1
|
Nagy PR. State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem Sci 2024:d4sc04755a. [PMID: 39246365 PMCID: PMC11376132 DOI: 10.1039/d4sc04755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
In this feature, we review the current capabilities of local electron correlation methods up to the coupled cluster model with single, double, and perturbative triple excitations [CCSD(T)], which is a gold standard in quantum chemistry. The main computational aspects of the local method types are assessed from the perspective of applications, but the focus is kept on how to achieve chemical accuracy (i.e., <1 kcal mol-1 uncertainty), as well as on the broad scope of chemical problems made accessible. The performance of state-of-the-art methods is also compared, including the most employed DLPNO and, in particular, our local natural orbital (LNO) CCSD(T) approach. The high accuracy and efficiency of the LNO method makes chemically accurate CCSD(T) computations accessible for molecules of hundreds of atoms with resources affordable to a broad computational community (days on a single CPU and 10-100 GB of memory). Recent developments in LNO-CCSD(T) enable systematic convergence and robust error estimates even for systems of complicated electronic structure or larger size (up to 1000 atoms). The predictive power of current local CCSD(T) methods, usually at about 1-2 order of magnitude higher cost than hybrid density functional theory (DFT), has become outstanding on the palette of computational chemistry applicable for molecules of practical interest. We also review more than 50 LNO-based and other advanced local-CCSD(T) applications for realistic, large systems across molecular interactions as well as main group, transition metal, bio-, and surface chemistry. The examples show that properly executed local-CCSD(T) can contribute to binding, reaction equilibrium, rate constants, etc. which are able to match measurements within the error estimates. These applications demonstrate that modern, open-access, and broadly affordable local methods, such as LNO-CCSD(T), already enable predictive computations and atomistic insight for complicated, real-life molecular processes in realistic environments.
Collapse
Affiliation(s)
- Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics Műegyetem rkp. 3. H-1111 Budapest Hungary
- HUN-REN-BME Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
- MTA-BME Lendület Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
| |
Collapse
|
2
|
Petrov K, Csóka J, Kállay M. Analytic Gradients for Density Fitting MP2 Using Natural Auxiliary Functions. J Phys Chem A 2024; 128:6566-6580. [PMID: 39074307 PMCID: PMC11317987 DOI: 10.1021/acs.jpca.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The natural auxiliary function (NAF) approach is an approximation to decrease the size of the auxiliary basis set required for quantum chemical calculations utilizing the density fitting technique. It has been proven efficient to speed up various correlation models, such as second-order Møller-Plesset (MP2) theory and coupled-cluster methods. Here, for the first time, we discuss the theory of analytic derivatives for correlation methods employing the NAF approximation on the example of MP2. A detailed algorithm for the gradient calculation with the NAF approximation is proposed in the framework of the method of Lagrange multipliers. To assess the effect of the NAF approximation on gradients and optimized geometric parameters, a series of benchmark calculations on small and medium-sized systems was performed. Our results demonstrate that, for MP2, sufficiently accurate gradients and geometries can be achieved with a moderate time reduction of 15-20% for both small and medium-sized molecules.
Collapse
Affiliation(s)
- Klára Petrov
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN−BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA−BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - József Csóka
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN−BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA−BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN−BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA−BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
3
|
Manna A, Jangid B, Pant R, Dutta AK. Efficient State-Specific Natural Orbital Based Equation of Motion Coupled Cluster Method for Core-Ionization Energies: Theory, Implementation, and Benchmark. J Chem Theory Comput 2024. [PMID: 39073757 DOI: 10.1021/acs.jctc.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We have implemented a reduced-cost partial triples correction scheme to the equation of motion coupled cluster method for core-ionization energy based on state-specific natural orbitals. The second-order Algebraic Diagrammatic Construction (ADC) method is used to generate the state-specific natural orbital, which provides quicker convergence of the core-IP value with respect to the size of the virtual space than that observed in standard MP2-based natural orbitals. The error due to truncation of the virtual orbital can be reduced by using a perturbative correction. The accuracy of the method can be controlled by a single threshold, and there is a black box to use. The inclusion of the partial triples correction in the natural orbital based EOM-CCSD method greatly improves the agreement of the results with the experiment. The efficiency of the present implementation is demonstrated by calculating the core-ionization energy of a molecule containing 60 atoms and more than 2000 basis functions.
Collapse
Affiliation(s)
- Amrita Manna
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bhavnesh Jangid
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rakesh Pant
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Li C, Mao S, Huang R, Evangelista FA. Frozen Natural Orbitals for the State-Averaged Driven Similarity Renormalization Group. J Chem Theory Comput 2024; 20:4170-4181. [PMID: 38747709 DOI: 10.1021/acs.jctc.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We present a reduced-cost implementation of the state-averaged driven similarity renormalization group (SA-DSRG) based on the frozen natural orbital (FNO) approach. The natural orbitals (NOs) are obtained by diagonalizing the one-body reduced density matrix from SA-DSRG second-order perturbation theory (SA-DSRG-PT2). We consider three criteria to truncate the virtual NOs for the subsequent electron correlation treatment beyond SA-DSRG-PT2. An additive second-order correction is applied to the SA-DSRG Hamiltonian to reintroduce correlation effects from the discarded orbitals. The FNO SA-DSRG method is benchmarked on 35 small organic molecules in the QUEST database. When keeping 98-99% of the cumulative occupation numbers, the mean absolute error in the vertical transition energies due to FNO is less than 0.01 eV. Using the same FNO threshold, we observe a speedup of 9 times compared to the conventional SA-DSRG implementation for nickel carbonyl with a quadruple-ζ basis set. The FNO approach enables nonperturbative SA-DSRG computations on chloroiron corrole [FeCl(C19H11N4)] with more than 1000 basis functions, surpassing the current limit of a conventional implementation.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuxian Mao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Renke Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Tölle J, Niemeyer N, Neugebauer J. Accelerating Analytic-Continuation GW Calculations with a Laplace Transform and Natural Auxiliary Functions. J Chem Theory Comput 2024; 20:2022-2032. [PMID: 38469629 DOI: 10.1021/acs.jctc.3c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
We present a simple and accurate GW implementation based on a combination of a Laplace transform (LT) and other acceleration techniques used in post-self-consistent field quantum chemistry, namely, natural auxiliary functions and the frozen-core approximation. The LT-GW approach combines three major benefits: (a) a small prefactor for computational scaling, (b) easy integration into existing molecular GW implementations, and (c) significant performance improvements for a wide range of possible applications. Illustrating these advantages for systems consisting of up to 352 atoms and 7412 basis functions, we further demonstrate the benefits of this approach combined with an efficient implementation of the Bethe-Salpeter equation.
Collapse
Affiliation(s)
- Johannes Tölle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Niklas Niemeyer
- University of Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, Münster 48149, Germany
| | - Johannes Neugebauer
- University of Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, Münster 48149, Germany
| |
Collapse
|
6
|
Szabó PB, Csóka J, Kállay M, Nagy PR. Linear-Scaling Local Natural Orbital CCSD(T) Approach for Open-Shell Systems: Algorithms, Benchmarks, and Large-Scale Applications. J Chem Theory Comput 2023; 19:8166-8188. [PMID: 37921429 PMCID: PMC10687875 DOI: 10.1021/acs.jctc.3c00881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The extension of the highly optimized local natural orbital (LNO) coupled cluster (CC) with single-, double-, and perturbative triple excitations [LNO-CCSD(T)] method is presented for high-spin open-shell molecules based on restricted open-shell references. The techniques enabling the outstanding efficiency of the closed-shell LNO-CCSD(T) variant are adopted, including the iteration- and redundancy-free second-order Møller-Plesset and (T) formulations as well as the integral-direct, memory- and disk use-economic, and OpenMP-parallel algorithms. For large molecules, the efficiency of our open-shell LNO-CCSD(T) method approaches that of its closed-shell parent method due to the application of restricted orbital sets for demanding integral transformations and a novel approximation for higher-order long-range spin-polarization effects. The accuracy of open-shell LNO-CCSD(T) is extensively tested for radicals and reactions thereof, ionization processes, as well as spin-state splittings, and transition-metal compounds. At the size range where the canonical CCSD(T) reference is accessible (up to 20-30 atoms), the average open-shell LNO-CCSD(T) correlation energies are found to be 99.9 to 99.95% accurate, which translates into average absolute deviations of a few tenths of kcal/mol in the investigated energy differences already with the default settings. For more extensive molecules, the local errors may grow, but they can be estimated and decreased via affordable systematic convergence studies. This enables the accurate modeling of large systems with complex electronic structures, as illustrated on open-shell organic radicals and transition-metal complexes of up to 179 atoms as well as on challenging biochemical systems, including up to 601 atoms and 11,000 basis functions. While the protein models involve difficulties for local approximations, such as the spin states of a bounded iron ion or an extremely delocalized singly occupied orbital, the corresponding single-node LNO-CCSD(T) computations were feasible in a matter of days with 10s to 100 GB of memory use. Therefore, the new LNO-CCSD(T) implementation enables highly accurate computations for open-shell systems of unprecedented size and complexity with widely accessible hardware.
Collapse
Affiliation(s)
- P. Bernát Szabó
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - József Csóka
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter R. Nagy
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
7
|
Lehtola S. Automatic Generation of Accurate and Cost-Efficient Auxiliary Basis Sets. J Chem Theory Comput 2023; 19:6242-6254. [PMID: 37661914 PMCID: PMC10536969 DOI: 10.1021/acs.jctc.3c00670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 09/05/2023]
Abstract
We have recently discussed an algorithm to automatically generate auxiliary basis sets (ABSs) of the standard form for density fitting (DF) or resolution-of-the-identity (RI) calculations in a given atomic orbital basis set (OBS) of any form, such as Gaussian-type orbitals, Slater-type orbitals, or numerical atomic orbitals [J. Chem. Theory Comput. 2021, 17, 6886]. In this work, we study two ways to reduce the cost of such automatically generated ABSs without sacrificing their accuracy. We contract the ABS with a singular value decomposition proposed by Kállay [J. Chem. Phys. 2014, 141, 244113], used here in a somewhat different setting. We also drop the high-angular momentum functions from the ABS, as they are unnecessary for global fitting methods. Studying the effect of these two types of truncations on Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory (MP2) calculations on a chemically diverse set of first- and second-row molecules within the RI/DF approach, we show that accurate total and atomization energies can be achieved by a combination of the two approaches with significant reductions in the size of the ABS. While the original approach yields ABSs whose number of functions NbfABS scales with the number of functions in the OBS, NOBSbf, as NABSbf = γNOBSbf with the prefactor γ ≈ O ( 10 ) , the reduction schemes of this work afford results of essentially the same quality as the original unpruned and uncontracted ABS with γ ≈ 5-6, while an accuracy that may suffice for routine applications is achievable with a further reduced ABS with γ ≈ 3-4. The observed errors are similar at HF and MP2 levels of theory, suggesting that the generated ABSs are highly transferable and can also be applied to model challenging properties with high-level methods.
Collapse
Affiliation(s)
- Susi Lehtola
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
8
|
Mukhopadhyay T, Jangid B, Dutta AK. State-specific frozen natural orbital for reduced-cost algebraic diagrammatic construction calculations: The application to ionization problem. J Chem Phys 2023; 159:084113. [PMID: 37638624 DOI: 10.1063/5.0160024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
We have developed a reduced-cost algebraic diagrammatic construction (ADC) method based on state-specific frozen natural orbital and natural auxiliary functions. The newly developed method has been benchmarked on the GW100 test set for the ionization problem. The use of state-specific natural orbitals drastically reduces the size of the virtual space with a systematically controllable accuracy and offers a significant speedup over the standard ionization potential (IP)-ADC(3) method. The accuracy of the method can be controlled by two thresholds and nearly a black box to use. The inclusion of the perturbative correction significantly improves the accuracy of the calculated IP values, and the efficiency of the method has been demonstrated by calculating the IP of a molecule with 60 atoms and more than 2216 basis functions.
Collapse
Affiliation(s)
- Tamoghna Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bhavnesh Jangid
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Spadetto E, Philipsen PHT, Förster A, Visscher L. Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy. J Chem Theory Comput 2023; 19:1499-1516. [PMID: 36787494 PMCID: PMC10018742 DOI: 10.1021/acs.jctc.2c01201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 02/16/2023]
Abstract
Pair atomic density fitting (PADF) has been identified as a promising strategy to reduce the scaling with system size of quantum chemical methods for the calculation of the correlation energy like the direct random-phase approximation (RPA) or second-order Møller-Plesset perturbation theory (MP2). PADF can however introduce large errors in correlation energies as the two-electron interaction energy is not guaranteed to be bounded from below. This issue can be partially alleviated by using very large fit sets, but this comes at the price of reduced efficiency and having to deal with near-linear dependencies in the fit set. One posibility is to use global density fitting (DF), but in this work, we introduce an alternative methodology to overcome this problem that preserves the intrinsically favorable scaling of PADF. We first regularize the Fock matrix by projecting out parts of the basis set which gives rise to orbital products that are hard to describe by PADF. After having thus obtained a reliable self-consistent field solution, we then also apply this projector to the orbital coefficient matrix to improve the precision of PADF-MP2 and PADF-RPA. We systematically assess the accuracy of this new approach in a numerical atomic orbital framework using Slater type orbitals (STO) and correlation consistent Gaussian type basis sets up to quintuple-ζ quality for systems with more than 200 atoms. For the small and medium systems in the S66 database we show the maximum deviation of PADF-MP2 and PADF-RPA relative correlation energies to DF-MP2 and DF-RPA reference results to be 0.07 and 0.14 kcal/mol, respectively. When the new projector method is used, the errors only slightly increase for large molecules and also when moderately sized fit sets are used the resulting errors are well under control. Finally, we demonstrate the computational efficiency of our algorithm by calculating the interaction energies of large, non-covalently bound complexes with more than 1000 atoms and 20000 atomic orbitals at the RPA@PBE/CC-pVTZ level of theory.
Collapse
Affiliation(s)
- Edoardo Spadetto
- Software
for Chemistry and Materials NV, NL-1081HV Amsterdam, The Netherlands
| | | | - Arno Förster
- Software
for Chemistry and Materials NV, NL-1081HV Amsterdam, The Netherlands
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Kállay M, Horváth RA, Gyevi-Nagy L, Nagy PR. Basis Set Limit CCSD(T) Energies for Extended Molecules via a Reduced-Cost Explicitly Correlated Approach. J Chem Theory Comput 2022; 19:174-189. [PMID: 36576419 PMCID: PMC9835832 DOI: 10.1021/acs.jctc.2c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several approximations are introduced and tested to reduce the computational expenses of the explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method for both closed and open-shell species. First, the well-established frozen natural orbital (FNO) technique is adapted to explicitly correlated CC approaches. Second, our natural auxiliary function (NAF) scheme is employed to reduce the size of the auxiliary basis required for the density fitting approximation regularly used in explicitly correlated calculations. Third, a new approach, termed the natural auxiliary basis (NAB) approximation, is proposed to decrease the size of the auxiliary basis needed for the expansion of the explicitly correlated geminals. The performance of the above approximations and that of the combined FNO-NAF-NAB approach are tested for atomization and reaction energies. Our results show that overall speedups of 7-, 5-, and 3-times can be achieved with double-, triple-, and quadruple-ζ basis sets, respectively, without any loss in accuracy. The new method can provide, e.g., reaction energies and barrier heights well within chemical accuracy for molecules with more than 40 atoms within a few days using a few dozen processor cores, and calculations with 50+ atoms are still feasible. These routinely affordable computations considerably extend the reach of explicitly correlated CCSD(T).
Collapse
Affiliation(s)
- Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,
| | - Réka A. Horváth
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - László Gyevi-Nagy
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Péter R. Nagy
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
11
|
Niemeyer N, Eschenbach P, Bensberg M, Tölle J, Hellmann L, Lampe L, Massolle A, Rikus A, Schnieders D, Unsleber JP, Neugebauer J. The subsystem quantum chemistry program
Serenity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niklas Niemeyer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Patrick Eschenbach
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Moritz Bensberg
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Johannes Tölle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lars Hellmann
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lukas Lampe
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anja Massolle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anton Rikus
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - David Schnieders
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Jan P. Unsleber
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| |
Collapse
|
12
|
Hégely B, Szirmai Á, Mester D, Tajti A, Szalay PG, Kállay M. Performance of Multilevel Methods for Excited States. J Phys Chem A 2022; 126:6548-6557. [PMID: 36095318 PMCID: PMC9511572 DOI: 10.1021/acs.jpca.2c05013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Indexed: 11/29/2022]
Abstract
The performance of multilevel quantum chemical approaches, which utilize an atom-based system partitioning scheme to model various electronic excited states, is studied. The considered techniques include the mechanical-embedding (ME) of "our own N-layered integrated molecular orbital and molecular mechanics" (ONIOM) method, the point charge embedding (PCE), the electronic-embedding (EE) of ONIOM, the frozen density-embedding (FDE), the projector-based embedding (PbE), and our local domain-based correlation method. For the investigated multilevel approaches, the second-order algebraic-diagrammatic construction [ADC(2)] approach was utilized as the high-level method, which was embedded in either Hartree-Fock or a density functional environment. The XH-27 test set of Zech et al. [ J. Chem. Theory Comput., 2018, 14, 4028] was used for the assessment, where organic dyes interact with several solvent molecules. With the selection of the chromophores as active subsystems, we conclude that the most reliable approach is local domain-based ADC(2) [L-ADC(2)], and the least robust schemes are ONIOM-ME and ONIOM-EE. The PbE, FDE, and PCE techniques often approach the accuracy of the L-ADC(2) scheme, but their precision is far behind. The results suggest that a more conservative subsystem selection algorithm or the inclusion of subsystem charge-transfers is required for the atom-based cost-efficient methods to produce high-accuracy excitation energies.
Collapse
Affiliation(s)
- Bence Hégely
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Ádám
B. Szirmai
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Dávid Mester
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Attila Tajti
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Péter G. Szalay
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
13
|
Hellmann L, Tölle J, Niemeyer N, Neugebauer J. Automated Generation of Optimized Auxiliary Basis Sets for Long-Range-Corrected TDDFT Using the Cholesky Decomposition. J Chem Theory Comput 2022; 18:2959-2974. [PMID: 35446029 DOI: 10.1021/acs.jctc.2c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Range-separated hybrid functionals making use of a smooth separation of the Coulomb operator in terms of the error function and its complement have proven to be a valuable tool for improving Kohn-Sham density functional theory (DFT) calculations. This holds in particular for obtaining accurate excitation energies from linear-response time-dependent DFT. Evaluating the long-range exchange contributions represents one of the most time-consuming tasks in such calculations. Prefitted auxiliary basis sets can be employed to speed up this step. Here, we present a way to generate auxiliary basis sets optimized to fit the long-range exchange contributions only, contrary to the common optimization strategies on the basis of the full Coulomb operator. For this purpose, we use the atomic Cholesky decomposition technique. The basis sets are generated on-the-fly using the specific range-separation parameter defined in the exchange-correlation functional. We obtain excitation energies and oscillator strengths which are of similar or better accuracy than those obtained with conventional resolution-of-the-identity auxiliary basis sets while drastically reducing the number of auxiliary functions required. This is demonstrated for the QUESTDB#5 benchmark set. In addition, we outline the benefits of this approach in sequences of calculations employing varying range-separation parameters, as is the case in the optimally tuned range-separation strategy. Finally, we illustrate the efficiency of this approach for real-world examples, namely, a chlorophyll tetramer from photosystem II and a carotenoid-porphyrin-C60 triad.
Collapse
Affiliation(s)
- Lars Hellmann
- Theoretische Organische Chemie, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Niklas Niemeyer
- Theoretische Organische Chemie, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
14
|
Niemeyer N, Caricato M, Neugebauer J. Origin invariant electronic circular dichroism in the length dipole gauge without London atomic orbitals. J Chem Phys 2022; 156:154114. [PMID: 35459317 DOI: 10.1063/5.0088922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a method for obtaining origin-independent electronic circular dichroism (ECD) in the length-gauge representation LG(OI) without the usage of London atomic orbitals. This approach builds upon the work by Caricato [J. Chem. Phys. 153, 151101 (2020)] and is applied to rotatory strengths and ECD spectra from damped response theory. Numerical results are presented for time-dependent Hartree-Fock and density-functional theory, the second-order algebraic diagrammatic construction method, and linear-response coupled-cluster theory with singles and approximate doubles. We can support the finding that the common choice of placing the gauge origin in the center of mass of a molecule in conventional length-gauge calculations involving chiroptical properties might not be optimal and show that LG(OI) is a valuable alternative for the origin-independent calculation of ECD spectra. We show that, for a limited test set, the convergence of the rotatory strengths calculated with the LG(OI) approach toward the basis-set limit tends to be faster than for the established velocity gauge representation. Relationships between the sum-over-states expression of the optical rotation in the LG(OI) framework and its representation in terms of response functions are analyzed.
Collapse
Affiliation(s)
- Niklas Niemeyer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Marco Caricato
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
15
|
Nagy PR, Gyevi-Nagy L, Kállay M. Basis set truncation corrections for improved frozen natural orbital CCSD(T) energies. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1963495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Péter R. Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Gyevi-Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
16
|
Yu JM, Nguyen BD, Tsai J, Hernandez DJ, Furche F. Selfconsistent random phase approximation methods. J Chem Phys 2021; 155:040902. [PMID: 34340391 DOI: 10.1063/5.0056565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This Perspective reviews recent efforts toward selfconsistent calculations of ground-state energies within the random phase approximation (RPA) in the (generalized) Kohn-Sham (KS) density functional theory context. Since the RPA correlation energy explicitly depends on the non-interacting KS potential, an additional condition to determine the energy as a functional of the density is necessary. This observation leads to the concept of functional selfconsistency (FSC), which requires that the KS density equals the interacting density defined as the functional derivative of the ground-state energy with respect to the external potential. While all existing selfconsistent RPA schemes violate FSC, the recent generalized KS semicanonical projected RPA (GKS-spRPA) method takes a step toward satisfying it. This leads to systematic improvements in densities, binding energy curves, reference state stability, and molecular properties compared to non-selfconsistent RPA as well as optimized effective potential RPA. GKS-spRPA orbital energies accurately approximate valence and core ionization potentials, and even electron affinities of non-valence bound anions. The computational cost and performance of GKS-spRPA are compared to those of related selfconsistent schemes, including GW and orbital optimization methods, and limitations are discussed. Large differences between KS and interacting densities observed in the absence of FSC and the well-rounded performance of GKS-spRPA suggest that the KS potential as a density functional should be defined via the FSC condition for explicitly potential-dependent density functionals.
Collapse
Affiliation(s)
- Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Jeffrey Tsai
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Devin J Hernandez
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
17
|
Szabó PB, Csóka J, Kállay M, Nagy PR. Linear-Scaling Open-Shell MP2 Approach: Algorithm, Benchmarks, and Large-Scale Applications. J Chem Theory Comput 2021; 17:2886-2905. [PMID: 33819030 PMCID: PMC8154337 DOI: 10.1021/acs.jctc.1c00093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A linear-scaling
local second-order Møller–Plesset
(MP2) method is presented for high-spin open-shell molecules based
on restricted open-shell (RO) reference functions. The open-shell
local MP2 (LMP2) approach inherits the iteration- and redundancy-free
formulation and the completely integral-direct, OpenMP-parallel, and
memory and disk use economic algorithms of our closed-shell LMP2 implementation.
By utilizing restricted local molecular orbitals for the demanding
integral transformation step and by introducing a novel long-range
spin-polarization approximation, the computational cost of RO-LMP2
approaches that of closed-shell LMP2. Extensive benchmarks were performed
for reactions of radicals, ionization potentials, as well as spin-state
splittings of carbenes and transition-metal complexes. Compared to
the conventional MP2 reference for systems of up to 175 atoms, local
errors of at most 0.1 kcal/mol were found, which are well below the
intrinsic accuracy of MP2. RO-LMP2 computations are presented for
challenging protein models of up to 601 atoms and 11 000 basis
functions, which involve either spin states of a complexed iron ion
or a highly delocalized singly occupied orbital. The corresponding
runtimes of 9–15 h obtained with a single, many-core CPU demonstrate
that MP2, as well as spin-scaled MP2 and double-hybrid density functional
methods, become widely accessible for open-shell systems of unprecedented
size and complexity.
Collapse
Affiliation(s)
- P Bernát Szabó
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - József Csóka
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter R Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
18
|
Gyevi-Nagy L, Kállay M, Nagy PR. Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. J Chem Theory Comput 2021; 17:860-878. [PMID: 33400527 PMCID: PMC7884001 DOI: 10.1021/acs.jctc.0c01077] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/28/2022]
Abstract
The accurate and systematically improvable frozen natural orbital (FNO) and natural auxiliary function (NAF) cost-reducing approaches are combined with our recent coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] implementations. Both of the closed- and open-shell FNO-CCSD(T) codes benefit from OpenMP parallelism, completely or partially integral-direct density-fitting algorithms, checkpointing, and hand-optimized, memory- and operation count effective implementations exploiting all permutational symmetries. The closed-shell CCSD(T) code requires negligible disk I/O and network bandwidth, is MPI/OpenMP parallel, and exhibits outstanding peak performance utilization of 50-70% up to hundreds of cores. Conservative FNO and NAF truncation thresholds benchmarked for challenging reaction, atomization, and ionization energies of both closed- and open-shell species are shown to maintain 1 kJ/mol accuracy against canonical CCSD(T) for systems of 31-43 atoms even with large basis sets. The cost reduction of up to an order of magnitude achieved extends the reach of FNO-CCSD(T) to systems of 50-75 atoms (up to 2124 atomic orbitals) with triple- and quadruple-ζ basis sets, which is unprecedented without local approximations. Consequently, a considerably larger portion of the chemical compound space can now be covered by the practically "gold standard" quality FNO-CCSD(T) method using affordable resources and about a week of wall time. Large-scale applications are presented for organocatalytic and transition-metal reactions as well as noncovalent interactions. Possible applications for benchmarking local CCSD(T) methods, as well as for the accuracy assessment or parametrization of less complete models, for example, density functional approximations or machine learning potentials, are also outlined.
Collapse
Affiliation(s)
- László Gyevi-Nagy
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter R. Nagy
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
19
|
Yu F, Wang Y. Dual‐hybrid direct random phase approximation and second‐order screened exchange with nonlocal van der Waals correlations for noncovalent interactions. J Comput Chem 2020; 41:1018-1025. [DOI: 10.1002/jcc.26149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Feng Yu
- Department of Physics, School of ScienceXi'an Technological University Xi'an Shaanxi China
| | - Yaoting Wang
- Department of Physics, School of ScienceXi'an Technological University Xi'an Shaanxi China
| |
Collapse
|
20
|
Kállay M, Nagy PR, Mester D, Rolik Z, Samu G, Csontos J, Csóka J, Szabó PB, Gyevi-Nagy L, Hégely B, Ladjánszki I, Szegedy L, Ladóczki B, Petrov K, Farkas M, Mezei PD, Ganyecz Á. The MRCC program system: Accurate quantum chemistry from water to proteins. J Chem Phys 2020; 152:074107. [DOI: 10.1063/1.5142048] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter R. Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Dávid Mester
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Zoltán Rolik
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Gyula Samu
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - József Csontos
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - József Csóka
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - P. Bernát Szabó
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - László Gyevi-Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Bence Hégely
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - István Ladjánszki
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Lóránt Szegedy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Bence Ladóczki
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Klára Petrov
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Máté Farkas
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Pál D. Mezei
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Ádám Ganyecz
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
21
|
Mezei PD, Kállay M. Construction of a Range-Separated Dual-Hybrid Direct Random Phase Approximation. J Chem Theory Comput 2019; 15:6678-6687. [PMID: 31693355 DOI: 10.1021/acs.jctc.9b00891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new range-separated direct random phase approximation (dRPA75rs), which considerably improves on the accuracy of the calculated reaction energies and barrier heights compared to the parent approaches and provides a good description of noncovalent interactions without any dispersion correction. We also combine the new scheme with spin-component scaling (SCS-dRPA75rs), which enables the accurate calculation of energy differences for processes involving electron pair breaking, such as atomization. The new method scaling as the fourth power of the system size shows a balanced performance on a broad test set involving radicals, transition metal atoms, and heavy atoms, which makes it competitive with the best double-hybrid functionals based on the second-order perturbation theory. According to the results for the homogeneous electron gas, our dRPA75rs method expectedly gives errors for metallic systems similar to the dRPA approach with an additional error cancellation in the case of partial spin polarization.
Collapse
Affiliation(s)
- Pál D Mezei
- Department of Chemistry , University of Basel , Basel 4056 , Switzerland
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science , Budapest University of Technology and Economics , P.O. Box 91, H-1521 Budapest , Hungary
| |
Collapse
|
22
|
Mester D, Nagy PR, Kállay M. Reduced-Scaling Correlation Methods for the Excited States of Large Molecules: Implementation and Benchmarks for the Second-Order Algebraic-Diagrammatic Construction Approach. J Chem Theory Comput 2019; 15:6111-6126. [DOI: 10.1021/acs.jctc.9b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dávid Mester
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary
| | - Péter R. Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary
| |
Collapse
|
23
|
Izsák R. Single‐reference coupled cluster methods for computing excitation energies in large molecules: The efficiency and accuracy of approximations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Róbert Izsák
- Max‐Planck‐Institut für Kohlenforschung Mülheim an der Ruhr Germany
| |
Collapse
|
24
|
Nagy PR, Kállay M. Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods. J Chem Theory Comput 2019; 15:5275-5298. [DOI: 10.1021/acs.jctc.9b00511] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Péter R. Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
25
|
Mester D, Kállay M. Combined Density Functional and Algebraic-Diagrammatic Construction Approach for Accurate Excitation Energies and Transition Moments. J Chem Theory Comput 2019; 15:4440-4453. [PMID: 31265275 DOI: 10.1021/acs.jctc.9b00391] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A composite of time-dependent density functional theory (TDDFT) and the second-order algebraic-diagrammatic construction [ADC(2)] approach is presented for efficient calculation of spectral properties of molecules. Our method can be regarded as a new excited-state double-hybrid (DH) approach or a dressed TDDFT scheme, but it can also be interpreted as an empirically tuned ADC(2) model. Several combinations of exchange-correlation functionals and spin-scaling schemes are explored. Our best-performing method includes the Perdew, Burke, and Ernzerhof exchange and Perdew's 1986 correlation functional and employs the scaled-opposite-spin approximation for the higher-order terms. The computation time of the new method scales as the fourth power of the system size, and an efficient cost-reduction approach is also presented, which further speeds up the calculations. Our benchmark calculations show that the proposed model outperforms not only the existing DH approaches and ADC(2) variants but also the considerably more expensive coupled-cluster methods.
Collapse
Affiliation(s)
- Dávid Mester
- Department of Physical Chemistry and Materials Science , Budapest University of Technology and Economics , P.O. Box 91, H-1521 Budapest , Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science , Budapest University of Technology and Economics , P.O. Box 91, H-1521 Budapest , Hungary
| |
Collapse
|
26
|
Parrish RM, Zhao Y, Hohenstein EG, Martínez TJ. Rank reduced coupled cluster theory. I. Ground state energies and wavefunctions. J Chem Phys 2019; 150:164118. [DOI: 10.1063/1.5092505] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert M. Parrish
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Yao Zhao
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Edward G. Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Todd J. Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
27
|
Pham BQ, Gordon MS. Compressing the Four-Index Two-Electron Repulsion Integral Matrix using the Resolution-of-the-Identity Approximation Combined with the Rank Factorization Approximation. J Chem Theory Comput 2019; 15:2254-2264. [DOI: 10.1021/acs.jctc.8b01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Buu Q. Pham
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Mark S. Gordon
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
28
|
Nagy PR, Samu G, Kállay M. Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications. J Chem Theory Comput 2018; 14:4193-4215. [DOI: 10.1021/acs.jctc.8b00442] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Péter R. Nagy
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Gyula Samu
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
29
|
Mester D, Nagy PR, Kállay M. Reduced-cost second-order algebraic-diagrammatic construction method for excitation energies and transition moments. J Chem Phys 2018. [DOI: 10.1063/1.5021832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Dávid Mester
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter R. Nagy
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
30
|
Schurkus HF, Luenser A, Ochsenfeld C. Communication: Almost error-free resolution-of-the-identity correlation methods by null space removal of the particle-hole interactions. J Chem Phys 2017; 146:211106. [PMID: 28595410 PMCID: PMC5462614 DOI: 10.1063/1.4985085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 11/14/2022] Open
Abstract
We present a method to improve upon the resolution-of-the-identity (RI) for correlation methods. While RI is known to allow for drastic speedups, it relies on a cancellation of errors. Our method eliminates the errors introduced by RI which are known to be problematic for absolute energies. In this way, independence of the error compensation assumption for relative energies is also achieved. The proposed method is based on the idea of starting with an oversized RI basis and projecting out all of its unphysical parts. The approach can be easily implemented into existing RI codes and results in an overhead of about 30%, while effectively removing the RI error. In passing, this process alleviates the problem that for many frequently employed basis sets no optimized RI basis sets have been constructed. In this paper, the theory is presented and results are discussed exemplarily for the random phase approximation and Møller-Plesset perturbation theory.
Collapse
Affiliation(s)
- Henry F Schurkus
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| | - Arne Luenser
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| |
Collapse
|
31
|
Baudin P, Kristensen K. Correlated natural transition orbital framework for low-scaling excitation energy calculations (CorNFLEx). J Chem Phys 2017; 146:214114. [PMID: 28595400 PMCID: PMC5462619 DOI: 10.1063/1.4984820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/18/2017] [Indexed: 11/15/2022] Open
Abstract
We present a new framework for calculating coupled cluster (CC) excitation energies at a reduced computational cost. It relies on correlated natural transition orbitals (NTOs), denoted CIS(D')-NTOs, which are obtained by diagonalizing generalized hole and particle density matrices determined from configuration interaction singles (CIS) information and additional terms that represent correlation effects. A transition-specific reduced orbital space is determined based on the eigenvalues of the CIS(D')-NTOs, and a standard CC excitation energy calculation is then performed in that reduced orbital space. The new method is denoted CorNFLEx (Correlated Natural transition orbital Framework for Low-scaling Excitation energy calculations). We calculate second-order approximate CC singles and doubles (CC2) excitation energies for a test set of organic molecules and demonstrate that CorNFLEx yields excitation energies of CC2 quality at a significantly reduced computational cost, even for relatively small systems and delocalized electronic transitions. In order to illustrate the potential of the method for large molecules, we also apply CorNFLEx to calculate CC2 excitation energies for a series of solvated formamide clusters (up to 4836 basis functions).
Collapse
Affiliation(s)
- Pablo Baudin
- Department of Chemistry, qLEAP Center for Theoretical Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kasper Kristensen
- Department of Chemistry, qLEAP Center for Theoretical Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
32
|
Nagy PR, Kállay M. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. J Chem Phys 2017; 146:214106. [PMID: 28576082 PMCID: PMC5453808 DOI: 10.1063/1.4984322] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/05/2017] [Indexed: 01/30/2023] Open
Abstract
An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.
Collapse
Affiliation(s)
- Péter R Nagy
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
33
|
Mester D, Nagy PR, Kállay M. Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions. J Chem Phys 2017; 146:194102. [PMID: 28527453 DOI: 10.1063/1.4983277] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has been developed for the evaluation of excitation energies. The method is based on the simultaneous truncation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation. For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for each excited state using the average of the second-order Møller-Plesset (MP2) and the corresponding configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a triple-zeta basis set, about 60% of the virtual MOs can be dropped, while the size of the fitting basis can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of the solution of the CC2 equations, which are in our approach about as expensive as the evaluation of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate that the new approach enables the efficient computation of CC2 excitation energies for excited states of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis sets.
Collapse
Affiliation(s)
- Dávid Mester
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter R Nagy
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
34
|
Kjærgaard T. The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J Chem Phys 2017; 146:044103. [PMID: 28147513 DOI: 10.1063/1.4973710] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-RI-MP2) theory method introduced in Baudin et al. [J. Chem. Phys. 144, 054102 (2016)] is significantly improved by introducing the Laplace transform of the orbital energy denominator in order to construct the double amplitudes directly in the local basis. Furthermore, this paper introduces the auxiliary reduction procedure, which reduces the set of the auxiliary functions employed in the individual fragments. The resulting Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation method is applied to the insulin molecule where we obtain a factor 9.5 speedup compared to the DEC-RI-MP2 method.
Collapse
Affiliation(s)
- Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
35
|
Schmitz G, Madsen NK, Christiansen O. Atomic-batched tensor decomposed two-electron repulsion integrals. J Chem Phys 2017; 146:134112. [DOI: 10.1063/1.4979571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| | | | - Ove Christiansen
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| |
Collapse
|
36
|
Mezei PD, Csonka GI, Ruzsinszky A, Kállay M. Construction of a Spin-Component Scaled Dual-Hybrid Random Phase Approximation. J Chem Theory Comput 2017; 13:796-803. [DOI: 10.1021/acs.jctc.6b01140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pál D. Mezei
- MTA-BME Lendület
Quantum Chemistry Research Group, Department of Physical
Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Gábor I. Csonka
- Department
of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Adrienn Ruzsinszky
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mihály Kállay
- MTA-BME Lendület
Quantum Chemistry Research Group, Department of Physical
Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| |
Collapse
|
37
|
Stoychev GL, Auer AA, Neese F. Automatic Generation of Auxiliary Basis Sets. J Chem Theory Comput 2017; 13:554-562. [DOI: 10.1021/acs.jctc.6b01041] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georgi L. Stoychev
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Alexander A. Auer
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
38
|
Bates JE, Mezei PD, Csonka GI, Sun J, Ruzsinszky A. Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry. J Chem Theory Comput 2016; 13:100-109. [DOI: 10.1021/acs.jctc.6b00900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. E. Bates
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - P. D. Mezei
- Department
of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - G. I. Csonka
- Department
of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - J. Sun
- Department
of Physics, University of Texas El Paso, El Paso, Texas 79968, United States
| | - A. Ruzsinszky
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
39
|
Nagy PR, Samu G, Kállay M. An Integral-Direct Linear-Scaling Second-Order Møller-Plesset Approach. J Chem Theory Comput 2016; 12:4897-4914. [PMID: 27618512 DOI: 10.1021/acs.jctc.6b00732] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An integral-direct, iteration-free, linear-scaling, local second-order Møller-Plesset (MP2) approach is presented, which is also useful for spin-scaled MP2 calculations as well as for the efficient evaluation of the perturbative terms of double-hybrid density functionals. The method is based on a fragmentation approximation: the correlation contributions of the individual electron pairs are evaluated in domains constructed for the corresponding localized orbitals, and the correlation energies of distant electron pairs are computed with multipole expansions. The required electron repulsion integrals are calculated directly invoking the density fitting approximation; the storage of integrals and intermediates is avoided. The approach also utilizes natural auxiliary functions to reduce the size of the auxiliary basis of the domains and thereby the operation count and memory requirement. Our test calculations show that the approach recovers 99.9% of the canonical MP2 correlation energy and reproduces reaction energies with an average (maximum) error below 1 kJ/mol (4 kJ/mol). Our benchmark calculations demonstrate that the new method enables MP2 calculations for molecules with more than 2300 atoms and 26000 basis functions on a single processor.
Collapse
Affiliation(s)
- Péter R Nagy
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics , P.O. Box 91, Budapest H-1521, Hungary
| | - Gyula Samu
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics , P.O. Box 91, Budapest H-1521, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics , P.O. Box 91, Budapest H-1521, Hungary
| |
Collapse
|
40
|
Baudin P, Ettenhuber P, Reine S, Kristensen K, Kjærgaard T. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model. J Chem Phys 2016; 144:054102. [PMID: 26851903 DOI: 10.1063/1.4940732] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation.
Collapse
Affiliation(s)
- Pablo Baudin
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Patrick Ettenhuber
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Simen Reine
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033, N-1315 Blindern, Norway
| | - Kasper Kristensen
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
41
|
Bhakhoa H, Rhyman L, Lee EPF, Ramasami P, Dyke JM. Can Cyclen Bind Alkali Metal Azides? A DFT Study as a Precursor to Synthesis. Chemistry 2016; 22:4469-82. [PMID: 26880648 DOI: 10.1002/chem.201504607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/10/2022]
Abstract
Can cyclen (1,4,7,10-tetraazacyclododecane) bind alkali metal azides? This question is addressed by studying the geometric and electronic structures of the alkali metal azide-cyclen [M(cyclen)N3] complexes using density functional theory (DFT). The effects of adding a second cyclen ring to form the sandwich alkali metal azide-cyclen [M(cyclen)2N3] complexes are also investigated. N3(-) is found to bind to a M(+) (cyclen) template to give both end-on and side-on structures. In the end-on structures, the terminal nitrogen atom of the azide group (N1) bonds to the metal as well as to a hydrogen atom of the cyclen ring through a hydrogen bond in an end-on configuration to the cyclen ring. In the side-on structures, the N3 unit is bonded (in a side-on configuration to the cyclen ring) to the metal through the terminal nitrogen atom of the azide group (N1), and through the other terminal nitrogen atom (N3) of the azide group by a hydrogen bond to a hydrogen atom of the cyclen ring. For all the alkali metals, the N3-side-on structure is lowest in energy. Addition of a second cyclen unit to [M(cyclen)N3] to form the sandwich compounds [M(cyclen)2N3] causes the bond strength between the metal and the N3 unit to decrease. It is hoped that this computational study will be a precursor to the synthesis and experimental study of these new macrocyclic compounds; structural parameters and infrared spectra were computed, which will assist future experimental work.
Collapse
Affiliation(s)
- Hanusha Bhakhoa
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Edmond P F Lee
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius. .,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - John M Dyke
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
42
|
Mezei PD, Csonka GI, Ruzsinszky A, Kállay M. Construction and application of a new dual-hybrid random phase approximation. J Chem Theory Comput 2015; 11:4615-26. [PMID: 26574252 DOI: 10.1021/acs.jctc.5b00420] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct random phase approximation (dRPA) combined with Kohn-Sham reference orbitals is among the most promising tools in computational chemistry and applicable in many areas of chemistry and physics. The reason for this is that it scales as N(4) with the system size, which is a considerable advantage over the accurate ab initio wave function methods like standard coupled-cluster. dRPA also yields a considerably more accurate description of thermodynamic and electronic properties than standard density-functional theory methods. It is also able to describe strong static electron correlation effects even in large systems with a small or vanishing band gap missed by common single-reference methods. However, dRPA has several flaws due to its self-correlation error. In order to obtain accurate and precise reaction energies, barriers and noncovalent intra- and intermolecular interactions, we construct a new dual-hybrid dRPA (hybridization of exact and semilocal exchange in both the energy and the orbitals) and test the performance of this new functional on isogyric, isodesmic, hypohomodesmotic, homodesmotic, and hyperhomodesmotic reaction classes. We also use a test set of 14 Diels-Alder reactions, six atomization energies (AE6), 38 hydrocarbon atomization energies, and 100 reaction barrier heights (DBH24, HT-BH38, and NHT-BH38). For noncovalent complexes, we use the NCCE31 and S22 test sets. To test the intramolecular interactions, we use a set of alkane, cysteine, phenylalanine-glycine-glycine tripeptide, and monosaccharide conformers. We also discuss the delocalization and static correlation errors. We show that a universally accurate description of chemical properties can be provided by a large, 75% exact exchange mixing both in the calculation of the reference orbitals and the final energy.
Collapse
Affiliation(s)
- Pál D Mezei
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , H-1521 Budapest, Hungary
| | - Gábor I Csonka
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , H-1521 Budapest, Hungary
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics , P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
43
|
Mezei PD, Csonka GI. Unified picture for the conformation and stabilization of the O-glycosidic linkage in glycopeptide model structures. Struct Chem 2015. [DOI: 10.1007/s11224-015-0666-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Mezei PD, Csonka GI, Ruzsinszky A. Accurate Complete Basis Set Extrapolation of Direct Random Phase Correlation Energies. J Chem Theory Comput 2015; 11:3961-7. [DOI: 10.1021/acs.jctc.5b00269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pál D. Mezei
- Department
of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Gábor I. Csonka
- Department
of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Adrienn Ruzsinszky
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
45
|
Kállay M. Linear-scaling implementation of the direct random-phase approximation. J Chem Phys 2015; 142:204105. [DOI: 10.1063/1.4921542] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Mezei PD, Csonka GI, Kállay M. Accurate Diels–Alder Reaction Energies from Efficient Density Functional Calculations. J Chem Theory Comput 2015; 11:2879-88. [DOI: 10.1021/acs.jctc.5b00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pál D. Mezei
- Department of Inorganic and Analytical
Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Gábor I. Csonka
- Department of Inorganic and Analytical
Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület
Quantum Chemistry Research Group, Department of Physical Chemistry
and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary
| |
Collapse
|