1
|
Vicars Z, Choi J, Marks SM, Remsing RC, Patel AJ. Interfacial Ice Density Fluctuations Inform Surface Ice-Philicity. J Phys Chem B 2024; 128:8512-8521. [PMID: 39171456 DOI: 10.1021/acs.jpcb.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The propensity of a surface to nucleate ice or bind to ice is governed by its ice-philicity─its relative preference for ice over liquid water. However, the relationship between the features of a surface and its ice-philicity is not well understood, and for surfaces with chemical or topographical heterogeneity, such as proteins, their ice-philicity is not even well-defined. In the analogous problem of surface hydrophobicity, it has been shown that hydrophobic surfaces display enhanced low water-density (vapor-like) fluctuations in their vicinity. To interrogate whether enhanced ice-like fluctuations are similarly observed near ice-philic surfaces, here we use molecular simulations and enhanced sampling techniques. Using a family of model surfaces for which the wetting coefficient, k, has previously been characterized, we show that the free energy of observing rare interfacial ice-density fluctuations decreases monotonically with increasing k. By utilizing this connection, we investigate a set of fcc systems and find that the (110) surface is more ice-philic than the (111) or (100) surfaces. By additionally analyzing the structure of interfacial ice, we find that all surfaces prefer to bind to the basal plane of ice, and the topographical complementarity of the (110) surface to the basal plane explains its higher ice-philicity. Using enhanced interfacial ice-like fluctuations as a measure of surface ice-philicity, we then characterize the ice-philicity of chemically heterogeneous and topologically complex systems. In particular, we study the spruce budworm antifreeze protein (sbwAFP), which binds to ice using a known ice-binding site (IBS) and resists engulfment using nonbinding sites of the protein (NBSs). We find that the IBS displays enhanced interfacial ice-density fluctuations and is therefore more ice-philic than the two NBSs studied. We also find the two NBSs are similarly ice-phobic. By establishing a connection between interfacial ice-like fluctuations and surface ice-philicity, our findings thus provide a way to characterize the ice-philicity of heterogeneous surfaces.
Collapse
Affiliation(s)
- Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeongmoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sean M Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Amish J Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Camarillo M, Oller-Iscar J, M Conde M, Ramírez J, Sanz E. Effect of substrate mismatch, orientation, and flexibility on heterogeneous ice nucleation. J Chem Phys 2024; 160:134505. [PMID: 38557847 DOI: 10.1063/5.0188929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Heterogeneous nucleation is the main path to ice formation on Earth. The ice nucleating ability of a certain substrate is mainly determined by both molecular interactions and the structural mismatch between the ice and the substrate lattices. We focus on the latter factor using molecular simulations of the mW model. Quantifying the effect of structural mismatch alone is challenging due to its coupling with molecular interactions. To disentangle both the factors, we use a substrate composed of water molecules in such a way that any variation on the nucleation temperature can be exclusively ascribed to the structural mismatch. We find that a 1% increase in structural mismatch leads to a decrease of ∼4 K in the nucleation temperature. We also analyze the effect of orientation of the substrate with respect to the liquid. The three main ice orientations (basal, primary prism, and secondary prism) have a similar ice nucleating ability. We finally assess the effect of lattice flexibility by comparing substrates where molecules are immobile to others where a certain freedom to fluctuate around the lattice positions is allowed. Interestingly, we find that the latter type of substrate is more efficient in nucleating ice because it can adapt its structure to that of ice.
Collapse
Affiliation(s)
- M Camarillo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J Oller-Iscar
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - M M Conde
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - J Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - E Sanz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Blow KE, Whale TF, Quigley D, Sosso GC. Understanding the impact of ammonium ion substitutions on heterogeneous ice nucleation. Faraday Discuss 2024; 249:114-132. [PMID: 37782066 DOI: 10.1039/d3fd00097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Understanding the mechanisms underpinning heterogeneous ice nucleation in the presence of ionic inclusions is important for fields such as cryopreservation and for improved models of climate and weather prediction. Feldspar and ammonium are both present in significant quantities in the atmosphere, and experimental evidence has shown that feldspar can nucleate ice from ammonium-containing solutions at temperatures warmer than water alone. In recent work, Whale hypothesised that this increase in nucleation temperature is due to an increase in configurational entropy when an ammonium ion is included in the ice hydrogen bond network (T. F. Whale, J. Chem. Phys., 2022, 156, 144503). In this work, we investigate the impact of the inclusion of an ammonium ion on the hydrogen bond network by direct enumeration of the number of structures found using Rick's algorithm. We also determine the energy of these systems and thus compare the effects of enthalpy and entropy to test Whale's hypothesis. We find that the inclusion of an ammonium ion increases the total number of configurations under conditions consistent with a realistic surface charge. We also find that the enthalpic contribution is dominant in determining the location of the ammonium ion within the structure, although we note that this neglects other practicalities of ice nucleation.
Collapse
Affiliation(s)
- Katarina E Blow
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Thomas F Whale
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - David Quigley
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Gabriele C Sosso
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
4
|
Han H, Zhan T, Guo N, Cui M, Xu Y. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol J 2024; 19:e2300543. [PMID: 38403430 DOI: 10.1002/biot.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Organoid technology has demonstrated unique advantages in multidisciplinary fields such as disease research, tumor drug sensitivity, clinical immunity, drug toxicology, and regenerative medicine. It will become the most promising research tool in translational research. However, the long preparation time of organoids and the lack of high-quality cryopreservation methods limit the further application of organoids. Although the high-quality cryopreservation of small-volume biological samples such as cells and embryos has been successfully achieved, the existing cryopreservation methods for organoids still face many bottlenecks. In recent years, with the development of materials science, cryobiology, and interdisciplinary research, many new materials and methods have been applied to cryopreservation. Several new cryopreservation methods have emerged, such as cryoprotectants (CPAs) of natural origin, ice-controlled biomaterials, and rapid rewarming methods. The introduction of these technologies has expanded the research scope of cryopreservation of organoids, provided new approaches and methods for cryopreservation of organoids, and is expected to break through the current technical bottleneck of cryopreservation of organoids. This paper reviews the progress of cryopreservation of organoids in recent years from three aspects: damage factors of cryopreservation of organoids, new protective agents and loading methods, and new technologies of cryopreservation and rewarming.
Collapse
Affiliation(s)
- Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Ning Guo
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| |
Collapse
|
5
|
Marks SM, Vicars Z, Thosar AU, Patel AJ. Characterizing Surface Ice-Philicity Using Molecular Simulations and Enhanced Sampling. J Phys Chem B 2023. [PMID: 37378637 DOI: 10.1021/acs.jpcb.3c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The formation of ice, which plays an important role in diverse contexts ranging from cryopreservation to atmospheric science, is often mediated by solid surfaces. Although surfaces that interact favorably with ice (relative to liquid water) can facilitate ice formation by lowering nucleation barriers, the molecular characteristics that confer icephilicity to a surface are complex and incompletely understood. To address this challenge, here we introduce a robust and computationally efficient method for characterizing surface ice-philicity that combines molecular simulations and enhanced sampling techniques to quantify the free energetic cost of increasing surface-ice contact at the expense of surface-water contact. Using this method to characterize the ice-philicity of a family of model surfaces that are lattice matched with ice but vary in their polarity, we find that the nonpolar surfaces are moderately ice-phobic, whereas the polar surfaces are highly ice-philic. In contrast, for surfaces that display no complementarity to the ice lattice, we find that ice-philicity is independent of surface polarity and that both nonpolar and polar surfaces are moderately ice-phobic. Our work thus provides a prescription for quantitatively characterizing surface ice-philicity and sheds light on how ice-philicity is influenced by lattice matching and polarity.
Collapse
Affiliation(s)
- Sean M Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aniket U Thosar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amish J Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
William N, Mangan S, Ben RN, Acker JP. Engineered Compounds to Control Ice Nucleation and Recrystallization. Annu Rev Biomed Eng 2023; 25:333-362. [PMID: 37104651 DOI: 10.1146/annurev-bioeng-082222-015243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
One of the greatest concerns in the subzero storage of cells, tissues, and organs is the ability to control the nucleation or recrystallization of ice. In nature, evidence of these processes, which aid in sustaining internal temperatures below the physiologic freezing point for extended periods of time, is apparent in freeze-avoidant and freeze-tolerant organisms. After decades of studying these proteins, we now have easily accessible compounds and materials capable of recapitulating the mechanisms seen in nature for biopreser-vation applications. The output from this burgeoning area of research can interact synergistically with other novel developments in the field of cryobiology, making it an opportune time for a review on this topic.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada;
| | - Sophia Mangan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Rob N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada;
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Yuan T, DeFever RS, Zhou J, Cortes-Morales EC, Sarupria S. RSeeds: Rigid Seeding Method for Studying Heterogeneous Crystal Nucleation. J Phys Chem B 2023; 127:4112-4125. [PMID: 37130351 DOI: 10.1021/acs.jpcb.3c00910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heterogeneous nucleation is the dominant form of liquid-to-solid transition in nature. Although molecular simulations are most uniquely suited to studying nucleation, the waiting time to observe even a single nucleation event can easily exceed the current computational capabilities. Therefore, there exists an imminent need for methods that enable computationally fast and feasible studies of heterogeneous nucleation. Seeding is a technique that has proven to be successful at dramatically expanding the range of computationally accessible nucleation rates in simulation studies of homogeneous crystal nucleation. In this article, we introduce a new seeding method for heterogeneous nucleation called Rigid Seeding (RSeeds). Crystalline seeds are treated as pseudorigid bodies and simulated on a surface with metastable liquid above its melting temperature. This allows the seeds to adapt to the surface and identify favorable seed-surface configurations, which is necessary for reliable predictions of crystal polymorphs that form and the corresponding heterogeneous nucleation rates. We demonstrate and validate RSeeds for heterogeneous ice nucleation on a flexible self-assembled monolayer surface, a mineral surface based on kaolinite, and two model surfaces. RSeeds predicts the correct ice polymorph, exposed crystal plane, and rotation on the surface. RSeeds is semiquantitative and can be used to estimate the critical nucleus size and nucleation rate when combined with classical nucleation theory. We demonstrate that RSeeds can be used to evaluate nucleation rates spanning many orders of magnitude.
Collapse
Affiliation(s)
- Tianmu Yuan
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Chemical Engineering, The University of Manchester, Manchester, U.K. M13 9PL
| | - Ryan S DeFever
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jiarun Zhou
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | | | - Sapna Sarupria
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Phakatkar AH, Megaridis CM, Shokuhfar T, Shahbazian-Yassar R. Real-time TEM observations of ice formation in graphene liquid cell. NANOSCALE 2023; 15:7006-7013. [PMID: 36946122 DOI: 10.1039/d3nr00097d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The study of ice nucleation and growth at the nanoscale is of utmost importance in geological and atmospheric sciences. However, existing transmission electron microscopy (TEM) approaches have been unsuccessful in imaging ice formation directly. Herein, we demonstrate how radical scavengers - such as TiO2 - encased with water in graphene liquid cells (GLCs) facilitate the observation of ice nucleation phenomena at low temperatures. Atomic-resolution imaging reveals the nucleation and growth of cubic ice-phase crystals at close proximity to TiO2-water nanointerfaces at low temperatures. Interestingly, both heterogeneously and homogeneously nucleated ice crystals exhibited this cubic phase. Ice crystal nuclei were observed to be more stable at the TiO2-water nanointerface, as compared with crystals in the bulk liquid (homogeneous nucleation), suggesting the radical scavenging efficacy of TiO2 nanoparticles mitigating the electron beam by-products. The present work demonstrates that the use of radical scavengers in GLC TEM shows great promise towards unveiling the nanoscale pathways for ice nucleation and growth dynamic events.
Collapse
Affiliation(s)
- Abhijit H Phakatkar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| | - Constantine M Megaridis
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, USA.
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Lee SY, Kim M, Won TK, Back SH, Hong Y, Kim BS, Ahn DJ. Janus regulation of ice growth by hyperbranched polyglycerols generating dynamic hydrogen bonding. Nat Commun 2022; 13:6532. [PMID: 36319649 PMCID: PMC9626502 DOI: 10.1038/s41467-022-34300-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a new phenomenon describing the Janus effect on ice growth by hyperbranched polyglycerols, which can align the surrounding water molecules, has been identified. Even with an identical polyglycerol, we not only induced to inhibit ice growth and recrystallization, but also to promote the growth rate of ice that is more than twice that of pure water. By investigating the polymer architecture and population, we found that the stark difference in the generation of quasi-structured H2O molecules at the ice/water interface played a crucial role in the outcome of these opposite effects. Inhibition activity was induced when polymers at nearly fixed loci formed steady hydrogen bonding with the ice surface. However, the formation-and-dissociation dynamics of the interfacial hydrogen bonds, originating from and maintained by migrating polymers, resulted in an enhanced quasi-liquid layer that facilitated ice growth. Such ice growth activity is a unique property unseen in natural antifreeze proteins or their mimetic materials.
Collapse
Affiliation(s)
- Sang Yup Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- The w:i Interface Augmentation Center, Korea University, Seoul, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Tae Kyung Won
- The w:i Interface Augmentation Center, Korea University, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Seung Hyuk Back
- The w:i Interface Augmentation Center, Korea University, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Youngjoo Hong
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea.
| | - Dong June Ahn
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
- The w:i Interface Augmentation Center, Korea University, Seoul, Republic of Korea.
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Marak KE, Roebuck JH, Chong E, Poitras H, Freedman MA. Silica as a Model Ice-Nucleating Particle to Study the Effects of Crystallinity, Porosity, and Low-Density Surface Functional Groups on Immersion Freezing. J Phys Chem A 2022; 126:5965-5973. [PMID: 36027049 DOI: 10.1021/acs.jpca.2c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerosol particles can facilitate heterogeneous ice formation in the troposphere and stratosphere by acting as ice-nucleating particles, modulating cloud formation/dissipation, precipitation, and their microphysical properties. Heterogeneous ice nucleation is driven by ice embryo formation on the particle surface, which can be influenced by features of the surface such as crystallinity, surface structure, lattice structure, defects, and functional groups. To characterize the effect of crystallinity, pores, and surface functional groups toward ice nucleation, samples of comparable silica systems, specifically, quartz, ordered and nonordered porous amorphous silica samples with a range of pore sizes (2-11 nm), and nonporous functionalized silica spheres, were used as models for mineral dust aerosol particles. The ice nucleation activity of these samples was investigated by using an immersion freezing chamber. The results suggest that crystallinity has a larger effect than porosity on ice nucleation activity, as all of the porous silica samples investigated had lower onset freezing temperatures and lower ice nucleation activities than quartz. Our findings also suggest that pores alone are not sufficient to serve as effective active sites and need some additional chemical or physical property, like crystallinity, to nucleate ice in immersion mode freezing. The addition of a low density of organic functional groups to nonporous samples showed little enhancement compared to the inherent nucleation activity of silica with native surface hydroxyl groups. The density of functional groups investigated in this work suggests that a different arrangement of surface groups may be needed for enhanced immersion mode ice nucleation activity. In summary, crystallinity dictates the ice nucleation activity of silica samples rather than porosity or low-density surface functional groups. This work has broader implications regarding the climate impacts resulting from ice cloud formation.
Collapse
|
11
|
Gasparotto P, Fitzner M, Cox SJ, Sosso GC, Michaelides A. How do interfaces alter the dynamics of supercooled water? NANOSCALE 2022; 14:4254-4262. [PMID: 35244128 DOI: 10.1039/d2nr00387b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structure of liquid water in the proximity of an interface can deviate significantly from that of bulk water, with surface-induced structural perturbations typically converging to bulk values at about ∼1 nm from the interface. While these structural changes are well established it is, in contrast, less clear how an interface perturbs the dynamics of water molecules within the liquid. Here, through an extensive set of molecular dynamics simulations of supercooled bulk and interfacial water films and nano-droplets, we observe the formation of persistent, spatially extended dynamical domains in which the average mobility varies as a function of the distance from the interface. This is in stark contrast with the dynamical heterogeneity observed in bulk water, where these domains average out spatially over time. We also find that the dynamical response of water to an interface depends critically on the nature of the interface and on the choice of interface definition. Overall these results reveal a richness in the dynamics of interfacial water that opens up the prospect of tuning the dynamical response of water through specific modifications of the interface structure or confining material.
Collapse
Affiliation(s)
- Piero Gasparotto
- Scientific Computing Division, Paul Scherrer Institute, Villigen 5232, Switzerland.
| | - Martin Fitzner
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Stephen James Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Gabriele Cesare Sosso
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
12
|
Hussain S, Haji-Akbari A. How to quantify and avoid finite size effects in computational studies of crystal nucleation: The case of homogeneous crystal nucleation. J Chem Phys 2022; 156:054503. [DOI: 10.1063/5.0079702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
13
|
Homogeneous ice nucleation rate at negative pressures: The role of the density anomaly. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Bui T, Frampton H, Huang S, Collins IR, Striolo A, Michaelides A. Water/oil interfacial tension reduction - an interfacial entropy driven process. Phys Chem Chem Phys 2021; 23:25075-25085. [PMID: 34738605 DOI: 10.1039/d1cp03971g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interfacial tension (IFT) of a fluid-fluid interface plays an important role in a wide range of applications and processes. When low IFT is desired, surface active compounds (e.g. surfactants) can be added to the system. Numerous attempts have been made to relate changes in IFT arising from such compounds to the specific nature of the interface. However, the IFT is controlled by an interplay of factors such as temperature and molecular structure of surface-active compounds, which make it difficult to predict IFT as those conditions change. In this study, we present the results from molecular dynamics simulations revealing the specific role surfactants play in IFT. We find that, in addition to reducing direct contact between the two fluids, surfactants serve to increase the disorder at the interface (related to interfacial entropy) and consequently reduce the water/oil IFT, especially when surfactants are present at high surface density. Our results suggest that surfactants that yield more disordered interfacial films (e.g. with flexible and/or unsaturated tails) reduce the water/oil IFT more effectively than surfactants which yield highly ordered interfacial films. Our results shed light on some of the factors that control IFT and could have important practical implications in industrial applications such as the design of cosmetics, food products, and detergents.
Collapse
Affiliation(s)
- Tai Bui
- Thomas Young Centre and London Centre for Nanotechnology, and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK. .,BP Exploration Operating Co. Ltd, Chertsey Road, Sunbury-on-Thames TW16 7LN, UK.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Harry Frampton
- BP Exploration Operating Co. Ltd, Chertsey Road, Sunbury-on-Thames TW16 7LN, UK
| | - Shanshan Huang
- BP Exploration Operating Co. Ltd, Chertsey Road, Sunbury-on-Thames TW16 7LN, UK
| | - Ian R Collins
- BP Exploration Operating Co. Ltd, Chertsey Road, Sunbury-on-Thames TW16 7LN, UK
| | - Alberto Striolo
- Department of Chemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.,School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
15
|
Sanchez-Burgos I, Sanz E, Vega C, Espinosa JR. Fcc vs. hcp competition in colloidal hard-sphere nucleation: on their relative stability, interfacial free energy and nucleation rate. Phys Chem Chem Phys 2021; 23:19611-19626. [PMID: 34524277 DOI: 10.1039/d1cp01784e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hard-sphere crystallization has been widely investigated over the last six decades by means of colloidal suspensions and numerical methods. However, some aspects of its nucleation behaviour are still under debate. Here, we provide a detailed computational characterisation of the polymorphic nucleation competition between the face-centered cubic (fcc) and the hexagonal-close packed (hcp) hard-sphere crystal phases. By means of several state-of-the-art simulation techniques, we evaluate the melting pressure, chemical potential difference, interfacial free energy and nucleation rate of these two polymorphs, as well as of a random stacking mixture of both crystals. Our results highlight that, despite the fact that both polymorphs have very similar stability, the interfacial free energy of the hcp phase could be marginally higher than that of the fcc solid, which in consequence, mildly decreases its propensity to nucleate from the liquid compared to the fcc phase. Moreover, we analyse the abundance of each polymorph in grown crystals from different types of inserted nuclei: fcc, hcp and stacking disordered fcc/hcp seeds, as well as from those spontaneously emerged from brute force simulations. We find that post-critical crystals fundamentally grow maintaining the polymorphic structure of the critical nucleus, at least until moderately large sizes, since the only crystallographic orientation that allows stacking close-packed disorder is the fcc (111) plane, or equivalently the hcp (0001) one. Taken together, our results contribute with one more piece to the intricate puzzle of colloidal hard-sphere crystallization.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
16
|
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5:793-804. [PMID: 34426675 PMCID: PMC8765766 DOI: 10.1038/s41551-021-00784-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The three classical core technologies for the preservation of live mammalian biospecimens-slow freezing, vitrification and hypothermic storage-limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
17
|
Roudsari G, Veshki FG, Reischl B, Pakarinen OH. Liquid Water and Interfacial, Cubic, and Hexagonal Ice Classification through Eclipsed and Staggered Conformation Template Matching. J Phys Chem B 2021; 125:3909-3917. [PMID: 33844543 DOI: 10.1021/acs.jpcb.1c01926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We propose a novel method based on template matching for the recognition of liquid water, cubic ice (ice Ic), hexagonal ice (ice Ih), clathrate hydrates, and different interfacial structures in atomistic and coarse-grained simulations of water and ice. The two template matrices represent staggered and eclipsed conformations, which are the building blocks of hexagonal and cubic ice and clathrate crystals. The algorithm is rotationally invariant and highly robust against imperfections in the ice structure, and its sensitivity for recognizing ice-like structures can be tuned for different applications. Unlike most other algorithms, it can discriminate between cubic, hexagonal, clathrate, mixed, and other interfacial ice types and is therefore well suited to study complex systems and heterogeneous ice nucleation.
Collapse
Affiliation(s)
- Golnaz Roudsari
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Farshad G Veshki
- Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 11000, Espoo FI-00076, Finland
| | - Bernhard Reischl
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Olli H Pakarinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| |
Collapse
|
18
|
Metya AK, Molinero V. Is Ice Nucleation by Organic Crystals Nonclassical? An Assessment of the Monolayer Hypothesis of Ice Nucleation. J Am Chem Soc 2021; 143:4607-4624. [PMID: 33729789 DOI: 10.1021/jacs.0c12012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potent ice nucleating organic crystals display an increase in nucleation efficiency with pressure and memory effect after pressurization that set them apart from inorganic nucleants. These characteristics were proposed to arise from an ordered water monolayer at the organic-water interface. It was interpreted that ordering of the monolayer is the limiting step for ice nucleation on organic crystals, rendering their mechanism of nucleation nonclassical. Despite the importance of organics in atmospheric ice nucleation, that explanation has never been investigated. Here we elucidate the structure of interfacial water and its role in ice nucleation at ambient pressure on phloroglucinol dihydrate, the paradigmatic example of outstanding ice nucleating organic crystal, using molecular simulations. The simulations confirm the existence of an interfacial monolayer that orders on cooling and becomes fully ordered upon ice formation. The monolayer does not resemble any ice face but seamlessly connects the distinct hydrogen-bonding orders of ice and the organic surface. Although large ordered patches develop in the monolayer before ice nucleates, we find that the critical step is the formation of the ice crystallite, indicating that the mechanism is classical. We predict that the fully ordered, crystalline monolayer nucleates ice above -2 °C and could be responsible for the exceptional ice nucleation by the organic crystal at high pressures. The lifetime of the fully ordered monolayer around 0 °C, however, is too short to account for the memory effect reported in the experiments. The latter could arise from an increase in the melting temperature of ice confined by strongly ice-binding surfaces.
Collapse
Affiliation(s)
- Atanu K Metya
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
19
|
Abstract
The freezing of water into ice is one of the most important processes in the physical sciences. However, it is still not understood at the molecular level. In particular, the crystallization of cubic ice ([Formula: see text])-rather than the traditional hexagonal polytype ([Formula: see text])-has become an increasingly debated topic. Although evidence for [Formula: see text] is thought to date back almost 400 y, it is only in the last year that pure [Formula: see text] has been made in the laboratory, and these processes involved high-pressure ice phases. Since this demonstrates that pure [Formula: see text] can form, the question naturally arises if [Formula: see text] can be made from liquid water. With this in mind, we have performed a high-throughput computational screening study involving molecular dynamics simulations of nucleation on over 1,100 model substrates. From these simulations, we find that 1) many different substrates can promote the formation of pristine [Formula: see text]; 2) [Formula: see text] can be selectively nucleated for even the mildest supercooling; 3) the water contact layer's resemblance to a face of ice is the key factor determining the polytype selectivity and nucleation temperature, independent of which polytype is promoted; and 4) substrate lattice match to ice is not indicative of the polytype obtained. Through this study, we have deepened understanding of the interplay of heterogeneous nucleation and ice I polytypism and suggest routes to [Formula: see text] More broadly, the substrate design methodology presented here combined with the insight gained can be used to understand and control polymorphism and stacking disorder in materials in general.
Collapse
|
20
|
Chong E, Marak KE, Li Y, Freedman MA. Ice nucleation activity of iron oxides via immersion freezing and an examination of the high ice nucleation activity of FeO. Phys Chem Chem Phys 2021; 23:3565-3573. [PMID: 33514965 DOI: 10.1039/d0cp04220j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous ice nucleation is a common process in the atmosphere, but relatively little is known about the role of different surface characteristics on the promotion of ice nucleation. We have used a series of iron oxides as a model system to study the role of lattice mismatch and defects induced by milling on ice nucleation activity. The iron oxides include wüstite (FeO), hematite (Fe2O3), magnetite (Fe3O4), and goethite (FeOOH). The iron oxides were characterized by X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface area measurements. The immersion freezing experiments were performed using an environmental chamber. Wüstite (FeO) had the highest ice nucleation activity, which we attribute to its low lattice mismatch with hexagonal ice and the exposure of Fe-OH after milling. A comparison study of MnO and wüstite (FeO) with milled and sieved samples for each suggests that physical defects alone result in only a slight increase in ice nucleation activity. Despite differences in the molecular formula and surface groups, hematite (Fe2O3), magnetite (Fe3O4), and goethite (FeOOH) had similar ice nucleation activities, which may be attributed to their high lattice mismatch to hexagonal ice. This study provides further insight into the characteristics of a good heterogeneous ice nucleus and, more generally, helps to elucidate the interactions between aerosol particles and ice particles in clouds.
Collapse
Affiliation(s)
- Esther Chong
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
21
|
Sanchez-Burgos I, Garaizar A, Vega C, Sanz E, Espinosa JR. Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase. SOFT MATTER 2021; 17:489-505. [PMID: 33346291 DOI: 10.1039/d0sm01680b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
22
|
Maeda N. Brief Overview of Ice Nucleation. Molecules 2021; 26:molecules26020392. [PMID: 33451150 PMCID: PMC7828621 DOI: 10.3390/molecules26020392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The nucleation of ice is vital in cloud physics and impacts on a broad range of matters from the cryopreservation of food, tissues, organs, and stem cells to the prevention of icing on aircraft wings, bridge cables, wind turbines, and other structures. Ice nucleation thus has broad implications in medicine, food engineering, mineralogy, biology, and other fields. Nowadays, the growing threat of global warming has led to intense research activities on the feasibility of artificially modifying clouds to shift the Earth’s radiation balance. For these reasons, nucleation of ice has been extensively studied over many decades and rightfully so. It is thus not quite possible to cover the whole subject of ice nucleation in a single review. Rather, this feature article provides a brief overview of ice nucleation that focuses on several major outstanding fundamental issues. The author’s wish is to aid early researchers in ice nucleation and those who wish to get into the field of ice nucleation from other disciplines by concisely summarizing the outstanding issues in this important field. Two unresolved challenges stood out from the review, namely the lack of a molecular-level picture of ice nucleation at an interface and the limitations of classical nucleation theory.
Collapse
Affiliation(s)
- Nobuo Maeda
- Department of Civil & Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, 7-207 Donadeo ICE, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada
| |
Collapse
|
23
|
Hussain S, Haji-Akbari A. How to quantify and avoid finite size effects in computational studies of crystal nucleation: The case of heterogeneous ice nucleation. J Chem Phys 2021; 154:014108. [DOI: 10.1063/5.0026355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
24
|
Predicting heterogeneous ice nucleation with a data-driven approach. Nat Commun 2020; 11:4777. [PMID: 32963232 PMCID: PMC7509812 DOI: 10.1038/s41467-020-18605-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/28/2020] [Indexed: 01/05/2023] Open
Abstract
Water in nature predominantly freezes with the help of foreign materials through a process known as heterogeneous ice nucleation. Although this effect was exploited more than seven decades ago in Vonnegut's pioneering cloud seeding experiments, it remains unclear what makes a material a good ice former. Here, we show through a machine learning analysis of nucleation simulations on a database of diverse model substrates that a set of physical descriptors for heterogeneous ice nucleation can be identified. Our results reveal that, beyond Vonnegut's connection with the lattice match to ice, three new microscopic factors help to predict the ice nucleating ability. These are: local ordering induced in liquid water, density reduction of liquid water near the surface and corrugation of the adsorption energy landscape felt by water. With this we take a step towards quantitative understanding of heterogeneous ice nucleation and the in silico design of materials to control ice formation.
Collapse
|
25
|
Goswami R, Goswami A, Singh JK. d-SEAMS: Deferred Structural Elucidation Analysis for Molecular Simulations. J Chem Inf Model 2020; 60:2169-2177. [DOI: 10.1021/acs.jcim.0c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rohit Goswami
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Amrita Goswami
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Jayant K. Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
26
|
Harada K, Sugimoto T, Kato F, Watanabe K, Matsumoto Y. Thickness dependent homogeneous crystallization of ultrathin amorphous solid water films. Phys Chem Chem Phys 2020; 22:1963-1973. [PMID: 31939467 DOI: 10.1039/c9cp05981d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystallization mechanism and kinetics of amorphous materials are of paramount importance not only in basic science but also in the application field because they are closely related to their thermal stability. In the case of amorphous nanomaterials, thermal stability distinctively different from that of bulk materials often emerges. Despite intensive studies in the past, a thorough understanding of the stability at the molecular level has not been reached particularly on how crystallization processes depend on size and are influenced by their surface and interface. In this article, we report the film-size-dependent crystallization of thermally relaxed nonporous ASW ultrathin films on a Pt(111) surface as a benchmark system of amorphous molecular films. The crystallization processes at the surface and interior of the ASW ultrathin films are monitored simultaneously with thermal desorption and infrared reflection absorption, respectively, as a function of the film thickness. Here, we demonstrate that the crystallization is initiated solely by "homogeneous nucleation" irrespective of the film thickness while the crystallization rate remarkably depends on the thickness; the rate of 5-layer (∼1.5 nm) ASW films is one order of magnitude higher than that of 20-layer (∼6 nm) films. Moreover, we found a clear correlation between the film-thickness-dependent crystallization kinetics and microscopic structural disorder associated with the broad distribution of hydrogen-bond lengths between water molecules.
Collapse
Affiliation(s)
- Kuniaki Harada
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiki Sugimoto
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan. and Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Fumiaki Kato
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan and Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | - Kazuya Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshiyasu Matsumoto
- Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
27
|
Xu Y, Shen Y, Tao J, Lu Y, Chen H, Hou W, Jiang B. Selective nucleation of ice crystals depending on the inclination angle of nanostructures. Phys Chem Chem Phys 2020; 22:1168-1173. [PMID: 31848543 DOI: 10.1039/c9cp05449a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous nucleation is decided by many factors, and surface morphology is one of the most important elements. This paper reports the selective ice nucleation and growth process on a series of nanorods with different inclinations, which were rarely mentioned in previous research studies. It is found that the nanorods with special inclinations can cause the selective nucleation of ice crystals because of the spatial geometry matching. On this basis, we can regulate the ice crystal types (mainly including cubic ice and hexagonal ice) accordingly and even improve the freezing efficiency via controlling the inclinations of surface nanorods. In particular, cubic ice occupies the dominant role in the ice crystal on the surface of 45°-inclination nanorods, yet 90°-inclination nanorods are more beneficial for the formation of hexagonal ice. The shape of the nanorods not only controls the type of ice crystal, but also changes the freezing efficiency because different ice crystals have an unequal nucleation energy barrier. There are no apparent differences in the freezing efficiency on nanostructures with 45°, 75° and 90° inclination nanorods, and 60°-inclination nanorods are more favorable for ice nucleation. Our studies can promote the understanding on the selective nucleation of ice crystals and provide a theoretical basis for achieving the regulation of freezing efficiency.
Collapse
Affiliation(s)
- Yangjiangshan Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Yizhou Shen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Jie Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Yang Lu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Haifeng Chen
- Department of Materials Chemistry, Qiuzhen School, Huzhou University, 759, East 2nd Road, Huzhou 313000, P. R. China
| | - Wenqing Hou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Biao Jiang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| |
Collapse
|
28
|
Sugimoto T, Matsumoto Y. Orientational ordering in heteroepitaxial water ice on metal surfaces. Phys Chem Chem Phys 2020; 22:16453-16466. [DOI: 10.1039/d0cp01763a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sum frequency generation spectroscopy uncovers the orientational ordering in crystalline ice films of water grown on Pt(111) and Rh(111).
Collapse
Affiliation(s)
- Toshiki Sugimoto
- Department of Materials Molecular Science
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Japan
| | | |
Collapse
|
29
|
Shao M, Zhang C, Qi C, Wang C, Wang J, Ye F, Zhou X. Hydrogen polarity of interfacial water regulates heterogeneous ice nucleation. Phys Chem Chem Phys 2019; 22:258-264. [PMID: 31808477 DOI: 10.1039/c9cp04867g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using all-atomic molecular dynamics (MD) simulations, we show that the structure of interfacial water (IW) induced by substrates characterizes the ability of a substrate to nucleate ice. We probe the shape and structure of ice nuclei and the corresponding supercooling temperatures to measure the ability of IW with various hydrogen polarities for ice nucleation, and find that the hydrogen polarization of IW even with the ice-like oxygen lattice increases the contact angle of the ice nucleus on IW, thus lifting the free energy barrier of heterogeneous ice nucleation. The results show that not only the oxygen lattice order but the hydrogen disorder of IW on substrates are required to effectively facilitate the freezing of top water.
Collapse
Affiliation(s)
- Mingzhe Shao
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Leoni F, Shi R, Tanaka H, Russo J. Crystalline clusters in mW water: Stability, growth, and grain boundaries. J Chem Phys 2019; 151:044505. [DOI: 10.1063/1.5100812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fabio Leoni
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Rui Shi
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - John Russo
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
31
|
Cao B, Xu E, Li T. Anomalous Stability of Two-Dimensional Ice Confined in Hydrophobic Nanopores. ACS NANO 2019; 13:4712-4719. [PMID: 30892864 DOI: 10.1021/acsnano.9b01014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The freezing of water mostly proceeds via heterogeneous ice nucleation, a process in which an effective nucleation medium not only expedites ice crystallization but also may effectively direct the polymorph selection of ice. Here, we show that water confined within a hydrophobic slit nanopore exhibits a freezing behavior strongly distinguished from its bulk counterpart. Such a difference is reflected by a strong, non-monotonic pore-size dependence of freezing temperature but, more surprisingly, by an unexpected stacking ordering of crystallized two-dimensional ice containing just a few ice layers. In particular, confined trilayer ice is found to exclusively crystallize into a well-ordered, hexagonal stacking sequence despite the fact that nanopore exerts no explicit constraint on stacking order. The absence of cubic stacking sequence is found to be originated from the intrinsically lower thermodynamic stability of cubic ice over hexagonal ice at the interface, which contrasts sharply the nearly degenerated stability of bulk hexagonal and cubic ices. Detailed examination clearly reveals that the divergence is attributed to the inherent difference between the two ice polymorphs in their surface phonon modes, which is further found to generically occur at both hydrophobic and hydrophilic surfaces.
Collapse
Affiliation(s)
- Boxiao Cao
- Department of Civil and Environmental Engineering , George Washington University , Washington , D.C. 20052 , United States
| | - Enshi Xu
- Department of Civil and Environmental Engineering , George Washington University , Washington , D.C. 20052 , United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering , George Washington University , Washington , D.C. 20052 , United States
| |
Collapse
|
32
|
Cheng Q, Jin S, Liu K, Xue H, Huo B, Zhou X, Wang J. Modifying Surfaces with the Primary and Secondary Faces of Cyclodextrins To Achieve a Distinct Anti-icing Capability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5176-5182. [PMID: 30901523 DOI: 10.1021/acs.langmuir.9b00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heterogenous ice nucleation (HIN) induced by organic materials is a long-lasting issue in wide-ranging fields from cryobiology to atmospheric physics, but efforts for controlling HIN are still restricted by incomplete understanding of its mechanism. In this work, distinct anti-icing capabilities were achieved by experimentally investigating the HIN behavior on the surfaces modified with the primary face (PF) and secondary face (SF) of cyclodextrins (CDs) (i.e., α-1,4-linked d-(+)-glucopyranose with two relatively flat and hydroxylated faces). To achieve this, CDs were first immobilized to the surfaces through selectively binding the PF and SF of CDs onto the solid surfaces; as such, either PF or SF is exposed to liquid water. Interestingly, HIN temperature and delay time assays indicate that HIN is depressed when the PF of CDs (which matches with the ice lattice) is exposed to liquid water whereas the HIN is facilitated when the SF of CDs (which mismatches with the ice lattice) is exposed to liquid water. This deviates from the common thought that surfaces with a template of ice lattice match facilitate the HIN. Instead, 1H NMR studies show that the resonances of hydroxyl (OH) in the SF of CDs are most deshielded due to the formation of intramolecular hydrogen bonds, in comparison to that of OH in the PF of CDs, which weakens the interaction between the OH groups on the SF and water molecules. Thus, the distinct anti-icing capabilities of the PF and SF of CDs can be achieved and established by the distinct interactions between OH groups on the two faces and water, which is of great potential for practical applications. The molecular-level interactions between surfaces and water molecules may be a more appropriate criterion for forecasting materials' HIN ability.
Collapse
Affiliation(s)
| | - Shenglin Jin
- Key Laboratory of Green Printing , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Kai Liu
- Key Laboratory of Green Printing , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Han Xue
- Key Laboratory of Green Printing , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | | | | | - Jianjun Wang
- Key Laboratory of Green Printing , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
33
|
Wu S, He Z, Zang J, Jin S, Wang Z, Wang J, Yao Y, Wang J. Heterogeneous ice nucleation correlates with bulk-like interfacial water. SCIENCE ADVANCES 2019; 5:eaat9825. [PMID: 30993196 PMCID: PMC6461451 DOI: 10.1126/sciadv.aat9825] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 02/14/2019] [Indexed: 05/31/2023]
Abstract
Establishing a direct correlation between interfacial water and heterogeneous ice nucleation (HIN) is essential for understanding the mechanism of ice nucleation. Here, we study the HIN efficiency on polyvinyl alcohol (PVA) surfaces with different densities of hydroxyl groups. We find that the HIN efficiency increases with the decreasing hydroxyl group density. By explicitly considering that interfacial water molecules of PVA films consist of "tightly bound water," "bound water," and "bulk-like water," we reveal that bulk-like water can be correlated directly to the HIN efficiency of surfaces. As the density of hydroxyl groups decreases, bulk-like water molecules can rearrange themselves with a reduced energy barrier into ice due to the diminishing constraint by the hydroxyl groups on the PVA surface. Our study not only provides a new strategy for experimentally controlling the HIN efficiency but also gives another perspective in understanding the mechanism of ice nucleation.
Collapse
Affiliation(s)
- Shuwang Wu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiyuan He
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinger Zang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenglin Jin
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zuowei Wang
- School of Mathematical, Physical and Computational Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK
| | - Jianping Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yefeng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| | - Jianjun Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
34
|
Chong E, King M, Marak KE, Freedman MA. The Effect of Crystallinity and Crystal Structure on the Immersion Freezing of Alumina. J Phys Chem A 2019; 123:2447-2456. [PMID: 30821971 DOI: 10.1021/acs.jpca.8b12258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determining the factors that constitute an efficient ice nucleus is an ongoing area of research in the atmospheric community. In particular, surface characteristics such as functional groups and surface defects impact the ice nucleation efficiency. Crystal structure has been proposed to be a possible factor that can dictate ice nucleation activity through the templating of water molecules on the surface of the aerosol particle. If the crystal structure of the surface matches that of the crystal structure of ice, it has been shown to increase ice nucleation activity. In this study, alumina was chosen as a model system because crystal structure and crystallinity can be tuned, and the effect on immersion freezing was explored. The nine alumina samples include polymorphs of AlOOH, Al(OH)3, and Al2O3, which have a range of crystal structures and crystallinities. The samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) analysis. From the immersion freezing experiments, corundum [α-Al2O3] was shown to have the highest ice nucleation activity likely because of its high lattice match and high degree of crystallinity. Crystal structure alone did not show a strong correlation with ice nucleation activity, but a combination of a hexagonal crystal structure and a highly crystalline surface was seen to nucleate ice at warmer temperatures than the other alumina samples. This study provides experimental results in the study of ice nucleation of a range of alumina samples, which have possible implications for alumina-based mineral dust particles. Our findings suggest that crystallinity and crystal structure are important to consider when evaluating the ice nucleation efficiency of aerosol particles in laboratory and modeling studies.
Collapse
Affiliation(s)
- Esther Chong
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Megan King
- Department of Geology , State University of New York at New Paltz , New Paltz , New York 12561 , United States
| | - Katherine E Marak
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Miriam Arak Freedman
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
35
|
|
36
|
Wolf MJ, Coe A, Dove LA, Zawadowicz MA, Dooley K, Biller SJ, Zhang Y, Chisholm SW, Cziczo DJ. Investigating the Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as a Model Source of Marine Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1139-1149. [PMID: 30589542 DOI: 10.1021/acs.est.8b05150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sea spray is the largest aerosol source on Earth. Bubble bursting mechanisms at the ocean surface create smaller film burst and larger jet drop particles. This study quantified the effects of particle chemistry on the depositional ice nucleation efficiency of laboratory-generated sea spray aerosols under the cirrus-relevant conditions. Cultures of Prochlorococcus, the most abundant phytoplankton species in the global ocean, were used as a model source of organic sea spray aerosols. We showed that smaller particles generated from lysed Prochlorococcus cultures are organically enriched and nucleate more effectively than larger particles generated from the same cultures. We then quantified the ice nucleation efficiency of single component organic molecules that mimic Prochlorococcus proteins, lipids, and saccharides. Amylopectin, agarose, and aspartic acid exhibited similar critical ice saturations, fractional activations, and ice nucleation active site number densities to particles generated from Prochlorococcus cultures. These findings indicate that saccharides and proteins with numerous and well-ordered hydrophilic functional groups may determine the ice nucleation abilities of organic sea spray aerosols.
Collapse
Affiliation(s)
- Martin J Wolf
- Department of Earth, Atmospheric, and Planetary Sciences , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 54-918 , Cambridge , Massachusetts 02139 , United States
| | - Allison Coe
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 1-290 , Cambridge , Massachusetts 02139 , United States
| | - Lilian A Dove
- Department of Earth, Atmospheric, and Planetary Sciences , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 54-918 , Cambridge , Massachusetts 02139 , United States
| | - Maria A Zawadowicz
- Atmospheric Sciences and Global Change Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99354 , United States
| | - Keven Dooley
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 1-290 , Cambridge , Massachusetts 02139 , United States
| | - Steven J Biller
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 1-290 , Cambridge , Massachusetts 02139 , United States
| | - Yue Zhang
- Department of Environmental Sciences , University of North Carolina at Chapel Hill , 135 Dauer Drive, 166 Rosenau Hall , Chapel Hill , North Carolina 27599 , United States
- Aerodyne Research Incorporated , Center for Aerosol and Cloud Chemistry , 45 Manning Road , Billerica , Massachusetts 01821 , United States
- Department of Chemistry , Boston College , 2609 Beacon Street , Chestnut Hill , Massachusetts 02467 , United States
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 1-290 , Cambridge , Massachusetts 02139 , United States
- Department of Biology , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 68-132 , Cambridge , Massachusetts 02139 , United States
| | - Daniel J Cziczo
- Department of Earth, Atmospheric, and Planetary Sciences , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 54-918 , Cambridge , Massachusetts 02139 , United States
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 1-290 , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
37
|
Holden MA, Whale TF, Tarn MD, O’Sullivan D, Walshaw RD, Murray BJ, Meldrum FC, Christenson HK. High-speed imaging of ice nucleation in water proves the existence of active sites. SCIENCE ADVANCES 2019; 5:eaav4316. [PMID: 30746490 PMCID: PMC6358314 DOI: 10.1126/sciadv.aav4316] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 05/12/2023]
Abstract
Understanding how surfaces direct nucleation is a complex problem that limits our ability to predict and control crystal formation. We here address this challenge using high-speed imaging to identify and quantify the sites at which ice nucleates in water droplets on the two natural cleavage faces of macroscopic feldspar substrates. Our data show that ice nucleation only occurs at a few locations, all of which are associated with micron-size surface pits. Similar behavior is observed on α-quartz substrates that lack cleavage planes. These results demonstrate that substrate heterogeneities are the salient factor in promoting nucleation and therefore prove the existence of active sites. We also provide strong evidence that the activity of these sites derives from a combination of surface chemistry and nanoscale topography. Our results have implications for the nucleation of many materials and suggest new strategies for promoting or inhibiting nucleation across a wide range of applications.
Collapse
Affiliation(s)
- Mark A. Holden
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Corresponding author. (M.A.H.); (F.C.M.); (H.K.C.)
| | - Thomas F. Whale
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Daniel O’Sullivan
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Fiona C. Meldrum
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Corresponding author. (M.A.H.); (F.C.M.); (H.K.C.)
| | - Hugo K. Christenson
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Corresponding author. (M.A.H.); (F.C.M.); (H.K.C.)
| |
Collapse
|
38
|
Sayer T, Cox SJ. Stabilization of AgI's polar surfaces by the aqueous environment, and its implications for ice formation. Phys Chem Chem Phys 2019; 21:14546-14555. [DOI: 10.1039/c9cp02193k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AgI is a potent inorganic ice nucleating particle, a feature often attributed to the lattice match between its {0001} surfaces and ice. Dissolved ions are found to be essential to the stability of these polar surfaces, and crucial to ice formation.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Stephen J. Cox
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
39
|
Pedevilla P, Fitzner M, Sosso GC, Michaelides A. Heterogeneous seeded molecular dynamics as a tool to probe the ice nucleating ability of crystalline surfaces. J Chem Phys 2018; 149:072327. [PMID: 30134662 DOI: 10.1063/1.5029336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ice nucleation plays a significant role in a large number of natural and technological processes, but it is challenging to investigate experimentally because of the small time scales (ns) and short length scales (nm) involved. On the other hand, conventional molecular simulations struggle to cope with the relatively long time scale required for critical ice nuclei to form. One way to tackle this issue is to take advantage of free energy or path sampling techniques. Unfortunately, these are computationally costly. Seeded molecular dynamics is a much less demanding alternative that has been successfully applied already to study the homogeneous freezing of water. However, in the case of heterogeneous ice nucleation, nature's favourite route to form ice, an array of suitable interfaces between the ice seeds and the substrate of interest has to be built, and this is no trivial task. In this paper, we present a Heterogeneous SEEDing (HSEED) approach which harnesses a random structure search framework to tackle the ice-substrate challenge, thus enabling seeded molecular dynamics simulations of heterogeneous ice nucleation on crystalline surfaces. We validate the HSEED framework by investigating the nucleation of ice on (i) model crystalline surfaces, using the coarse-grained mW model, and (ii) cholesterol crystals, employing the fully atomistic TIP4P/ice water model. We show that the HSEED technique yields results in excellent agreement with both metadynamics and forward flux sampling simulations. Because of its computational efficiency, the HSEED method allows one to rapidly assess the ice nucleation ability of whole libraries of crystalline substrates-a long-awaited computational development in, e.g., atmospheric science.
Collapse
Affiliation(s)
- Philipp Pedevilla
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Martin Fitzner
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Gabriele C Sosso
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
40
|
Metya AK, Singh JK. Ice adhesion mechanism on lubricant-impregnated surfaces using molecular dynamics simulations. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1513649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Atanu K. Metya
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Jayant K. Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
41
|
Huang H, Yarmush ML, Usta OB. Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids. Nat Commun 2018; 9:3201. [PMID: 30097570 PMCID: PMC6086840 DOI: 10.1038/s41467-018-05636-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/17/2018] [Indexed: 11/12/2022] Open
Abstract
Supercooling of aqueous solutions is a fundamentally and practically important physical phenomenon with numerous applications in biopreservation and beyond. Under normal conditions, heterogeneous nucleation mechanisms critically prohibit the simultaneous long-term (> 1 week), large volume (> 1 ml), and low temperatures (< -10 °C) supercooling of aqueous solutions. Here, we report on the use of surface sealing of water by an oil phase to significantly diminish the primary heterogeneous nucleation at the water/air interface. We achieve deep supercooling (down to -20 °C) of large volumes of water (up to 100 ml) for long periods (up to 100 days) simultaneously via this approach. Since oils are mixtures of various hydrocarbons we also report on the use of pure alkanes and primary alcohols of various lengths to achieve the same. Furthermore, we demonstrate the utility of deep supercooling via preliminary studies on extended (100 days) preservation of human red blood cells.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, United States
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, United States.
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854, United States.
| | - O Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, United States.
| |
Collapse
|
42
|
Singha SK, Das PK, Maiti B. Influence of Salinity on the Mechanism of Surface Icing: Implication to the Disappearing Freezing Singularity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9064-9071. [PMID: 29996655 DOI: 10.1021/acs.langmuir.8b00969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of salinity on surface icing has been investigated experimentally. Water droplets with a variable salinity are deposited on a cold polished copper substrate. Distinctive two-stage freezing, which can be seen in case of pure water, is not observed in heterogeneous freezing of saltwater droplets. Interestingly, the final freezing stage commences before the initial freezing front completely traverses the saline droplet. A considerable increase in delay for heterogeneous ice nucleation is observed with the increasing salinity. The reduction in the associated degree of metastability due to the depression in the freezing point of the bulk solution and the increase in the nucleation barrier due to the appearance of the solvation shells that are formed around the ions are two possible causes of this nucleation delay. Moreover, the solidification time associated with surface icing increases considerably with the increasing salinity. Because of the insolubility of salt in ice, the salt ions are rejected to the entrapped water in the ice scaffold locally and to the bulk unfrozen water explicitly. This collective implicit and explicit modes of brine rejection contributes to the overall slowdown of freezing of the saline water droplets. From the phase diagram, it can be found that the complete solidification of water within the saline droplet is not possible when the substrate temperature is in between the eutectic temperature and the equilibrium freezing temperature. As a result, the relative magnitude of tip singularity during freezing reduces considerably with the increasing salinity due to the increase in unfrozen water content within the droplet.
Collapse
Affiliation(s)
- Sanat Kumar Singha
- Department of Mechanical Engineering , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| | - Prasanta Kumar Das
- Department of Mechanical Engineering , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| | - Biswajit Maiti
- Department of Mechanical Engineering , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| |
Collapse
|
43
|
|
44
|
Warrier P, Khan MN, Srivastava V, Maupin CM, Koh CA. Overview: Nucleation of clathrate hydrates. J Chem Phys 2018; 145:211705. [PMID: 28799342 DOI: 10.1063/1.4968590] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.
Collapse
Affiliation(s)
- Pramod Warrier
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - M Naveed Khan
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Vishal Srivastava
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - C Mark Maupin
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Carolyn A Koh
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
45
|
Espinosa JR, Navarro C, Sanz E, Valeriani C, Vega C. On the time required to freeze water. J Chem Phys 2018; 145:211922. [PMID: 28799362 DOI: 10.1063/1.4965427] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
By using the seeding technique the nucleation rate for the formation of ice at room pressure will be estimated for the TIP4P/ICE model using longer runs and a smaller grid of temperatures than in the previous work. The growth rate of ice will be determined for TIP4P/ICE and for the mW model of water. Although TIP4P/ICE and mW have a similar melting point and melting enthalpy, they differ significantly in the dynamics of freezing. The nucleation rate of mW is lower than that of TIP4P/ICE due to its higher interfacial free energy. Experimental results for the nucleation rate of ice are between the predictions of these two models when obtained from the seeding technique, although closer to the predictions of TIP4P/ICE. The growth rate of ice for the mW model is four orders of magnitude larger than for TIP4P/ICE. Avrami's expression is used to estimate the crystallization time from the values of the nucleation and growth rates. For mW the minimum in the crystallization time is found at approximately 85 K below the melting point and its value is of about a few ns, in agreement with the results obtained from brute force simulations by Moore and Molinero. For the TIP4P/ICE the minimum is found at about 55 K below the melting point, but its value is about ten microseconds. This value is compatible with the minimum cooling rate required to avoid the formation of ice and obtaining a glass phase. The crossover from the nucleation controlled crystallization to the growth controlled crystallization will be discussed for systems of finite size. This crossover could explain the apparent discrepancy between the values of J obtained by different experimental groups for temperatures below 230 K and should be considered as an alternative hypothesis to the two previously suggested: internal pressure and/or surface freezing effects. A maximum in the compressibility was found for the TIP4P/ICE model in supercooled water. The relaxation time is much smaller than the crystallization time at the temperature at which this maximum occurs, so this maximum is a real thermodynamic feature of the model. At the temperature of minimum crystallization time, the crystallization time is larger than the relaxation time by just two orders of magnitude.
Collapse
Affiliation(s)
- J R Espinosa
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain and Departamento de Fisica Aplicada I , Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Navarro
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain and Departamento de Fisica Aplicada I , Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain and Departamento de Fisica Aplicada I , Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Valeriani
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain and Departamento de Fisica Aplicada I , Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain and Departamento de Fisica Aplicada I , Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
46
|
Whale TF, Holden MA, Wilson TW, O'Sullivan D, Murray BJ. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes. Chem Sci 2018; 9:4142-4151. [PMID: 29780544 PMCID: PMC5941198 DOI: 10.1039/c7sc05421a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 01/05/2023] Open
Abstract
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 105. This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature.
Collapse
Affiliation(s)
- Thomas F Whale
- School of Earth and Environment , University of Leeds , Leeds , LS2 9JT , UK .
| | - Mark A Holden
- School of Earth and Environment , University of Leeds , Leeds , LS2 9JT , UK .
- School of Chemistry , University of Leeds , Leeds , LS2 9JT , UK
- School of Physics and Astronomy , University of Leeds , Leeds , LS29JT , UK
| | - Theodore W Wilson
- School of Earth and Environment , University of Leeds , Leeds , LS2 9JT , UK .
| | - Daniel O'Sullivan
- School of Earth and Environment , University of Leeds , Leeds , LS2 9JT , UK .
| | - Benjamin J Murray
- School of Earth and Environment , University of Leeds , Leeds , LS2 9JT , UK .
| |
Collapse
|
47
|
Jin S, Liu J, Lv J, Wu S, Wangs J. Interfacial Materials for Anti-Icing: Beyond Superhydrophobic Surfaces. Chem Asian J 2018. [DOI: 10.1002/asia.201800241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shenglin Jin
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Jie Liu
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Zhongguancun North First Street 2 100190 Beijing P. R. China
- Max-Planck Institute for Polymer Research.; Ackermannweg 10 55128 Mainz Germany
| | - Jianyong Lv
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Shuwang Wu
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Jianjun Wangs
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Zhongguancun North First Street 2 100190 Beijing P. R. China
| |
Collapse
|
48
|
Shevkunov SV. Water Structure in the Contact Layer on the Surface of Crystalline Silver Iodine. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618030137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Shevkunov SV. The Effect of Temperature on Nucleation of Condensed Water Phase on the Surface of a β-AgI Crystal. 2. Formation Work. COLLOID JOURNAL 2018. [DOI: 10.1134/s1061933x18020102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Shevkunov SV. The Effect of Temperature on Nucleation of Condensed Water Phase on the Surface of a β-AgI Crystal. 1. Structure. COLLOID JOURNAL 2018. [DOI: 10.1134/s1061933x18020096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|