1
|
Nguyen TD, Chen YI, Chen LH, Yeh HC. Recent Advances in Single-Molecule Tracking and Imaging Techniques. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:253-284. [PMID: 37314878 DOI: 10.1146/annurev-anchem-091922-073057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the early 1990s, single-molecule detection in solution at room temperature has enabled direct observation of single biomolecules at work in real time and under physiological conditions, providing insights into complex biological systems that the traditional ensemble methods cannot offer. In particular, recent advances in single-molecule tracking techniques allow researchers to follow individual biomolecules in their native environments for a timescale of seconds to minutes, revealing not only the distinct pathways these biomolecules take for downstream signaling but also their roles in supporting life. In this review, we discuss various single-molecule tracking and imaging techniques developed to date, with an emphasis on advanced three-dimensional (3D) tracking systems that not only achieve ultrahigh spatiotemporal resolution but also provide sufficient working depths suitable for tracking single molecules in 3D tissue models. We then summarize the observables that can be extracted from the trajectory data. Methods to perform single-molecule clustering analysis and future directions are also discussed.
Collapse
Affiliation(s)
- Trung Duc Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Limin H Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
- Texas Materials Institute, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
van Heerden B, Vickers NA, Krüger TPJ, Andersson SB. Real-Time Feedback-Driven Single-Particle Tracking: A Survey and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107024. [PMID: 35758534 PMCID: PMC9308725 DOI: 10.1002/smll.202107024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/07/2022] [Indexed: 05/14/2023]
Abstract
Real-time feedback-driven single-particle tracking (RT-FD-SPT) is a class of techniques in the field of single-particle tracking that uses feedback control to keep a particle of interest in a detection volume. These methods provide high spatiotemporal resolution on particle dynamics and allow for concurrent spectroscopic measurements. This review article begins with a survey of existing techniques and of applications where RT-FD-SPT has played an important role. Each of the core components of RT-FD-SPT are systematically discussed in order to develop an understanding of the trade-offs that must be made in algorithm design and to create a clear picture of the important differences, advantages, and drawbacks of existing approaches. These components are feedback tracking and control, ranging from simple proportional-integral-derivative control to advanced nonlinear techniques, estimation to determine particle location from the measured data, including both online and offline algorithms, and techniques for calibrating and characterizing different RT-FD-SPT methods. Then a collection of metrics for RT-FD-SPT is introduced to help guide experimentalists in selecting a method for their particular application and to help reveal where there are gaps in the techniques that represent opportunities for further development. Finally, this review is concluded with a discussion on future perspectives in the field.
Collapse
Affiliation(s)
- Bertus van Heerden
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Nicholas A Vickers
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Sean B Andersson
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Systems Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
3
|
Moore DB, Ward GP, Smith JD, Hibbins AP, Sambles JR, Starkey TA. Confined acoustic line modes within a glide-symmetric waveguide. Sci Rep 2022; 12:10954. [PMID: 35768477 PMCID: PMC9243009 DOI: 10.1038/s41598-022-13782-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
Confined coupled acoustic line-modes supported by two parallel lines of periodic holes on opposite surfaces of a glide-symmetric waveguide have a hybrid character combining symmetric and anti-symmetric properties. These hybrid coupled acoustic line-modes have a near constant group velocity over a broad frequency range as no band gap is formed at the first Brillouin zone boundary. We show that the hybrid character of these confined modes is tuneable as a function of the spacing between the two surfaces. Further we explore how the band-gap reappears as the glide symmetry is broken.
Collapse
Affiliation(s)
- Daniel B Moore
- Electromagnetic and Acoustic Materials Group, Department of Physics and Astronomy, University of Exeter, Stocker Road, Devon, EX4 4QL, UK.
| | - Gareth P Ward
- Electromagnetic and Acoustic Materials Group, Department of Physics and Astronomy, University of Exeter, Stocker Road, Devon, EX4 4QL, UK
| | - John D Smith
- DSTL, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | - Alastair P Hibbins
- Electromagnetic and Acoustic Materials Group, Department of Physics and Astronomy, University of Exeter, Stocker Road, Devon, EX4 4QL, UK
| | - J Roy Sambles
- Electromagnetic and Acoustic Materials Group, Department of Physics and Astronomy, University of Exeter, Stocker Road, Devon, EX4 4QL, UK
| | - Timothy A Starkey
- Electromagnetic and Acoustic Materials Group, Department of Physics and Astronomy, University of Exeter, Stocker Road, Devon, EX4 4QL, UK
| |
Collapse
|
4
|
Flores-Valle A, Seelig JD. Axial motion estimation and correction for simultaneous multi-plane two-photon calcium imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:2035-2049. [PMID: 35519241 PMCID: PMC9045928 DOI: 10.1364/boe.445775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Two-photon imaging in behaving animals is typically accompanied by brain motion. For functional imaging experiments, for example with genetically encoded calcium indicators, such brain motion induces changes in fluorescence intensity. These motion-related intensity changes or motion artifacts can typically not be separated from neural activity-induced signals. While lateral motion, within the focal plane, can be corrected by computationally aligning images, axial motion, out of the focal plane, cannot easily be corrected. Here, we developed an algorithm for axial motion correction for non-ratiometric calcium indicators taking advantage of simultaneous multi-plane imaging. Using temporally multiplexed beams, recording simultaneously from at least two focal planes at different z positions, and recording a z-stack for each beam as a calibration step, the algorithm separates motion-related and neural activity-induced changes in fluorescence intensity. The algorithm is based on a maximum likelihood optimisation approach; it assumes (as a first order approximation) that no distortions of the sample occurs during axial motion and that neural activity increases uniformly along the optical axis in each region of interest. The developed motion correction approach allows axial motion estimation and correction at high frame rates for isolated structures in the imaging volume in vivo, such as sparse expression patterns in the fruit fly brain.
Collapse
Affiliation(s)
- Andres Flores-Valle
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany
- International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Johannes D Seelig
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany
| |
Collapse
|
5
|
Liu YL, Perillo EP, Ang P, Kim M, Nguyen DT, Blocher K, Chen YA, Liu C, Hassan AM, Vu HT, Chen YI, Dunn AK, Yeh HC. Three-Dimensional Two-Color Dual-Particle Tracking Microscope for Monitoring DNA Conformational Changes and Nanoparticle Landings on Live Cells. ACS NANO 2020; 14:7927-7939. [PMID: 32668152 PMCID: PMC7456512 DOI: 10.1021/acsnano.9b08045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we present a three-dimensional two-color dual-particle tracking (3D-2C-DPT) technique that can simultaneously localize two spectrally distinct targets in three dimensions with a time resolution down to 5 ms. The dual-targets can be tracked with separation distances from 33 to 250 nm with tracking precisions of ∼15 nm (for static targets) and ∼35 nm (for freely diffusing targets). Since each target is individually localized, a wealth of data can be extracted, such as the relative 3D position, the 2D rotation, and the separation distance between the two targets. Using this technique, we turn a double-stranded DNA (dsDNA)-linked dumbbell-like dimer into a nanoscopic optical ruler to quantify the bending dynamics of nicked or gapped dsDNA molecules in free solution by manipulating the design of dsDNA linkers (1-nick, 3-nt, 6-nt, or 9-nt single-strand gap), and the results show the increase of kon (linear to bent) from 3.2 to 10.7 s-1. The 3D-2C-DPT is then applied to observe translational and rotational motions of the landing of an antibody-conjugated nanoparticle on the plasma membrane of living cells, revealing the reduction of rotations possibly due to interactions with membrane receptors. This study demonstrates that this 3D-2C-DPT technique is a new tool to shed light on the conformational changes of biomolecules and the intermolecular interactions on plasma membrane.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Nanostring Technologies, Seattle, Washington 98109, United States
| | - Phyllis Ang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Computer Science, Duke University, Durham, North Carolina 27705, United States
| | - Mirae Kim
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Duc Trung Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Katherine Blocher
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yu-An Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Cong Liu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Ahmed M Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Huong T Vu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Liu YL, Horning AM, Lieberman B, Kim M, Lin CK, Hung CN, Chou CW, Wang CM, Lin CL, Kirma NB, Liss MA, Vasisht R, Perillo EP, Blocher K, Horng H, Taverna JA, Ruan J, Yankeelov TE, Dunn AK, Huang THM, Yeh HC, Chen CL. Spatial EGFR Dynamics and Metastatic Phenotypes Modulated by Upregulated EphB2 and Src Pathways in Advanced Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121910. [PMID: 31805710 PMCID: PMC6966510 DOI: 10.3390/cancers11121910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported. Using single-particle tracking techniques, we found that highly phosphorylated EGFR in the advanced prostate cancer cell line, PC3, was associated with higher EGFR diffusivity, as compared with LNCaP and less aggressive DU145. The increased EGFR activation and biophysical dynamics were consistent with high proliferation, migration, and invasion. After performing single-cell RNA-seq on prostate cancer cell lines and circulating tumor cells from patients, we identified that upregulated gene expression in the EphB2 and Src pathways are associated with advanced malignancy. After dasatinib treatment or siRNA knockdowns of EphB2 or Src, the PC3 cells exhibited significantly lower EGFR dynamics, cell motility, and invasion. Partial inhibitory effects were also found in DU145 cells. The upregulation of parts of the EphB2 and Src pathways also predicts poor prognosis in the prostate cancer patient cohort of The Cancer Genome Atlas. Our results provide evidence that overexpression of the EphB2 and Src signaling pathways regulate EGFR dynamics and cellular aggressiveness in some advanced prostate cancer cells.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Aaron M. Horning
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Brandon Lieberman
- Department of Biology, Trinity University, San Antonio, TX 78212, USA;
| | - Mirae Kim
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Che-Kuang Lin
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chia-Nung Hung
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chih-Wei Chou
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chiou-Miin Wang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chun-Lin Lin
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Nameer B. Kirma
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Michael A. Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Rohan Vasisht
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Evan P. Perillo
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Katherine Blocher
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Hannah Horng
- Department of Bioengineering, the University of Maryland, College Park, MD 20742, USA;
| | - Josephine A. Taverna
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Tim H.-M. Huang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
- Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA
- Correspondence: (H.-C.Y.); (C.-L.C.); Tel.: +1-512-471-7931 (H.-C.Y.); +1-210-562-4143 (C.-L.C.); Fax: +1-512-471-0616 (H.-C.Y.); +1-210-562-4161 (C.-L.C.)
| | - Chun-Liang Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
- Correspondence: (H.-C.Y.); (C.-L.C.); Tel.: +1-512-471-7931 (H.-C.Y.); +1-210-562-4143 (C.-L.C.); Fax: +1-512-471-0616 (H.-C.Y.); +1-210-562-4161 (C.-L.C.)
| |
Collapse
|
7
|
Urban A, Golgher L, Brunner C, Gdalyahu A, Har-Gil H, Kain D, Montaldo G, Sironi L, Blinder P. Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging. Adv Drug Deliv Rev 2017; 119:73-100. [PMID: 28778714 DOI: 10.1016/j.addr.2017.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Developing efficient brain imaging technologies by combining a high spatiotemporal resolution and a large penetration depth is a key step for better understanding the neurovascular interface that emerges as a main pathway to neurodegeneration in many pathologies such as dementia. This review focuses on the advances in two complementary techniques: multi-photon laser scanning microscopy (MPLSM) and functional ultrasound imaging (fUSi). MPLSM has become the gold standard for in vivo imaging of cellular dynamics and morphology, together with cerebral blood flow. fUSi is an innovative imaging modality based on Doppler ultrasound, capable of recording vascular brain activity over large scales (i.e., tens of cubic millimeters) at unprecedented spatial and temporal resolution for such volumes (up to 10μm pixel size at 10kHz). By merging these two technologies, researchers may have access to a more detailed view of the various processes taking place at the neurovascular interface. MPLSM and fUSi are also good candidates for addressing the major challenge of real-time delivery, monitoring, and in vivo evaluation of drugs in neuronal tissue.
Collapse
Affiliation(s)
- Alan Urban
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Golgher
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Clément Brunner
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Amos Gdalyahu
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hagai Har-Gil
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Kain
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Montaldo
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Laura Sironi
- Physics Dept., Universita degli Studi di Milano Bicocca, Italy
| | - Pablo Blinder
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
8
|
Liu YL, Perillo EP, Liu C, Yu P, Chou CK, Hung MC, Dunn AK, Yeh HC. Segmentation of 3D Trajectories Acquired by TSUNAMI Microscope: An Application to EGFR Trafficking. Biophys J 2017; 111:2214-2227. [PMID: 27851944 DOI: 10.1016/j.bpj.2016.09.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022] Open
Abstract
Whereas important discoveries made by single-particle tracking have changed our view of the plasma membrane organization and motor protein dynamics in the past three decades, experimental studies of intracellular processes using single-particle tracking are rather scarce because of the lack of three-dimensional (3D) tracking capacity. In this study we use a newly developed 3D single-particle tracking method termed TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) to investigate epidermal growth factor receptor (EGFR) trafficking dynamics in live cells at 16/43 nm (xy/z) spatial resolution, with track duration ranging from 2 to 10 min and vertical tracking depth up to tens of microns. To analyze the long 3D trajectories generated by the TSUNAMI microscope, we developed a trajectory analysis algorithm, which reaches 81% segment classification accuracy in control experiments (termed simulated movement experiments). When analyzing 95 EGF-stimulated EGFR trajectories acquired in live skin cancer cells, we find that these trajectories can be separated into three groups-immobilization (24.2%), membrane diffusion only (51.6%), and transport from membrane to cytoplasm (24.2%). When EGFRs are membrane-bound, they show an interchange of Brownian diffusion and confined diffusion. When EGFRs are internalized, transitions from confined diffusion to directed diffusion and from directed diffusion back to confined diffusion are clearly seen. This observation agrees well with the model of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Evan P Perillo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Cong Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Peter Yu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
9
|
Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, Landes CF. Single Particle Tracking: From Theory to Biophysical Applications. Chem Rev 2017; 117:7331-7376. [PMID: 28520419 DOI: 10.1021/acs.chemrev.6b00815] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After three decades of developments, single particle tracking (SPT) has become a powerful tool to interrogate dynamics in a range of materials including live cells and novel catalytic supports because of its ability to reveal dynamics in the structure-function relationships underlying the heterogeneous nature of such systems. In this review, we summarize the algorithms behind, and practical applications of, SPT. We first cover the theoretical background including particle identification, localization, and trajectory reconstruction. General instrumentation and recent developments to achieve two- and three-dimensional subdiffraction localization and SPT are discussed. We then highlight some applications of SPT to study various biological and synthetic materials systems. Finally, we provide our perspective regarding several directions for future advancements in the theory and application of SPT.
Collapse
Affiliation(s)
- Hao Shen
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Lawrence J Tauzin
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Rashad Baiyasi
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Wenxiao Wang
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Nicholas Moringo
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Bo Shuang
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Christy F Landes
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| |
Collapse
|
10
|
Liu C, Obliosca JM, Liu YL, Chen YA, Jiang N, Yeh HC. 3D single-molecule tracking enables direct hybridization kinetics measurement in solution. NANOSCALE 2017; 9:5664-5670. [PMID: 28422238 PMCID: PMC5515391 DOI: 10.1039/c7nr01369h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Single-molecule measurements of DNA hybridization kinetics are mostly performed on a surface or inside a trap. Here we demonstrate a time-resolved, 3D single-molecule tracking (3D-SMT) method that allows us to follow a freely diffusing ssDNA molecule in solution for hundreds of milliseconds or even seconds and observe multiple annealing and melting events taking place on the same molecule. This is achieved by combining confocal-feedback 3D-SMT with time-domain fluorescence lifetime measurement, where fluorescence lifetime serves as the indicator of hybridization. With sub-diffraction-limit spatial resolution in molecular tracking and 15 ms temporal resolution in monitoring the change of reporter's lifetime, we have demonstrated a full characterization of annealing rate (kon = 5.13 × 106 M-1 s-1), melting rate (koff = 9.55 s-1), and association constant (Ka = 0.54 μM-1) of an 8 bp duplex model system diffusing at 4.8 μm2 s-1. As our method completely eliminates the photobleaching artifacts and diffusion interference, our kon and koff results well represent the real kinetics in solution. Our binding kinetics measurement can be carried out in a low signal-to-noise ratio condition (SNR ≈ 1.4) where ∼130 recorded photons are sufficient for a lifetime estimation. Using a population-level analysis, we can characterize hybridization kinetics over a wide range (0.5-125 s-1), even beyond the reciprocals of the lifetime monitoring temporal resolution and the average track duration.
Collapse
Affiliation(s)
- Cong Liu
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Liu C, Rastogi A, Yeh HC. Quantification of Rare Single-Molecule Species Based on Fluorescence Lifetime. Anal Chem 2017; 89:4772-4775. [PMID: 28397491 DOI: 10.1021/acs.analchem.7b00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-molecule tracking combined with fluorescence lifetime analysis can be a powerful tool for direct molecular quantification in solution. However, it is not clear what molecular identification accuracy and how many single-molecule tracks are required to achieve an accurate quantification of rare molecular species. Here we carry out calculations to answer these questions, based on experimentally obtained single-molecule lifetime data and an unbiased ratio estimator. Our results indicate that even at the molecular identification accuracy of 0.99999, 1.8 million tracks are still required in order to achieve 95% confidence level in rare-species quantification with relative error less than ±5%. Our work highlights the fundamental challenges that we are facing in accurate single-molecule identification and quantification without amplification.
Collapse
Affiliation(s)
- Cong Liu
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Ajay Rastogi
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
12
|
Liu C, Liu YL, Perillo EP, Dunn AK, Yeh HC. Single-Molecule Tracking and Its Application in Biomolecular Binding Detection. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6804013. [PMID: 27660404 PMCID: PMC5028128 DOI: 10.1109/jstqe.2016.2568160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the past two decades significant advances have been made in single-molecule detection, which enables the direct observation of single biomolecules at work in real time and under physiological conditions. In particular, the development of single-molecule tracking (SMT) microscopy allows us to monitor the motion paths of individual biomolecules in living systems, unveiling the localization dynamics and transport modalities of the biomolecules that support the development of life. Beyond the capabilities of traditional camera-based tracking techniques, state-of-the-art SMT microscopies developed in recent years can record fluorescence lifetime while tracking a single molecule in the 3D space. This multiparameter detection capability can open the door to a wide range of investigations at the cellular or tissue level, including identification of molecular interaction hotspots and characterization of association/dissociation kinetics between molecules. In this review, we discuss various SMT techniques developed to date, with an emphasis on our recent development of the next generation 3D tracking system that not only achieves ultrahigh spatiotemporal resolution but also provides sufficient working depth suitable for live animal imaging. We also discuss the challenges that current SMT techniques are facing and the potential strategies to tackle those challenges.
Collapse
Affiliation(s)
- Cong Liu
- University of Texas at Austin, Austin, TX 78703 USA
| | | | | | | | | |
Collapse
|
13
|
Liu C, Liu YL, Perillo EP, Jiang N, Dunn AK, Yeh HC. Improving z-tracking accuracy in the two-photon single-particle tracking microscope. APPLIED PHYSICS LETTERS 2015; 107:153701. [PMID: 26549888 PMCID: PMC4608965 DOI: 10.1063/1.4932224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/22/2015] [Indexed: 05/07/2023]
Abstract
Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.
Collapse
Affiliation(s)
- C Liu
- Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas 78712, USA
| | - Y-L Liu
- Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas 78712, USA
| | - E P Perillo
- Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas 78712, USA
| | - N Jiang
- Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas 78712, USA
| | - A K Dunn
- Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas 78712, USA
| | - H-C Yeh
- Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas 78712, USA
| |
Collapse
|