1
|
Freibert A, Mendive-Tapia D, Vendrell O, Huse N. A fully dynamical description of time-resolved resonant inelastic X-ray scattering of pyrazine. Phys Chem Chem Phys 2024; 26:22572-22581. [PMID: 39150720 DOI: 10.1039/d4cp00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Recent advancements in ultrashort and intense X-ray sources have enabled the utilisation of resonant inelastic X-ray scattering (RIXS) as a probing technique for monitoring photoinduced dynamics in molecular systems. To account for dynamic phenomena like non-adiabatic transitions across the relevant electronic state manifold, a time-dependent framework is crucial. Here, we introduce a fully time-dependent approach for calculating transient RIXS spectra using wavepacket dynamics simulations, alongside an explicit treatment of the X-ray probe pulse that surpasses Kramers-Heisenberg-Dirac constraints. Our analysis of pyrazine at the nitrogen K-edge underscores the importance of considering nuclear motion effects in all electronic states involved in the transient RIXS process. As a result, we propose a numerically exact approach to computationally support and predict cutting-edge time-resolved RIXS experiments.
Collapse
Affiliation(s)
- Antonia Freibert
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
| | - David Mendive-Tapia
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
| | - Nils Huse
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| |
Collapse
|
2
|
Coates MR, Banerjee A, Jay RM, Wernet P, Odelius M. Theoretical Investigation of Transient Species Following Photodissociation of Ironpentacarbonyl in Ethanol Solution. Inorg Chem 2024; 63:10634-10647. [PMID: 38804078 PMCID: PMC11167646 DOI: 10.1021/acs.inorgchem.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Photodissociation of ironpentacarbonyl [1Fe(CO)5] in solution generates transient species in different electronic states, which we studied theoretically. From ab initio molecular dynamics simulations in ethanol solution, the closed-shell parent compound 1Fe(CO)5 is found to interact weakly with the solvent, whereas the irontetracarbonyl [Fe(CO)4] species, formed after photodissociation, has a strongly spin-dependent behavior. It coordinates a solvent molecule tightly in the singlet state [1Fe(CO)4] and weakly in the triplet state [3Fe(CO)4]. From the simulations, we have gained insights into intersystem crossing in solvated irontetracarbonyl based on the distinct structural differences induced by the change in multiplicity. Alternative forms of coordination between 1Fe(CO)4 and functional groups of the ethanol molecule are simulated, and a quantum chemical investigation of the energy landscape for the coordinated irontetracarbonyl gives information about the interconversion of different transient species in solution. Furthermore, insights from the simulations, in which we find evidence of a solvent exchange mechanism, challenge the previously proposed mechanism of chain walking for under-coordinated metal carbonyls in solution.
Collapse
Affiliation(s)
- Michael R. Coates
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Ambar Banerjee
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Raphael M. Jay
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Philippe Wernet
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Reinhard M, Gallo A, Guo M, Garcia-Esparza AT, Biasin E, Qureshi M, Britz A, Ledbetter K, Kunnus K, Weninger C, van Driel T, Robinson J, Glownia JM, Gaffney KJ, Kroll T, Weng TC, Alonso-Mori R, Sokaras D. Ferricyanide photo-aquation pathway revealed by combined femtosecond Kβ main line and valence-to-core x-ray emission spectroscopy. Nat Commun 2023; 14:2443. [PMID: 37147295 PMCID: PMC10163258 DOI: 10.1038/s41467-023-37922-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
Reliably identifying short-lived chemical reaction intermediates is crucial to elucidate reaction mechanisms but becomes particularly challenging when multiple transient species occur simultaneously. Here, we report a femtosecond x-ray emission spectroscopy and scattering study of the aqueous ferricyanide photochemistry, utilizing the combined Fe Kβ main and valence-to-core emission lines. Following UV-excitation, we observe a ligand-to-metal charge transfer excited state that decays within 0.5 ps. On this timescale, we also detect a hitherto unobserved short-lived species that we assign to a ferric penta-coordinate intermediate of the photo-aquation reaction. We provide evidence that bond photolysis occurs from reactive metal-centered excited states that are populated through relaxation of the charge transfer excited state. Beyond illuminating the elusive ferricyanide photochemistry, these results show how current limitations of Kβ main line analysis in assigning ultrafast reaction intermediates can be circumvented by simultaneously using the valence-to-core spectral range.
Collapse
Affiliation(s)
- Marco Reinhard
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | | | - Meiyuan Guo
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Elisa Biasin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Kathryn Ledbetter
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Clemens Weninger
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Tim van Driel
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | | | | | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | | | | |
Collapse
|
4
|
Turner JJ, George MW, Poliakoff M, Perutz RN. Photochemistry of transition metal carbonyls. Chem Soc Rev 2022; 51:5300-5329. [PMID: 35708003 DOI: 10.1039/d1cs00826a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this Tutorial Review is to outline the fundamental photochemistry of metal carbonyls, and to show how the advances in technology have increased our understanding of the detailed mechanisms, particularly how relatively simple experiments can provide deep understanding of complex problems. We recall some important early experiments that demonstrate the key principles underlying current research, concentrating on the binary carbonyls and selected substituted metal carbonyls. At each stage, we illustrate with examples from recent applications. This review first considers the detection of photochemical intermediates in three environments: glasses and matrices; gas phase; solution. It is followed by an examination of the theory underpinning these observations. In the final two sections, we briefly address applications to the characterization and behaviour of complexes with very labile ligands such as N2, H2 and alkanes, concentrating on key mechanistic points, and also describe some principles and examples of photocatalysis.
Collapse
Affiliation(s)
- James J Turner
- School of Chemistry University of Nottingham, NG7 2RD, UK.
| | | | | | - Robin N Perutz
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Uemura Y, Ismail ASM, Park SH, Kwon S, Kim M, Elnaggar H, Frati F, Wadati H, Hirata Y, Zhang Y, Yamagami K, Yamamoto S, Matsuda I, Halisdemir U, Koster G, Milne C, Ammann M, Weckhuysen BM, de Groot FMF. Hole Dynamics in Photoexcited Hematite Studied with Femtosecond Oxygen K-edge X-ray Absorption Spectroscopy. J Phys Chem Lett 2022; 13:4207-4214. [PMID: 35512383 PMCID: PMC9125685 DOI: 10.1021/acs.jpclett.2c00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/05/2022] [Indexed: 05/21/2023]
Abstract
Hematite (α-Fe2O3) is a photoelectrode for the water splitting process because of its relatively narrow bandgap and abundance in the earth's crust. In this study, the photoexcited state of a hematite thin film was investigated with femtosecond oxygen K-edge X-ray absorption spectroscopy (XAS) at the PAL-XFEL in order to follow the dynamics of its photoexcited states. The 200 fs decay time of the hole state in the valence band was observed via its corresponding XAS feature.
Collapse
Affiliation(s)
- Yohei Uemura
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
- Laboratory
of Environmental Chemistry, Energy and Environment Research Division, Paul Scherrer Institut, Villigen, 5232, Switzerland
- European
XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Ahmed S. M. Ismail
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Sang Han Park
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Soonnam Kwon
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Minseok Kim
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hebatalla Elnaggar
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Federica Frati
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Hiroki Wadati
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Graduate
School of Material Science, University of
Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Yasuyuki Hirata
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Yujun Zhang
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Kohei Yamagami
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Susumu Yamamoto
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Iwao Matsuda
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Ufuk Halisdemir
- Faculty
of
Science and Technology and MESA + Institute for Nanotechnology, University of Twente, P.O. Box 2171, Enschede, 7500 AE, The Netherlands
| | - Gertjan Koster
- Faculty
of
Science and Technology and MESA + Institute for Nanotechnology, University of Twente, P.O. Box 2171, Enschede, 7500 AE, The Netherlands
| | - Christopher Milne
- European
XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
- SwissFEL, Paul
Scherrer Institut, Villigen, 5232, Switzerland
| | - Markus Ammann
- Laboratory
of Environmental Chemistry, Energy and Environment Research Division, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Frank M. F. de Groot
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
6
|
Banerjee A, Coates MR, Kowalewski M, Wikmark H, Jay RM, Wernet P, Odelius M. Photoinduced bond oscillations in ironpentacarbonyl give delayed synchronous bursts of carbonmonoxide release. Nat Commun 2022; 13:1337. [PMID: 35288563 PMCID: PMC8921231 DOI: 10.1038/s41467-022-28997-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Early excited state dynamics in the photodissociation of transition metal carbonyls determines the chemical nature of short-lived catalytically active reaction intermediates. However, time-resolved experiments have not yet revealed mechanistic details in the sub-picosecond regime. Hence, in this study the photoexcitation of ironpentacarbonyl Fe(CO)5 is simulated with semi-classical excited state molecular dynamics. We find that the bright metal-to-ligand charge-transfer (MLCT) transition induces synchronous Fe-C oscillations in the trigonal bipyramidal complex leading to periodically reoccurring release of predominantly axial CO. Metaphorically the photoactivated Fe(CO)5 acts as a CO geyser, as a result of dynamics in the potential energy landscape of the axial Fe-C distances and non-adiabatic transitions between manifolds of bound MLCT and dissociative metal-centered (MC) excited states. The predominant release of axial CO ligands and delayed release of equatorial CO ligands are explained in a unified mechanism based on the σ*(Fe-C) anti-bonding character of the receiving orbital in the dissociative MC states. The photodissociation of transition metal carbonyls is involved in catalysis and synthetic processes. Here the authors, using semi-classical excited state molecular dynamics, observe details of the early stage dynamics in the photodissociation of Fe(CO)5, including synchronous bursts of CO at periodic intervals of 90 femtoseconds.
Collapse
|
7
|
Liekhus-Schmaltz C, Fox ZW, Andersen A, Kjaer KS, Alonso-Mori R, Biasin E, Carlstad J, Chollet M, Gaynor JD, Glownia JM, Hong K, Kroll T, Lee JH, Poulter BI, Reinhard M, Sokaras D, Zhang Y, Doumy G, March AM, Southworth SH, Mukamel S, Cordones AA, Schoenlein RW, Govind N, Khalil M. Femtosecond X-ray Spectroscopy Directly Quantifies Transient Excited-State Mixed Valency. J Phys Chem Lett 2022; 13:378-386. [PMID: 34985900 DOI: 10.1021/acs.jpclett.1c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)5FeIICNRuIII(NH3)5]-, in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.6 ± 0.2, resulting from excited-state metal-to-metal charge transfer, on an ∼60 fs time scale. Our combined experimental and computational approach provides a spectroscopic ruler for quantifying excited-state valency in solvated complexes.
Collapse
Affiliation(s)
| | - Zachary W Fox
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Amity Andersen
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kasper S Kjaer
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Julia Carlstad
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - James D Gaynor
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kiryong Hong
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas Kroll
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin I Poulter
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Marco Reinhard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yu Zhang
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 94025, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 94025, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert W Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Jay RM, Kunnus K, Wernet P, Gaffney KJ. Capturing Atom-Specific Electronic Structural Dynamics of Transition-Metal Complexes with Ultrafast Soft X-Ray Spectroscopy. Annu Rev Phys Chem 2022; 73:187-208. [DOI: 10.1146/annurev-physchem-082820-020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The atomic specificity of X-ray spectroscopies provides a distinct perspective on molecular electronic structure. For 3 d metal coordination and organometallic complexes, the combination of metal- and ligand-specific X-ray spectroscopies directly interrogates metal–ligand covalency—the hybridization of metal and ligand electronic states. Resonant inelastic X-ray scattering (RIXS), the X-ray analog of resonance Raman scattering, provides access to all classes of valence excited states in transition-metal complexes, making it a particularly powerful means of characterizing the valence electronic structure of 3 d metal complexes. Recent advances in X-ray free-electron laser sources have enabled RIXS to be extended to the ultrafast time domain. We review RIXS studies of two archetypical photochemical processes: charge-transfer excitation in ferricyanide and ligand photodissociation in iron pentacarbonyl. These studies demonstrate femtosecond-resolution RIXS can directly characterize the time-evolving electronic structure, including the evolution of the metal–ligand covalency. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Raphael M. Jay
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kristjan Kunnus
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kelly J. Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California, USA
| |
Collapse
|
9
|
Jay RM, Eckert S, Van Kuiken BE, Ochmann M, Hantschmann M, Cordones AA, Cho H, Hong K, Ma R, Lee JH, Dakovski GL, Turner JJ, Minitti MP, Quevedo W, Pietzsch A, Beye M, Kim TK, Schoenlein RW, Wernet P, Föhlisch A, Huse N. Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge. J Phys Chem Lett 2021; 12:6676-6683. [PMID: 34260255 PMCID: PMC8312498 DOI: 10.1021/acs.jpclett.1c01401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 06/11/2023]
Abstract
We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.
Collapse
Affiliation(s)
- Raphael M. Jay
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | | | - Miguel Ochmann
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| | - Markus Hantschmann
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Amy A. Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Hana Cho
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Kiryong Hong
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Rory Ma
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Georgi L. Dakovski
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Joshua J. Turner
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
- Stanford Institute for Materials and Energy Sciences,
Stanford University, Stanford, California 94305,
United States
| | - Michael P. Minitti
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Annette Pietzsch
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Martin Beye
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei
University, Seoul 03722, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Philippe Wernet
- Department of Physics and Astronomy,
Uppsala University, 75120 Uppsala,
Sweden
| | - Alexander Föhlisch
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Nils Huse
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| |
Collapse
|
10
|
Cole-Filipiak NC, Troß J, Schrader P, McCaslin LM, Ramasesha K. Ultraviolet photodissociation of gas-phase iron pentacarbonyl probed with ultrafast infrared spectroscopy. J Chem Phys 2021; 154:134308. [PMID: 33832268 DOI: 10.1063/5.0041074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well known that ultraviolet photoexcitation of iron pentacarbonyl results in rapid loss of carbonyl ligands leading to the formation of coordinatively unsaturated iron carbonyl compounds. We employ ultrafast mid-infrared transient absorption spectroscopy to probe the photodissociation dynamics of gas-phase iron pentacarbonyl following ultraviolet excitation at 265 and 199 nm. After photoexcitation at 265 nm, our results show evidence for sequential dissociation of iron pentacarbonyl to form iron tricarbonyl via a short-lived iron tetracarbonyl intermediate. Photodissociation at 199 nm results in the prompt production of Fe(CO)3 within 0.25 ps via several energetically accessible pathways. An additional 15 ps time constant extracted from the data is tentatively assigned to intersystem crossing to the triplet manifold of iron tricarbonyl or iron dicarbonyl. Mechanisms for formation of iron tetracarbonyl, iron tricarbonyl, and iron dicarbonyl are proposed and theoretically validated with one-dimensional cuts through the potential energy surface as well as bond dissociation energies. Ground state calculations are computed at the CCSD(T) level of theory and excited states are computed with EOM-EE-CCSD(dT).
Collapse
Affiliation(s)
- Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| |
Collapse
|
11
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
12
|
Soupart A, Alary F, Heully JL, Elliott PIP, Dixon IM. Theoretical Study of the Full Photosolvolysis Mechanism of [Ru(bpy)3]2+: Providing a General Mechanistic Roadmap for the Photochemistry of [Ru(N^N)3]2+-Type Complexes toward Both Cis and Trans Photoproducts. Inorg Chem 2020; 59:14679-14695. [DOI: 10.1021/acs.inorgchem.0c01843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adrien Soupart
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Paul I. P. Elliott
- Department of Chemistry and Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Isabelle M. Dixon
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
13
|
Maganas D, Kowalska JK, Van Stappen C, DeBeer S, Neese F. Mechanism of L 2,3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment-A case study on V (IV)/V (III) complexes. J Chem Phys 2020; 152:114107. [PMID: 32199419 DOI: 10.1063/1.5129029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this work, we present a combined experimental and theoretical study on the V L2,3-edge x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra of VIVO(acac)2 and VIII(acac)3 prototype complexes. The recorded V L2,3-edge XAS and XMCD spectra are richly featured in both V L3 and L2 spectral regions. In an effort to predict and interpret the nature of the experimentally observed spectral features, a first-principles approach for the simultaneous prediction of XAS and XMCD spectra in the framework of wavefunction based ab initio methods is presented. The theory used here has previously been formulated for predicting optical absorption and MCD spectra. In the present context, it is applied to the prediction of the V L2,3-edge XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes. In this approach, the spin-free Hamiltonian is computed on the basis of the complete active space configuration interaction (CASCI) in conjunction with second order N-electron valence state perturbation theory (NEVPT2) as well as the density functional theory (DFT)/restricted open configuration interaction with singles configuration state functions based on a ground state Kohn-Sham determinant (ROCIS/DFT). Quasi-degenerate perturbation theory is then used to treat the spin-orbit coupling (SOC) operator variationally at the many particle level. The XAS and XMCD transitions are computed between the relativistic many particle states, considering their respective Boltzmann populations. These states are obtained from the diagonalization of the SOC operator along with the spin and orbital Zeeman operators. Upon averaging over all possible magnetic field orientations, the XAS and XMCD spectra of randomly oriented samples are obtained. This approach does not rely on the validity of low-order perturbation theory and provides simultaneous access to the calculation of XMCD A, B, and C terms. The ability of the method to predict the XMCD C-term signs and provide access to the XMCD intensity mechanism is demonstrated on the basis of a generalized state coupling mechanism based on the type of the excitations dominating the relativistically corrected states. In the second step, the performance of CASCI, CASCI/NEVPT2, and ROCIS/DFT is evaluated. The very good agreement between theory and experiment has allowed us to unravel the complicated XMCD C-term mechanism on the basis of the SOC interaction between the various multiplets with spin S' = S, S ± 1. In the last step, it is shown that the commonly used spin and orbital sum rules are inadequate in interpreting the intensity mechanism of the XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes as they breakdown when they are employed to predict their magneto-optical properties. This conclusion is expected to hold more generally.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
On the Possible Coordination on a 3MC State Itself? Mechanistic Investigation Using DFT-Based Methods. INORGANICS 2020. [DOI: 10.3390/inorganics8020015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding light-induced ligand exchange processes is key to the design of efficient light-releasing prodrugs or photochemically driven functional molecules. Previous mechanistic investigations had highlighted the pivotal role of metal-centered (MC) excited states in the initial ligand loss step. The question remains whether they are equally important in the subsequent ligand capture step. This article reports the mechanistic study of direct acetonitrile coordination onto a 3MC state of [Ru(bpy)3]2+, leading to [Ru(bpy)2(κ1-bpy)(NCMe)]2+ in a 3MLCT (metal-to-ligand charge transfer) state. Coordination of MeCN is indeed accompanied by the decoordination of one pyridine ring of a bpy ligand. As estimated from Nudged Elastic Band calculations, the energy barrier along the minimum energy path is 20 kcal/mol. Interestingly, the orbital analysis conducted along the reaction path has shown that creation of the metallic vacancy can be achieved by reverting the energetic ordering of key dσ* and bpy-based π* orbitals, resulting in the change of electronic configuration from 3MC to 3MLCT. The approach of the NCMe lone pair contributes to destabilizing the dσ* orbital by electrostatic repulsion.
Collapse
|
15
|
Ismail ASM, Uemura Y, Park SH, Kwon S, Kim M, Elnaggar H, Frati F, Niwa Y, Wadati H, Hirata Y, Zhang Y, Yamagami K, Yamamoto S, Matsuda I, Halisdemir U, Koster G, Weckhuysen BM, de Groot FMF. Direct observation of the electronic states of photoexcited hematite with ultrafast 2p3d X-ray absorption spectroscopy and resonant inelastic X-ray scattering. Phys Chem Chem Phys 2020; 22:2685-2692. [DOI: 10.1039/c9cp03374b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ultrafast Fe L3 XAS and 2p3d RIXS elucidate the photoexcitation process of hematite.
Collapse
|
16
|
Bokarev SI, Kühn O. Theoretical X‐ray spectroscopy of transition metal compounds. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1433] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Oliver Kühn
- Institut für Physik Universität Rostock Rostock Germany
| |
Collapse
|
17
|
Wernet P. Chemical interactions and dynamics with femtosecond X-ray spectroscopy and the role of X-ray free-electron lasers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170464. [PMID: 30929622 PMCID: PMC6452048 DOI: 10.1098/rsta.2017.0464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
X-ray free-electron lasers with intense, tuneable and short-pulse X-ray radiation are transformative tools for the investigation of transition-metal complexes and metalloproteins. This becomes apparent in particular when combining the experimental observables from X-ray spectroscopy with modern theoretical tools for calculations of electronic structures and X-ray spectra from first principles. The combination gives new insights into how charge and spin densities change in chemical reactions and how they determine reactivity. This is demonstrated for the investigations of structural dynamics with metal K-edge absorption spectroscopy, spin states in excited-state dynamics with metal 3p-3d exchange interactions, the frontier-orbital interactions in dissociation and substitution reactions with metal-specific X-ray spectroscopy, and studies of metal oxidation states with femtosecond pulses for 'probe-before-destroy' spectroscopy. The role of X-ray free-electron lasers is addressed with thoughts about how they enable 'bringing back together' different aspects of the same problem and this is thought to go beyond a conventional review paper where these aspects are formulated in italic font type in a prequel, an interlude and in a sequel. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
|
18
|
Maganas D, Kowalska JK, Nooijen M, DeBeer S, Neese F. Comparison of multireference ab initio wavefunction methodologies for X-ray absorption edges: A case study on [Fe(II/III)Cl4]2–/1– molecules. J Chem Phys 2019; 150:104106. [DOI: 10.1063/1.5051613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K. Kowalska
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Serena DeBeer
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Multiconfigurational Approach to X-ray Spectroscopy of Transition Metal Complexes. TRANSITION METALS IN COORDINATION ENVIRONMENTS 2019. [DOI: 10.1007/978-3-030-11714-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Wu X, Liu Z, Murphy TS, Sun XZ, Hanson-Heine MWD, Towrie M, Harvey JN, George MW. The effect of coordination of alkanes, Xe and CO 2 (η 1-OCO) on changes in spin state and reactivity in organometallic chemistry: a combined experimental and theoretical study of the photochemistry of CpMn(CO) 3. Faraday Discuss 2019; 220:86-104. [PMID: 31608916 DOI: 10.1039/c9fd00067d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and theoretical study is presented of several ligand addition reactions of the triplet fragment 3CpMn(CO)2 formed upon photolysis of CpMn(CO)3. Experimental data are provided for reactions in n-heptane and perfluoromethylcyclohexane (PFMCH), as well as in PFMCH doped with C2H6, Xe and CO2. In PFMCH we find that the conversion of 3CpMn(CO)2 to 1CpMn(CO)2(PFMCH) is much slower (τ = 18 (±3) ns) than the corresponding reactions in conventional alkanes (τ = 111 (±10) ps). We measure the effect of the coordination ability by doping PFMCH with alkane, Xe and CO2; these doped ligands form the corresponding singlet adducts with significantly variable formation rates. The reactivity as measured by the addition timescale follows the order 1CpMn(CO)2(C5H10) (τ = 270 (±10) ps) > 1CpMn(CO)2Xe (τ = 3.9 (±0.4) ns) ∼ 1CpMn(CO)2(CO2) (τ = 4.7 (±0.5) ns) > 1CpMn(CO)2(C7F14) (τ = 18 (±3) ns). Electronic structure theory calculations of the singlet and triplet potential energy surfaces and of their intersections, together with non-adiabatic statistical rate theory, reproduce the observed rates semi-quantitatively. It is shown that triplet adducts of the ligand and 3CpMn(CO)2 play a role in the kinetics, and account for the variable timescales observed experimentally.
Collapse
Affiliation(s)
- Xue Wu
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Maradzike E, DePrince AE. Modeling core-level excitations with variationally optimized reduced-density matrices and the extended random phase approximation. J Chem Phys 2018; 149:234101. [PMID: 30579305 DOI: 10.1063/1.5048924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The information contained within ground-state one- and two-electron reduced-density matrices (RDMs) can be used to compute wave functions and energies for electronically excited states through the extended random phase approximation (ERPA). The ERPA is an appealing framework for describing excitations out of states obtained via the variational optimization of the two-electron RDM (2-RDM), as the variational 2-RDM (v2RDM) approach itself can only be used to describe the lowest-energy state of a given spin symmetry. The utility of the ERPA for predicting near-edge features relevant to x-ray absorption spectroscopy is assessed for the case that the 2-RDM is obtained from a ground-state v2RDM-driven complete active space self-consistent field (CASSCF) computation. A class of killer conditions for the CASSCF-specific ERPA excitation operator is derived, and it is demonstrated that a reliable description of core-level excitations requires an excitation operator that fulfills these conditions; the core-valence separation (CVS) scheme yields such an operator. Absolute excitation energies evaluated within the CASSCF/CVS-ERPA framework are slightly more accurate than those obtained from the usual random phase approximation (RPA), but the CVS-ERPA is not more accurate than RPA for predicting the relative positions of near-edge features. Nonetheless, CVS-ERPA is established as a reasonable starting point for the treatment of core-level excitations using variationally optimized 2-RDMs.
Collapse
Affiliation(s)
- Elvis Maradzike
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
22
|
Leitner T, Josefsson I, Mazza T, Miedema PS, Schröder H, Beye M, Kunnus K, Schreck S, Düsterer S, Föhlisch A, Meyer M, Odelius M, Wernet P. Time-resolved electron spectroscopy for chemical analysis of photodissociation: Photoelectron spectra of Fe(CO)5, Fe(CO)4, and Fe(CO)3. J Chem Phys 2018; 149:044307. [DOI: 10.1063/1.5035149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. Leitner
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - I. Josefsson
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - T. Mazza
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - P. S. Miedema
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - H. Schröder
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - M. Beye
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - K. Kunnus
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - S. Schreck
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - S. Düsterer
- Deutsches Elektronen-Synchrotron DESY, FS-FLASH, Notkestrasse 85, 22607 Hamburg, Germany
| | - A. Föhlisch
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - M. Meyer
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Ph. Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
23
|
Kubas A, Verkamp M, Vura-Weis J, Neese F, Maganas D. Restricted Open-Shell Configuration Interaction Singles Study on M- and L-edge X-ray Absorption Spectroscopy of Solid Chemical Systems. J Chem Theory Comput 2018; 14:4320-4334. [DOI: 10.1021/acs.jctc.8b00302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Adam Kubas
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Max Verkamp
- Department of Chemistry, University of Illinois, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
24
|
Jay RM, Norell J, Eckert S, Hantschmann M, Beye M, Kennedy B, Quevedo W, Schlotter WF, Dakovski GL, Minitti MP, Hoffmann MC, Mitra A, Moeller SP, Nordlund D, Zhang W, Liang HW, Kunnus K, Kubiček K, Techert SA, Lundberg M, Wernet P, Gaffney K, Odelius M, Föhlisch A. Disentangling Transient Charge Density and Metal-Ligand Covalency in Photoexcited Ferricyanide with Femtosecond Resonant Inelastic Soft X-ray Scattering. J Phys Chem Lett 2018; 9:3538-3543. [PMID: 29888918 DOI: 10.1021/acs.jpclett.8b01429] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time-resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal-ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. π-Back-donation is found to be mainly determined by the metal site occupation, whereas the ligand hole instead influences σ-donation. Our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes.
Collapse
Affiliation(s)
- Raphael M Jay
- Institut für Physik und Astronomie , Universität Potsdam , 14476 Potsdam , Germany
| | - Jesper Norell
- Department of Physics , Stockholm University , Albanova University Center , 10691 Stockholm , Sweden
| | - Sebastian Eckert
- Institut für Physik und Astronomie , Universität Potsdam , 14476 Potsdam , Germany
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin , Germany
| | - Markus Hantschmann
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin , Germany
| | - Martin Beye
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin , Germany
- DESY Photon Science , 22607 Hamburg , Germany
| | - Brian Kennedy
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin , Germany
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin , Germany
| | | | | | | | | | - Ankush Mitra
- LCLS, SLAC , Menlo Park , California 94025 , United States
| | | | - Dennis Nordlund
- PULSE Institute , SLAC , Menlo Park , California 94025 , United States
| | - Wenkai Zhang
- PULSE Institute , SLAC , Menlo Park , California 94025 , United States
| | - Huiyang W Liang
- PULSE Institute , SLAC , Menlo Park , California 94025 , United States
| | - Kristjan Kunnus
- PULSE Institute , SLAC , Menlo Park , California 94025 , United States
| | | | - Simone A Techert
- DESY Photon Science , 22607 Hamburg , Germany
- Institute for X-ray Physics , Göttingen University , 37077 Göttingen , Germany
| | - Marcus Lundberg
- Department of Chemistry - Ȧngström Laboratory , Uppsala University , 75121 Uppsala , Sweden
- Department of Biotechnology, Chemistry and Pharmacy , Università di Siena , 53100 Siena , Italy
| | - Philippe Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin , Germany
| | - Kelly Gaffney
- PULSE Institute , SLAC , Menlo Park , California 94025 , United States
| | - Michael Odelius
- Department of Physics , Stockholm University , Albanova University Center , 10691 Stockholm , Sweden
| | - Alexander Föhlisch
- Institut für Physik und Astronomie , Universität Potsdam , 14476 Potsdam , Germany
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin , Germany
| |
Collapse
|
25
|
Chantzis A, Kowalska JK, Maganas D, DeBeer S, Neese F. Ab Initio Wave Function-Based Determination of Element Specific Shifts for the Efficient Calculation of X-ray Absorption Spectra of Main Group Elements and First Row Transition Metals. J Chem Theory Comput 2018; 14:3686-3702. [DOI: 10.1021/acs.jctc.8b00249] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Agisilaos Chantzis
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K. Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
26
|
Norell J, Jay RM, Hantschmann M, Eckert S, Guo M, Gaffney KJ, Wernet P, Lundberg M, Föhlisch A, Odelius M. Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species. Phys Chem Chem Phys 2018; 20:7243-7253. [PMID: 29484313 PMCID: PMC5885270 DOI: 10.1039/c7cp08326b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L3-edge RIXS in the ferricyanide complex Fe(CN)63-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.
Collapse
Affiliation(s)
- Jesper Norell
- Department of Physics , AlbaNova University Center , Stockholm University , SE-106 91 Stockholm , Sweden .
| | - Raphael M. Jay
- Universität Potsdam , Institut für Physik und Astronomie , Karl-Liebknecht-Straße 32 , 14476 Potsdam , Germany
| | - Markus Hantschmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Institute for Methods and Instrumentation for Synchrotron Radiation Research , 12489 Berlin , Germany
| | - Sebastian Eckert
- Universität Potsdam , Institut für Physik und Astronomie , Karl-Liebknecht-Straße 32 , 14476 Potsdam , Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Institute for Methods and Instrumentation for Synchrotron Radiation Research , 12489 Berlin , Germany
| | - Meiyuan Guo
- Department of Chemistry – Ångström Laboratory , Uppsala University , 75121 Uppsala , Sweden
| | - Kelly J. Gaffney
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Philippe Wernet
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Institute for Methods and Instrumentation for Synchrotron Radiation Research , 12489 Berlin , Germany
| | - Marcus Lundberg
- Department of Chemistry – Ångström Laboratory , Uppsala University , 75121 Uppsala , Sweden
- Department of Biotechnology , Chemistry and Pharmacy , Universitá di Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Alexander Föhlisch
- Universität Potsdam , Institut für Physik und Astronomie , Karl-Liebknecht-Straße 32 , 14476 Potsdam , Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Institute for Methods and Instrumentation for Synchrotron Radiation Research , 12489 Berlin , Germany
| | - Michael Odelius
- Department of Physics , AlbaNova University Center , Stockholm University , SE-106 91 Stockholm , Sweden .
| |
Collapse
|
27
|
Maganas D, DeBeer S, Neese F. Pair Natural Orbital Restricted Open-Shell Configuration Interaction (PNO-ROCIS) Approach for Calculating X-ray Absorption Spectra of Large Chemical Systems. J Phys Chem A 2018; 122:1215-1227. [DOI: 10.1021/acs.jpca.7b10880] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T, Haase J, Ingold G, Johnson SL, Knopp G, Lemke H, Milne CJ, Pedrini B, Radi P, Schertler G, Standfuss J, Staub U, Patthey L. Perspective: Opportunities for ultrafast science at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061602. [PMID: 29376109 PMCID: PMC5758366 DOI: 10.1063/1.4997222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
Collapse
Affiliation(s)
- Rafael Abela
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Paul Beaud
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-FSB, Station 6, 1015 Lausanne, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Johannes Haase
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Gerhard Ingold
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Steven L Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Henrik Lemke
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chris J Milne
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Radi
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Staub
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Luc Patthey
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
30
|
Maganas D, DeBeer S, Neese F. A Restricted Open Configuration Interaction with Singles Method To Calculate Valence-to-Core Resonant X-ray Emission Spectra: A Case Study. Inorg Chem 2017; 56:11819-11836. [PMID: 28920680 PMCID: PMC5692824 DOI: 10.1021/acs.inorgchem.7b01810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 11/29/2022]
Abstract
In this work, a new protocol for the calculation of valence-to-core resonant X-ray emission (VtC RXES) spectra is introduced. The approach is based on the previously developed restricted open configuration interaction with singles (ROCIS) method and its parametrized version, based on a ground-state Kohn-Sham determinant (DFT/ROCIS) method. The ROCIS approach has the following features: (1) In the first step approximation, many-particle eigenstates are calculated in which the total spin is retained as a good quantum number. (2) The ground state with total spin S and excited states with spin S' = S, S ± 1, are obtained. (3) These states have a qualitatively correct multiplet structure. (4) Quasi-degenerate perturbation theory is used to treat the spin-orbit coupling operator variationally at the many-particle level. (5) Transition moments are obtained between the relativistic many-particle states. The method has shown great potential in the field of X-ray spectroscopy, in particular in the field of transition-metal L-edge, which cannot be described correctly with particle-hole theories. In this work, the method is extended to the calculation of resonant VtC RXES [alternatively referred to as 1s-VtC resonant inelastic X-ray scattering (RIXS)] spectra. The complete Kramers-Dirac-Heisenerg equation is taken into account. Thus, state interference effects are treated naturally within this protocol. As a first application of this protocol, a computational study on the previously reported VtC RXES plane on a molecular managanese(V) complex is performed. Starting from conventional X-ray absorption spectra (XAS), we present a systematic study that involves calculations and electronic structure analysis of both the XAS and non-resonant and resonant VtC XES spectra. The very good agreement between theory and experiment, observed in all cases, allows us to unravel the complicated intensity mechanism of these spectroscopic techniques as a synergic function of state polarization and interference effects. In general, intense features in the RIXS spectra originate from absorption and emission processes that involve nonorthogonal transition moments. We also present a graphical method to determine the sign of the interference contributions.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|
32
|
Wernet P, Leitner T, Josefsson I, Mazza T, Miedema PS, Schröder H, Beye M, Kunnus K, Schreck S, Radcliffe P, Düsterer S, Meyer M, Odelius M, Föhlisch A. Communication: Direct evidence for sequential dissociation of gas-phase Fe(CO) 5 via a singlet pathway upon excitation at 266 nm. J Chem Phys 2017; 146:211103. [PMID: 28595420 PMCID: PMC5457291 DOI: 10.1063/1.4984774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/18/2017] [Indexed: 11/14/2022] Open
Abstract
We prove the hitherto hypothesized sequential dissociation of Fe(CO)5 in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO)4 within the temporal resolution of the experiment and further to Fe(CO)3 within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO)5, Fe(CO)4, and Fe(CO)3 showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO)5 complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes.
Collapse
Affiliation(s)
- Ph Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - T Leitner
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - I Josefsson
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - T Mazza
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - P S Miedema
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - H Schröder
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - M Beye
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - K Kunnus
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - S Schreck
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - P Radcliffe
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - S Düsterer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - M Meyer
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - A Föhlisch
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
33
|
Reinhard M, Auböck G, Besley NA, Clark IP, Greetham GM, Hanson-Heine MWD, Horvath R, Murphy TS, Penfold TJ, Towrie M, George MW, Chergui M. Photoaquation Mechanism of Hexacyanoferrate(II) Ions: Ultrafast 2D UV and Transient Visible and IR Spectroscopies. J Am Chem Soc 2017; 139:7335-7347. [DOI: 10.1021/jacs.7b02769] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Reinhard
- Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, and Lausanne Centre
for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Gerald Auböck
- Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, and Lausanne Centre
for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Nicholas A. Besley
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ian P. Clark
- Central
Laser Facility, Research Complex at Harwell Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | | | - Raphael Horvath
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Thomas S. Murphy
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Thomas J. Penfold
- School
of Chemistry, Newcastle University, Newcastle upon Tyne NE1
7RU, United Kingdom
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Michael W. George
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department
of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| | - Majed Chergui
- Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, and Lausanne Centre
for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Godehusen K, Richter T, Zimmermann P, Wernet P. Iron L-Edge Absorption Spectroscopy of Iron Pentacarbonyl and Ferrocene in the Gas Phase. J Phys Chem A 2017; 121:66-72. [PMID: 27992225 DOI: 10.1021/acs.jpca.6b10399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fe L-edge X-ray absorption spectra of gas-phase iron pentacarbonyl and ferrocene measured in total-ion yield mode are reported. Comparison to previously published spectra of free iron atoms and gaseous iron chloride demonstrates how the interplay of local atomic multiplet effects and orbital interactions in the metal-ligand bonds varies for the different systems. We find changes in the degree of metal-ligand covalency to be reflected in the measured 2p absorption onset. Orbital- or state-specific fragmentation is furthermore investigated in iron pentacarbonyl and ferrocene by analyzing the partial-ion-yield spectra at the Fe L-edge. Strong dependence of the yields of different fragments is observed in ferrocene in contrast to iron pentacarbonyl. This difference is attributed to the different degrees to which the 2p core hole is screened in the two systems and to which charge is rearranged in the Auger final states. We provide experimental benchmark spectra for new ab initio approaches for calculating metal L-edge absorption spectra of metal complexes.
Collapse
Affiliation(s)
- Kai Godehusen
- Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Tobias Richter
- European Spallation Source , Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Peter Zimmermann
- Technische Universität Berlin , Hardenbergstraße 36, 10623 Berlin, Germany
| | - Philippe Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Straße 15, 12489 Berlin, Germany
| |
Collapse
|
35
|
Hua W, Bennett K, Zhang Y, Luo Y, Mukamel S. Study of double core hole excitations in molecules by X-ray double-quantum-coherence signals: a multi-configuration simulation. Chem Sci 2016; 7:5922-5933. [PMID: 30034734 PMCID: PMC6022231 DOI: 10.1039/c6sc01571a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/11/2016] [Indexed: 12/02/2022] Open
Abstract
The multi-configurational self-consistent field method is employed to simulate the two-dimensional all-X-ray double-quantum-coherence (XDQC) spectroscopy, a four-wave mixing signal that provides direct signatures of double core hole (DCH) states. The valence electronic structure is probed by capturing the correlation between the single (SCH) and double core hole states. The state-averaged restricted-active-space self-consistent field (SA-RASSCF) approach is used which can treat the valence, SCH, and DCH states at the same theoretical level, and applies to all types of DCHs (located on one or two atoms, K-edge or L-edge), with both accuracy and efficiency. Orbital relaxation introduced by the core hole(s) and the static electron correlation is properly accounted for. The XDQC process can take place via different intermediate DCH state channels by tuning the pulse frequencies. We simulate the XDQC signals for the three isomers of aminophenol at 8 pulse frequency configurations, covering all DCH pathways involving the N1s and O1s core hole (N1sN1s, O1sO1s and N1sO1s), which reveal different patterns of valence excitations.
Collapse
Affiliation(s)
- Weijie Hua
- Department of Chemistry , University of California , Irvine , CA 92697-2025 , USA .
- Department of Theoretical Chemistry and Biology , School of Biotechnology , KTH Royal Institute of Technology , S-10691 Stockholm , Sweden
| | - Kochise Bennett
- Department of Chemistry , University of California , Irvine , CA 92697-2025 , USA .
| | - Yu Zhang
- Department of Chemistry , University of California , Irvine , CA 92697-2025 , USA .
| | - Yi Luo
- Department of Theoretical Chemistry and Biology , School of Biotechnology , KTH Royal Institute of Technology , S-10691 Stockholm , Sweden
- Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Shaul Mukamel
- Department of Chemistry , University of California , Irvine , CA 92697-2025 , USA .
| |
Collapse
|
36
|
Kunnus K, Josefsson I, Rajkovic I, Schreck S, Quevedo W, Beye M, Weniger C, Grübel S, Scholz M, Nordlund D, Zhang W, Hartsock RW, Gaffney KJ, Schlotter WF, Turner JJ, Kennedy B, Hennies F, de Groot FMF, Techert S, Odelius M, Wernet P, Föhlisch A. Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)5 to Fe(CO)4EtOH. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043204. [PMID: 26958587 PMCID: PMC4752567 DOI: 10.1063/1.4941602] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/22/2016] [Indexed: 05/19/2023]
Abstract
We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the (1)A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from (1)B2 to (3)B2 is rationalized by the proposed (1)B2 → (1)A1 → (3)B2 mechanism. Ultrafast ligation of the (1)B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the (3)B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via (1)B2 → (1)A1 → (1)A' Fe(CO)4EtOH pathway and the time scale of the (1)A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.
Collapse
Affiliation(s)
| | - I Josefsson
- Department of Physics, Stockholm University , AlbaNova University Centre, 10691 Stockholm, Sweden
| | - I Rajkovic
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37070 Göttingen, Germany
| | | | - W Quevedo
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - M Beye
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - C Weniger
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - S Grübel
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37070 Göttingen, Germany
| | - M Scholz
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37070 Göttingen, Germany
| | - D Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - W Zhang
- PULSE Institute , SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R W Hartsock
- PULSE Institute , SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - K J Gaffney
- PULSE Institute , SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - W F Schlotter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - J J Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - B Kennedy
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - F Hennies
- MAX-lab , P.O. Box 118, 221 00 Lund, Sweden
| | - F M F de Groot
- Department of Chemistry, Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | - M Odelius
- Department of Physics, Stockholm University , AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Ph Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | | |
Collapse
|
37
|
Mullins T, Küpper J. Preface to the Special Edition on Femtochemistry and "The Hamburg Conference on Femtochemistry 2015 (FEMTO12)". STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043001. [PMID: 27648462 PMCID: PMC5001970 DOI: 10.1063/1.4961613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/13/2016] [Indexed: 11/15/2022]
Affiliation(s)
- Terry Mullins
- Center for Free-Electron Laser Science , DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | |
Collapse
|
38
|
Chergui M. Time-resolved X-ray spectroscopies of chemical systems: New perspectives. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:031001. [PMID: 27376102 PMCID: PMC4902826 DOI: 10.1063/1.4953104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
The past 3-5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.
Collapse
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS) , ISIC-FSB, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|