USA. and Dhaka University of Engineering & Technology, Gazipur, Bangladesh
| | | | - Aaron Hawkins
- ECEn Department, Brigham Young University, 459 Clyde Building, Provo, UT, 84602 USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064 USA.
| |
Collapse
|
8
|
High-Throughput Cell Concentration Using A Piezoelectric Pump in Closed-Loop Viscoelastic Microfluidics. MICROMACHINES 2021; 12:mi12060677. [PMID: 34207912 PMCID: PMC8229193 DOI: 10.3390/mi12060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Cell concentration is a critical process in biological assays and clinical diagnostics for the pre-treatment of extremely rare disease-related cells. The conventional technique for sample preconcentration and centrifugation has the limitations of a batch process requiring expensive and large equipment. Therefore, a high-throughput continuous cell concentration technique needs to be developed. However, in single-pass operation, the required concentration ratio is hard to achieve. In this study, we propose a closed-loop continuous cell concentration system using a viscoelastic non-Newtonian fluid. For miniaturized and integrated systems, two piezoelectric pumps were adopted. The pumping capability generated by a piezoelectric pump in a microfluidic channel was evaluated depending on the applied voltage, frequency, sample viscosity, and channel length. The concentration performance of the device was evaluated using 13 μm particles and white blood cells (WBCs) with different channel lengths and voltages. In the closed-loop system, the focused cells collected at the center outlet were sent back to the inlet, while the buffer solution was removed to the side outlets. Finally, to expand the clinical applicability of our closed-loop system, WBCs in lysed blood samples with 70% hematocrit and prostate cancer cells in urine samples were used. Using the closed-loop system, WBCs were concentrated by ~63.4 ± 0.8-fold within 20 min to a final volume of 160 μL using 10 mL of lysed blood sample with 70% hematocrit (~3 cP). In addition, prostate cancer cells in 10 mL urine samples were concentrated by ~64.1-fold within ~11 min due to low viscosity (~1 cP).
Collapse
|
9
|
Meena GG, Stambaugh AM, Ganjalizadeh V, Stott MA, Hawkins AR, Schmidt H. Ultrasensitive detection of SARS-CoV-2 RNA and antigen using single-molecule optofluidic chip. APL PHOTONICS 2021; 6:066101. [PMID: 35693725 PMCID: PMC9186413 DOI: 10.1063/5.0049735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nucleic acids and proteins are the two most important target types used in molecular diagnostics. In many instances, simultaneous sensitive and accurate detection of both biomarkers from the same sample would be desirable, but standard detection methods are highly optimized for one type and not cross-compatible. Here, we report the simultaneous multiplexed detection of SARS-CoV-2 RNAs and antigens with single molecule sensitivity. Both analytes are isolated and labeled using a single bead-based solid-phase extraction protocol, followed by fluorescence detection on a multi-channel optofluidic waveguide chip. Direct amplification-free detection of both biomarkers from nasopharyngeal swab samples is demonstrated with single molecule detection sensitivity, opening the door for ultrasensitive dual-target analysis in infectious disease diagnosis, oncology, and other applications.
Collapse
Affiliation(s)
- G. G. Meena
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| | - A. M. Stambaugh
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| | - V. Ganjalizadeh
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| | - M. A. Stott
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - A. R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - H. Schmidt
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| |
Collapse
|
10
|
Optofluidic multiplex detection of single SARS-CoV-2 and influenza A antigens using a novel bright fluorescent probe assay. Proc Natl Acad Sci U S A 2021; 118:2103480118. [PMID: 33947795 PMCID: PMC8158013 DOI: 10.1073/pnas.2103480118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This work introduces an ultrasensitive single protein capture and detection technique based on a bright fluorescent reporter probe that is sensed on a photonic chip with integrated microfluidics. We perform differentiated detection of single SARS-CoV-2 and influenza A antigens at clinically relevant concentrations from clinical nasal swab materials. This ultrasensitive capture and detection technique could one day be realized as a tool for molecular diagnostics at the point of care. The urgency for the development of a sensitive, specific, and rapid point-of-care diagnostic test has deepened during the ongoing COVID-19 pandemic. Here, we introduce an ultrasensitive chip-based antigen test with single protein biomarker sensitivity for the differentiated detection of both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A antigens in nasopharyngeal swab samples at diagnostically relevant concentrations. The single-antigen assay is enabled by synthesizing a brightly fluorescent reporter probe, which is incorporated into a bead-based solid-phase extraction assay centered on an antibody sandwich protocol for the capture of target antigens. After optimization of the probe release for detection using ultraviolet light, the full assay is validated with both SARS-CoV-2 and influenza A antigens from clinical nasopharyngeal swab samples (PCR-negative spiked with target antigens). Spectrally multiplexed detection of both targets is implemented by multispot excitation on a multimode interference waveguide platform, and detection at 30 ng/mL with single-antigen sensitivity is reported.
Collapse
|
11
|
Shebindu A, Somaweera H, Estlack Z, Kim J, Kim J. A fully integrated isotachophoresis with a programmable microfluidic platform. Talanta 2021; 225:122039. [PMID: 33592763 DOI: 10.1016/j.talanta.2020.122039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Conventional isotachophoresis (ITP) can be used for pre-concentration of a single analyte, but preconcentration of multiple analytes is time consuming due to handling and washing steps required for the extensive buffer optimization procedure. In this work, we present a programmable microfluidic platform (PMP) to demonstrate fully automated optimization of ITP of multiple analytes. By interfacing a PMP with ITP, buffer selection and repetitive ITP procedures were automated. Using lifting-gate microvalve technology, a PMP consisting of a two-dimensional microvalve array was designed and fabricated for seamless integration with an ITP chip. The microvalve array was used for basic liquid manipulation such as metering, mixing, selecting, delivering, and washing procedures to prime and run ITP. Initially, the performances of the PMP and ITP channel were validated individually by estimating volume per pumping cycle and preconcentrating Alexa Fluor 594 with appropriate trailing (TE) and leading (LE) buffers, respectively. After confirming basic functions, autonomous ITP was demonstrated using multiple analytes (Pacific blue, Alexa Fluor 594, and Alexa Fluor 488). The optimal buffer combination was was determined by performing multiple ITP runs with three different TEs (borate, HEPES, and phosphate buffers) and three different concentrations of Tris-HCl for the LE. We found that 40 mM borate and 100 mM Tris-HCl successfully preconcentrated all analytes during a single ITP run. The integrated PMP-ITP system can simplify overall buffer selection and validation procedures for various biological and chemical target samples. Furthermore, by incorporating analytical tools that interconnect with the PMP, it can provide high sample concentrations to aid in downstream analysis.
Collapse
Affiliation(s)
- Adam Shebindu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Himali Somaweera
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Zachary Estlack
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Jungkyu Kim
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA; Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Meena GG, Wall TA, Stott MA, Brown O, Robison R, Hawkins AR, Schmidt H. 7X multiplexed, optofluidic detection of nucleic acids for antibiotic-resistance bacterial screening. OPTICS EXPRESS 2020; 28:33019-33027. [PMID: 33114971 PMCID: PMC7679188 DOI: 10.1364/oe.402311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rapid and accurate diagnosis of bacterial infections resistant to multiple antibiotics requires development of new bio-sensors for differentiated detection of multiple targets. This work demonstrates 7x multiplexed detection for antibiotic-resistance bacterial screening on an optofluidic platform. We utilize spectrally multiplexed multi-spot excitation for simultaneous detection of nucleic acid strands corresponding to bacterial targets and resistance genes. This is enabled by multi-mode interference (MMI) waveguides integrated in an optofluidic device. We employ a combinatorial three-color labeling scheme for the nucleic acid assays to scale up their multiplexing capability to seven different nucleic acids, representing three species and four resistance genes.
Collapse
Affiliation(s)
- G. G. Meena
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| | - T. A. Wall
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - M. A. Stott
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - O. Brown
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602, USA
| | - R. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602, USA
| | - A. R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - H. Schmidt
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| |
Collapse
|
13
|
Qin P, Park M, Alfson KJ, Tamhankar M, Carrion R, Patterson JL, Griffiths A, He Q, Yildiz A, Mathies R, Du K. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sens 2019; 4:1048-1054. [PMID: 30860365 DOI: 10.1021/acssensors.9b00239] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Highly infectious illness caused by pathogens is endemic especially in developing nations where there is limited laboratory infrastructure and trained personnel. Rapid point-of-care (POC) serological assays with minimal sample manipulation and low cost are desired in clinical practice. In this study, we report an automated POC system for Ebola RNA detection with RNA-guided RNA endonuclease Cas13a, utilizing its collateral RNA degradation after its activation. After automated microfluidic mixing and hybridization, nonspecific cleavage products of Cas13a are immediately measured by a custom integrated fluorometer which is small in size and convenient for in-field diagnosis. Within 5 min, a detection limit of 20 pfu/mL (5.45 × 107 copies/mL) of purified Ebola RNA is achieved. This isothermal and fully solution-based diagnostic method is rapid, amplification-free, simple, and sensitive, thus establishing a key technology toward a useful POC diagnostic platform.
Collapse
Affiliation(s)
- Peiwu Qin
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Myeongkee Park
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Dong-A University, Busan 49315, Republic of Korea
| | - Kendra J. Alfson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Manasi Tamhankar
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Jean L. Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Anthony Griffiths
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States
| | - Richard Mathies
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Du
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
14
|
Fraser LA, Cheung YW, Kinghorn AB, Guo W, Shiu SCC, Jinata C, Liu M, Bhuyan S, Nan L, Shum HC, Tanner JA. Microfluidic Technology for Nucleic Acid Aptamer Evolution and Application. ACTA ACUST UNITED AC 2019; 3:e1900012. [PMID: 32627415 DOI: 10.1002/adbi.201900012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/12/2019] [Indexed: 12/18/2022]
Abstract
The intersection of microfluidics and aptamer technologies holds particular promise for rapid progress in a plethora of applications across biomedical science and other areas. Here, the influence of microfluidics on the field of aptamers, from traditional capillary electrophoresis approaches through innovative modern-day approaches using micromagnetic beads and emulsion droplets, is reviewed. Miniaturizing aptamer-based bioassays through microfluidics has the potential to transform diagnostics and embedded biosensing in the coming years.
Collapse
Affiliation(s)
- Lewis A Fraser
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Yee-Wai Cheung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Chandra Jinata
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Mengping Liu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Soubhagya Bhuyan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Lang Nan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| |
Collapse
|
15
|
Meena GG, Jain A, Parks JW, Stambaugh A, Patterson JL, Hawkins AR, Schmidt H. Integration of sample preparation and analysis into an optofluidic chip for multi-target disease detection. LAB ON A CHIP 2018; 18:3678-3686. [PMID: 30376021 PMCID: PMC6264894 DOI: 10.1039/c8lc00966j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Detection of molecular biomarkers with high specificity and sensitivity from biological samples requires both sophisticated sample preparation and subsequent analysis. These tasks are often carried out on separate platforms which increases required sample volumes and the risk of errors, sample loss, and contamination. Here, we present an optofluidic platform which combines an optical detection section with single nucleic acid strand sensitivity, and a sample processing unit capable of on-chip, specific extraction and labeling of nucleic acid and protein targets in complex biological matrices. First, on-chip labeling and detection of individual lambda DNA molecules down to concentrations of 8 fM is demonstrated. Subsequently, we demonstrate the simultaneous capture, fluorescence tagging and detection of both Zika specific nucleic acid and NS-1 protein targets in both buffer and human serum. We show that the dual DNA and protein assay allows for successful differentiation and diagnosis of Zika against cross-reacting species like dengue.
Collapse
Affiliation(s)
- Gopikrishnan G Meena
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Aadhar Jain
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Joshua W Parks
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Alexandra Stambaugh
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - Aaron R Hawkins
- ECEn Department, Brigham Young University, 459 Clyde Building, Provo, UT 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
16
|
BLACK JENNIFERA, GANJALIZADEH VAHID, PARKS JOSHUAW, SCHMIDT HOLGER. Multi-channel velocity multiplexing of single virus detection on an optofluidic chip. OPTICS LETTERS 2018; 43:4425-4428. [PMID: 30211881 PMCID: PMC6309855 DOI: 10.1364/ol.43.004425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Liquid-core waveguide-based optofluidic devices have proven to be valuable tools for analysis of biological samples in fluid. They have enabled single bioparticle sensitivity while maintaining in-plane detection via light-induced fluorescence. The incorporation of multi-spot excitation with multimode interference (MMI) waveguides has enabled spatially and spectrally multiplexed detection of single viruses on an oxide-based optofluidic platform. Here, we introduce a new way of MMI-based multiplexing where multiple analysis channels are placed within a single multi-spot pattern. This stacked channel design enables both velocity and spectral multiplexing of single particles. The principle is demonstrated with differentiated detection of single H3N2 and H1N1 viruses on a polydimethylsiloxane platform.
Collapse
|
17
|
Abstract
This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications.
Collapse
Affiliation(s)
- Hui Yang
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Science
- 518055 Shenzhen
- China
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| |
Collapse
|
18
|
Ozcelik D, Jain A, Stambaugh A, Stott MA, Parks JW, Hawkins A, Schmidt H. Scalable Spatial-Spectral Multiplexing of Single-Virus Detection Using Multimode Interference Waveguides. Sci Rep 2017; 7:12199. [PMID: 28939852 PMCID: PMC5610187 DOI: 10.1038/s41598-017-12487-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 11/09/2022] Open
Abstract
Simultaneous detection of multiple pathogens and samples (multiplexing) is one of the key requirements for diagnostic tests in order to enable fast, accurate and differentiated diagnoses. Here, we introduce a novel, highly scalable, photonic approach to multiplex analysis with single virus sensitivity. A solid-core multimode interference (MMI) waveguide crosses multiple fluidic waveguide channels on an optofluidic chip to create multi-spot excitation patterns that depend on both the wavelength and location of the channel along the length of the MMI waveguide. In this way, joint spectral and spatial multiplexing is implemented that encodes both spatial and spectral information in the time dependent fluorescence signal. We demonstrate this principle by using two excitation wavelengths and three fluidic channels to implement a 6x multiplex assay with single virus sensitivity. High fidelity detection and identification of six different viruses from a standard influenza panel is reported. This multimodal multiplexing strategy scales favorably to large numbers of targets or large numbers of clinical samples. Further, since single particles are detected unbound in flow, the technique can be broadly applied to direct detection of any fluorescent target, including nucleic acids and proteins.
Collapse
Affiliation(s)
- Damla Ozcelik
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Aadhar Jain
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Alexandra Stambaugh
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Matthew A Stott
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT, 84602, USA
| | - Joshua W Parks
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Aaron Hawkins
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT, 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
19
|
Szydzik C, Gavela AF, Herranz S, Roccisano J, Knoerzer M, Thurgood P, Khoshmanesh K, Mitchell A, Lechuga LM. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics. LAB ON A CHIP 2017; 17:2793-2804. [PMID: 28682395 DOI: 10.1039/c7lc00524e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.
Collapse
Affiliation(s)
- C Szydzik
- School of Engineering, RMIT University, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ozcelik D, Cai H, Leake KD, Hawkins AR, Schmidt H. Optofluidic bioanalysis: fundamentals and applications. NANOPHOTONICS 2017; 6:647-661. [PMID: 29201591 PMCID: PMC5708574 DOI: 10.1515/nanoph-2016-0156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Over the past decade, optofluidics has established itself as a new and dynamic research field for exciting developments at the interface of photonics, microfluidics, and the life sciences. The strong desire for developing miniaturized bioanalytic devices and instruments, in particular, has led to novel and powerful approaches to integrating optical elements and biological fluids on the same chip-scale system. Here, we review the state-of-the-art in optofluidic research with emphasis on applications in bioanalysis and a focus on waveguide-based approaches that represent the most advanced level of integration between optics and fluidics. We discuss recent work in photonically reconfigurable devices and various application areas. We show how optofluidic approaches have been pushing the performance limits in bioanalysis, e.g. in terms of sensitivity and portability, satisfying many of the key requirements for point-of-care devices. This illustrates how the requirements for bianalysis instruments are increasingly being met by the symbiotic integration of novel photonic capabilities in a miniaturized system.
Collapse
Affiliation(s)
- Damla Ozcelik
- School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Hong Cai
- School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Kaelyn D. Leake
- School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Aaron R. Hawkins
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602, USA
| | - Holger Schmidt
- Corresponding author: Holger Schmidt, School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA,
| |
Collapse
|
21
|
Xie P, Cao X, Lin Z, Javanmard M. Top-down fabrication meets bottom-up synthesis for nanoelectronic barcoding of microparticles. LAB ON A CHIP 2017; 17:1939-1947. [PMID: 28470316 DOI: 10.1039/c7lc00035a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Traditional optical and plasmonic techniques for barcoding of micro-particles for multiplexed bioassays are generally high in throughput, however bulky instrumentation is often required for performing readout. Electrical impedance based detection allows for ultra-compact instrumentation footprint necessary for wearable devices, however to date, the lack of ability to electronically barcode micro-particles has been a long standing bottleneck towards enabling multiplexed electronic biomarker assays. Nanoelectronic barcoding, which to the best of our knowledge is the first impedance based solution for micro-particle barcoding, works by forming tunable nano-capacitors on the surface of micro-spheres, effectively modulating the frequency dependent dielectric properties of the spheres allowing one bead barcode to be distinguished from another. Nanoelectronic barcoding uses a well-known, but unexplored electromagnetic phenomenon of micro-particles: the Clausius-Mossotti (CM) factor spectrum of a Janus particle (JP) shifts depending on the zeta (wall) potential of the metallic half of the microsphere, and the fact that the complex impedance spectrum of a particle directly corresponds to the CM factor spectrum. A one-to-one correspondence will be established between each biomarker and the corresponding engineered microsphere. This transformative new method for barcoding will enable a new class of handheld and wearable biosensors capable of multiplexed continuous temporal bio-monitoring. The proposed nano-electronically barcoded particles utilize both bottom-up synthesis and top-down fabrication to enable precisely engineered frequency dependent dielectric signatures. Multi-frequency lock-in measurements of the complex impedance, in conjunction with multi-variate analysis of impedance data, allows for particle differentiation using a fully functional ultra-compact electronic detector.
Collapse
Affiliation(s)
- Pengfei Xie
- Department of Electrical and Computer Engineering, Rutgers University, USA.
| | | | | | | |
Collapse
|
22
|
Du K, Cai H, Park M, Wall TA, Stott MA, Alfson KJ, Griffiths A, Carrion R, Patterson JL, Hawkins AR, Schmidt H, Mathies RA. Multiplexed efficient on-chip sample preparation and sensitive amplification-free detection of Ebola virus. Biosens Bioelectron 2017; 91:489-496. [PMID: 28073029 DOI: 10.1016/j.bios.2016.12.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/26/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
An automated microfluidic sample preparation multiplexer (SPM) has been developed and evaluated for Ebola virus detection. Metered air bubbles controlled by microvalves are used to improve bead-solution mixing thereby enhancing the hybridization of the target Ebola virus RNA with capture probes bound to the beads. The method uses thermally stable 4-formyl benzamide functionalized (4FB) magnetic beads rather than streptavidin coated beads with a high density of capture probes to improve the target capture efficiency. Exploiting an on-chip concentration protocol in the SPM and the single molecule detection capability of the antiresonant reflecting optical waveguide (ARROW) biosensor chip, a detection limit of 0.021pfu/mL for clinical samples is achieved without target amplification. This RNA target capture efficiency is two orders of magnitude higher than previous results using streptavidin beads and the limit of detection (LOD) improves 10×. The wide dynamic range of this technique covers the whole clinically applicable concentration range. In addition, the current sample preparation time is ~1h which is eight times faster than previous work. This multiplexed, miniaturized sample preparation microdevice establishes a key technology that intended to develop next generation point-of-care (POC) detection system.
Collapse
Affiliation(s)
- K Du
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - H Cai
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - M Park
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - T A Wall
- ECEn Department, Brigham Young University, 459 Clyde Building, Provo, UT 84602, USA
| | - M A Stott
- ECEn Department, Brigham Young University, 459 Clyde Building, Provo, UT 84602, USA
| | - K J Alfson
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - A Griffiths
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - R Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - J L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - A R Hawkins
- ECEn Department, Brigham Young University, 459 Clyde Building, Provo, UT 84602, USA
| | - H Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - R A Mathies
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Cai H, Stott MA, Ozcelik D, Parks JW, Hawkins AR, Schmidt H. On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood. BIOMICROFLUIDICS 2016; 10:064116. [PMID: 28058082 PMCID: PMC5176344 DOI: 10.1063/1.4968033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/06/2016] [Indexed: 05/03/2023]
Abstract
We have developed an optofluidic analysis system that processes biomolecular samples starting from whole blood and then analyzes and identifies multiple targets on a silicon-based molecular detection platform. We demonstrate blood filtration, sample extraction, target enrichment, and fluorescent labeling using programmable microfluidic circuits. We detect and identify multiple targets using a spectral multiplexing technique based on wavelength-dependent multi-spot excitation on an antiresonant reflecting optical waveguide chip. Specifically, we extract two types of melanoma biomarkers, mutated cell-free nucleic acids -BRAFV600E and NRAS, from whole blood. We detect and identify these two targets simultaneously using the spectral multiplexing approach with up to a 96% success rate. These results point the way toward a full front-to-back chip-based optofluidic compact system for high-performance analysis of complex biological samples.
Collapse
Affiliation(s)
- H Cai
- School of Engineering, University of California , Santa Cruz. 1156 High Street, Santa Cruz, California 95064, USA
| | - M A Stott
- Department of Electrical and Computer Engineering, Brigham Young University , 459 Clyde Building, Provo, Utah 84602, USA
| | - D Ozcelik
- School of Engineering, University of California , Santa Cruz. 1156 High Street, Santa Cruz, California 95064, USA
| | - J W Parks
- School of Engineering, University of California , Santa Cruz. 1156 High Street, Santa Cruz, California 95064, USA
| | - A R Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University , 459 Clyde Building, Provo, Utah 84602, USA
| | - H Schmidt
- School of Engineering, University of California , Santa Cruz. 1156 High Street, Santa Cruz, California 95064, USA
| |
Collapse
|
24
|
Parks J, Wall T, Cai H, Hawkins A, Schmidt H. Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-based SiO 2 Waveguides. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:10.1109/JSTQE.2016.2549801. [PMID: 27547024 PMCID: PMC4987089 DOI: 10.1109/jstqe.2016.2549801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO2) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: (1) propagation loss in solid-core waveguides is reduced by over 70%, and (2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%.
Collapse
Affiliation(s)
- J.W. Parks
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - T.A. Wall
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602 USA
| | - H. Cai
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - A.R. Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602 USA
| | - H. Schmidt
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| |
Collapse
|
25
|
Ozcelik D, Stott MA, Parks JW, Black JA, Wall TA, Hawkins AR, Schmidt H. Signal-to-noise Enhancement in Optical Detection of Single Viruses with Multi-spot Excitation. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:4402406. [PMID: 27524876 PMCID: PMC4978512 DOI: 10.1109/jstqe.2015.2503321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio (SNR) achieved by multi-spot excitation in liquid-core anti-resonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5x104 are demonstrated.
Collapse
Affiliation(s)
- Damla Ozcelik
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Matthew A. Stott
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602 USA
| | - Joshua W. Parks
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Jennifer A. Black
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Thomas A. Wall
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602 USA
| | - Aaron R. Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602 USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| |
Collapse
|
26
|
|
27
|
Testa G, Persichetti G, Bernini R. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors. MICROMACHINES 2016; 7:mi7030047. [PMID: 30407419 PMCID: PMC6190334 DOI: 10.3390/mi7030047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
In this paper, we introduce a liquid core antiresonant reflecting optical waveguide (ARROW) as a novel optofluidic device that can be used to create innovative and highly functional microsensors. Liquid core ARROWs, with their dual ability to guide the light and the fluids in the same microchannel, have shown great potential as an optofluidic tool for quantitative spectroscopic analysis. ARROWs feature a planar architecture and, hence, are particularly attractive for chip scale integrated system. Step by step, several improvements have been made in recent years towards the implementation of these waveguides in a complete on-chip system for highly-sensitive detection down to the single molecule level. We review applications of liquid ARROWs for fluids sensing and discuss recent results and trends in the developments and applications of liquid ARROW in biomedical and biochemical research. The results outlined show that the strong light matter interaction occurring in the optofluidic channel of an ARROW and the versatility offered by the fabrication methods makes these waveguides a very promising building block for optofluidic sensor development.
Collapse
Affiliation(s)
- Genni Testa
- Istituto per il Rilevamento Elettromagnetico dell'Ambiente, Consiglio Nazionale delle Ricerche (IREA-CNR), Via Diocleziano 328, 80124 Naples, Italy.
| | - Gianluca Persichetti
- Istituto per il Rilevamento Elettromagnetico dell'Ambiente, Consiglio Nazionale delle Ricerche (IREA-CNR), Via Diocleziano 328, 80124 Naples, Italy.
| | - Romeo Bernini
- Istituto per il Rilevamento Elettromagnetico dell'Ambiente, Consiglio Nazionale delle Ricerche (IREA-CNR), Via Diocleziano 328, 80124 Naples, Italy.
| |
Collapse
|
28
|
Kim J, Stockton AM, Jensen EC, Mathies RA. Pneumatically actuated microvalve circuits for programmable automation of chemical and biochemical analysis. LAB ON A CHIP 2016; 16:812-9. [PMID: 26864083 DOI: 10.1039/c5lc01397f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Programmable microfluidic platforms (PMPs) are enabling significant advances in the utility of microfluidics for chemical and biochemical analysis. Traditional microfluidic devices are analogous to application-specific devices--a new device is needed to implement each new chemical or biochemical assay. PMPs are analogous to digital electronic processors--all that is needed to implement a new assay is a change in the order of operations conducted by the device. In this review, we introduce PMPs based on normally-closed microvalves. We discuss recent applications of PMPs in diverse fields including genetic analysis, antibody-based biomarker analysis, and chemical analysis in planetary exploration. Prospects, challenges, and future concepts for this emerging technology will also be presented.
Collapse
Affiliation(s)
- Jungkyu Kim
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Amanda M Stockton
- Department of Chemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Richard A Mathies
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Han Y, Wu H, Liu F, Cheng G, Zhe J. A multiplexed immunoaggregation biomarker assay using a two-stage micro resistive pulse sensor. BIOMICROFLUIDICS 2016; 10:024109. [PMID: 27042251 PMCID: PMC4798986 DOI: 10.1063/1.4944456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/07/2016] [Indexed: 05/06/2023]
Abstract
We present an immunoaggregation assay chip for multiplexed biomarkers detection. This chip is based on immunoaggregation of antibody functionalized microparticles (Ab-MPs) to quantify concentrations of multiple biomarkers simultaneously. A mixture of multiple types of Ab-MPs probes with different sizes and magnetic properties, which were functionalized by different antibodies, was used for the multiplexed assay. The interactions between biomarkers and their specific Ab-MPs probes caused the immunoaggregation of Ab-MPs. A two-stage micro resistive pulse sensor was used to differentiate and count the Ab-MP aggregates triggered by different biomarkers via size and magnetic property for multiplexed detection. The volume fraction of each type of Ab-MP aggregates indicates the concentration of the corresponding target biomarker. In our study, we demonstrated multiplexed detection of two model biomarkers (human ferritin and mouse anti-rabbit IgG) in 10% fetal bovine serum, using anti-ferritin Ab and anti-mouse IgG Ab functionalized MPs. We found that the volume fraction of Ab-MP aggregates increased with the increased biomarker concentrations. The detection ranges from 5.2 ng/ml to 208 ng/ml and 3.1 ng/ml to 5.12 × 10(4 )ng/ml were achieved for human ferritin and mouse anti-rabbit IgG. This bioassay chip is able to quantitatively detect multiple biomarkers in a single test without fluorescence or enzymatic labeling process and hence is promising to serve as a useful tool for rapid detection of multiple biomarkers in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Y Han
- Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, USA
| | - H Wu
- Department of Chemical and Biomolecular Engineering, University of Akron , Akron, Ohio 44325, USA
| | - F Liu
- Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, USA
| | - G Cheng
- Department of Chemical and Biomolecular Engineering, University of Akron , Akron, Ohio 44325, USA
| | - J Zhe
- Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325, USA
| |
Collapse
|
30
|
Taitt CR, Anderson GP, Ligler FS. Evanescent wave fluorescence biosensors: Advances of the last decade. Biosens Bioelectron 2016; 76:103-12. [PMID: 26232145 PMCID: PMC5012222 DOI: 10.1016/j.bios.2015.07.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 12/12/2022]
Abstract
Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein.
Collapse
Affiliation(s)
- Chris Rowe Taitt
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - Frances S Ligler
- UNC-Chapel Hill and NC State University Department of Biomedical Engineering, 911 Oval Drive, Raleigh, NC 27695-7115, USA.
| |
Collapse
|
31
|
Perro A, Lebourdon G, Henry S, Lecomte S, Servant L, Marre S. Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes. REACT CHEM ENG 2016. [DOI: 10.1039/c6re00127k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review outlines the combination of infrared spectroscopy and continuous microfluidic processes.
Collapse
Affiliation(s)
- Adeline Perro
- Institut des Sciences Moléculaires
- Université de Bordeaux—CNRS
- 33405 Talence
- France
| | - Gwenaelle Lebourdon
- Institut des Sciences Moléculaires
- Université de Bordeaux—CNRS
- 33405 Talence
- France
| | - Sarah Henry
- Chimie et Biologie des Membranes et des Nanoobjets
- Université de Bordeaux —CNRS
- 33607 Pessac
- France
| | - Sophie Lecomte
- Chimie et Biologie des Membranes et des Nanoobjets
- Université de Bordeaux —CNRS
- 33607 Pessac
- France
| | - Laurent Servant
- Institut des Sciences Moléculaires
- Université de Bordeaux—CNRS
- 33405 Talence
- France
| | | |
Collapse
|
32
|
Ozcelik D, Parks JW, Wall TA, Stott MA, Cai H, Parks JW, Hawkins AR, Schmidt H. Optofluidic wavelength division multiplexing for single-virus detection. Proc Natl Acad Sci U S A 2015. [PMID: 26438840 DOI: 10.1073/pnas.l511921112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context--the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.
Collapse
Affiliation(s)
- Damla Ozcelik
- Department of Electrical Engineering, University of California, Santa Cruz, CA 95064
| | - Joshua W Parks
- Department of Electrical Engineering, University of California, Santa Cruz, CA 95064
| | - Thomas A Wall
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602
| | - Matthew A Stott
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602
| | - Hong Cai
- Department of Electrical Engineering, University of California, Santa Cruz, CA 95064
| | - Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Aaron R Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602
| | - Holger Schmidt
- Department of Electrical Engineering, University of California, Santa Cruz, CA 95064;
| |
Collapse
|
33
|
Abstract
Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context--the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.
Collapse
|
34
|
Cai H, Parks JW, Wall TA, Stott MA, Stambaugh A, Alfson K, Griffiths A, Mathies RA, Carrion R, Patterson JL, Hawkins AR, Schmidt H. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Sci Rep 2015. [PMID: 26404403 DOI: 10.1038/srepl4494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.
Collapse
Affiliation(s)
- H Cai
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| | - J W Parks
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| | - T A Wall
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602 USA
| | - M A Stott
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602 USA
| | - A Stambaugh
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| | - K Alfson
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227 USA
| | - A Griffiths
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227 USA
| | - R A Mathies
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
| | - R Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227 USA
| | - J L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227 USA
| | - A R Hawkins
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602 USA
| | - H Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| |
Collapse
|
35
|
Cai H, Parks JW, Wall TA, Stott MA, Stambaugh A, Alfson K, Griffiths A, Mathies RA, Carrion R, Patterson JL, Hawkins AR, Schmidt H. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Sci Rep 2015; 5:14494. [PMID: 26404403 PMCID: PMC4585921 DOI: 10.1038/srep14494] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.
Collapse
Affiliation(s)
- H Cai
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| | - J W Parks
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| | - T A Wall
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602 USA
| | - M A Stott
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602 USA
| | - A Stambaugh
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| | - K Alfson
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227 USA
| | - A Griffiths
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227 USA
| | - R A Mathies
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
| | - R Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227 USA
| | - J L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227 USA
| | - A R Hawkins
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602 USA
| | - H Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| |
Collapse
|
36
|
Parks JW, Olson MA, Kim J, Ozcelik D, Cai H, Carrion R, Patterson JL, Mathies RA, Hawkins AR, Schmidt H. Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications. BIOMICROFLUIDICS 2014; 8:054111. [PMID: 25584111 PMCID: PMC4290670 DOI: 10.1063/1.4897226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/24/2014] [Indexed: 05/05/2023]
Abstract
We describe the integration of an actively controlled programmable microfluidic sample processor with on-chip optical fluorescence detection to create a single, hybrid sensor system. An array of lifting gate microvalves (automaton) is fabricated with soft lithography, which is reconfigurably joined to a liquid-core, anti-resonant reflecting optical waveguide (ARROW) silicon chip fabricated with conventional microfabrication. In the automaton, various sample handling steps such as mixing, transporting, splitting, isolating, and storing are achieved rapidly and precisely to detect viral nucleic acid targets, while the optofluidic chip provides single particle detection sensitivity using integrated optics. Specifically, an assay for detection of viral nucleic acid targets is implemented. Labeled target nucleic acids are first captured and isolated on magnetic microbeads in the automaton, followed by optical detection of single beads on the ARROW chip. The combination of automated microfluidic sample preparation and highly sensitive optical detection opens possibilities for portable instruments for point-of-use analysis of minute, low concentration biological samples.
Collapse
Affiliation(s)
- J W Parks
- School of Engineering, University of California Santa Cruz , Santa Cruz, California 95064, USA
| | - M A Olson
- Department of Electrical and Computer Engineering, Brigham Young University , Provo, Utah 84602, USA
| | | | - D Ozcelik
- School of Engineering, University of California Santa Cruz , Santa Cruz, California 95064, USA
| | - H Cai
- School of Engineering, University of California Santa Cruz , Santa Cruz, California 95064, USA
| | - R Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute , 7620 NW Loop 410, San Antonio, Texas 78227, USA
| | - J L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute , 7620 NW Loop 410, San Antonio, Texas 78227, USA
| | - R A Mathies
- Department of Chemistry, University of California Berkeley , Berkeley, California 94720, USA
| | - A R Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University , Provo, Utah 84602, USA
| | - H Schmidt
- School of Engineering, University of California Santa Cruz , Santa Cruz, California 95064, USA
| |
Collapse
|