1
|
Herasymenko K, Walisinghe D, Konno M, Barneschi L, de Waele I, Sliwa M, Inoue K, Olivucci M, Haacke S. Archaerhodopsin 3 is an ideal template for the engineering of highly fluorescent optogenetic reporters. Chem Sci 2025; 16:761-774. [PMID: 39634579 PMCID: PMC11612921 DOI: 10.1039/d4sc05120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Archaerhodopsin-3 (AR-3) variants stand out among other rhodopsins in that they display a weak, but voltage-sensitive, near-infrared fluorescence emission. This has led to their application in optogenetics both in cell cultures and small animals. However, in the context of improving the fluorescence characteristics of the next generation of AR-3 reporters, an understanding of their ultrafast light-response in light-adapted conditions, is mandatory. To this end, we present a combined experimental and computational investigation of the excited state dynamics and quantum yields of AR-3 and its DETC and Arch-5 variants. The latter always display a mixture of all-trans/15-anti and 13-cis/15-syn isomers, which leads to a bi-exponential excited state decay. The isomerisation quantum yield is reduced more than 20 times as compared to WT AR-3 and proves that the steady-state fluorescence is induced by a single absorption photon event. In wild-type AR-3, we show that a 300 fs, barrier-less and vibrationally coherent isomerization is driven by an unusual covalent electronic character of its all-trans retinal chromophore leading to a metastable twisted diradical (TIDIR), in clear contrast to the standard charge-transfer scenario established for other microbial rhodopsins. We discuss how the presence of TIDIR makes AR-3 an ideal candidate for the design of variants with a one-photon induced fluorescence possibly reaching the emission quantum yield of the top natural emitter neorhodopsin (NeoR).
Collapse
Affiliation(s)
| | - Danushka Walisinghe
- Department of Chemistry, Bowling Green State University Bowling Green OH 43403 USA
| | - Masae Konno
- The Institute for Solid State Physics, University of Tokyo 5-1-5 Kashiwano-ha Kashiwa Chiba 277-8581 Japan
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena I-53100 Siena Italy
| | | | - Michel Sliwa
- LASIRE, Université de Lille, CNRS 59000 Lille France
- LOB, CNRS, INSERM, École Polytechnique, Inst. Polytechnique de Paris 91120 Palaiseau France
| | - Keiichi Inoue
- The Institute for Solid State Physics, University of Tokyo 5-1-5 Kashiwano-ha Kashiwa Chiba 277-8581 Japan
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University Bowling Green OH 43403 USA
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena I-53100 Siena Italy
| | - Stefan Haacke
- University of Strasbourg, CNRS, IPCMS 23 Rue du Loess 67034 Strasbourg France
| |
Collapse
|
2
|
Cui E, Liu H, Wang Z, Chen H, Weng YX. Femtosecond fluorescence conical optical parametric amplification spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033008. [PMID: 38517256 DOI: 10.1063/5.0197254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Parametric superfluorescence (PSF), which originated from the optical amplification of vacuum quantum noise, is the primary noise source of femtosecond fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS). It severely affects the detection limit of FNOPAS to collect the femtosecond time-resolved spectra of extremely weak fluorescence. Here, we report the development of femtosecond fluorescence conical optical parametric amplification spectroscopy (FCOPAS), aimed at effectively suppressing the noise fluctuation from the PSF background. In contrast to traditional FNOPAS configurations utilizing lateral fluorescence collection and dot-like parametric amplification, FCOPAS employs an innovative conical fluorescence collection and ring-like amplification setup. This design enables effective cancellation of noise fluctuation across the entire PSF ring, resulting in an approximate order of magnitude reduction in PSF noise compared to prior FNOPAS outcomes. This advancement enables the resolution of transient fluorescence spectra of 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) dye molecules in ethanol, even at an optically dilute concentration of 10-6 mol/l, with significantly enhanced signal-to-noise ratios. This improvement will be significant for extremely weak fluorescence detection on the femtosecond time scale.
Collapse
Affiliation(s)
- Ennan Cui
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Heyuan Liu
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Wang
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yu-Xiang Weng
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
3
|
Yang J, Gelin MF, Chen L, Šanda F, Thyrhaug E, Hauer J. Two-dimensional fluorescence excitation spectroscopy: A novel technique for monitoring excited-state photophysics of molecular species with high time and frequency resolution. J Chem Phys 2023; 159:074201. [PMID: 37581414 DOI: 10.1063/5.0156297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
We propose a novel UV/Vis femtosecond spectroscopic technique, two-dimensional fluorescence-excitation (2D-FLEX) spectroscopy, which combines spectral resolution during the excitation process with exclusive monitoring of the excited-state system dynamics at high time and frequency resolution. We discuss the experimental feasibility and realizability of 2D-FLEX, develop the necessary theoretical framework, and demonstrate the high information content of this technique by simulating the 2D-FLEX spectra of a model four-level system and the Fenna-Matthews-Olson antenna complex. We show that the evolution of 2D-FLEX spectra with population time directly monitors energy transfer dynamics and can thus yield direct qualitative insight into the investigated system. This makes 2D-FLEX a highly efficient instrument for real-time monitoring of photophysical processes in polyatomic molecules and molecular aggregates.
Collapse
Affiliation(s)
- Jianmin Yang
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic
| | - Erling Thyrhaug
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
4
|
Pyo K, Matus MF, Hulkko E, Myllyperkiö P, Malola S, Kumpulainen T, Häkkinen H, Pettersson M. Atomistic View of the Energy Transfer in a Fluorophore-Functionalized Gold Nanocluster. J Am Chem Soc 2023. [PMID: 37377151 DOI: 10.1021/jacs.3c02292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Understanding the dynamics of Förster resonance energy transfer (FRET) in fluorophore-functionalized nanomaterials is critical for developing and utilizing such materials in biomedical imaging and optical sensing applications. However, structural dynamics of noncovalently bound systems have a significant effect on the FRET properties affecting their applications in solutions. Here, we study the dynamics of the FRET in atomistic detail by disclosing the structural dynamics of the noncovalently bound azadioxotriangulenium dye (KU) and atomically precise gold nanocluster (Au25(p-MBA)18, p-MBA = para-mercaptobenzoic acid) with a combination of experimental and computational methods. Two distinct subpopulations involved in the energy transfer process between the KU dye and the Au25(p-MBA)18 nanoclusters were resolved by time-resolved fluorescence experiments. Molecular dynamics simulations revealed that KU is bound to the surface of Au25(p-MBA)18 by interacting with the p-MBA ligands as a monomer and as a π-π stacked dimer where the center-to-center distance of the monomers to Au25(p-MBA)18 is separated by ∼0.2 nm, thus explaining the experimental observations. The ratio of the observed energy transfer rates was in reasonably good agreement with the well-known 1/R6 distance dependence for FRET. This work discloses the structural dynamics of the noncovalently bound nanocluster-based system in water solution, providing new insight into the dynamics and energy transfer mechanism of the fluorophore-functionalized gold nanocluster at an atomistic level.
Collapse
Affiliation(s)
- Kyunglim Pyo
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - María Francisca Matus
- Nanoscience Center, Department of Physics, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Eero Hulkko
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
- Nanoscience Center, Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Pasi Myllyperkiö
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Sami Malola
- Nanoscience Center, Department of Physics, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Tatu Kumpulainen
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Hannu Häkkinen
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
- Nanoscience Center, Department of Physics, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Mika Pettersson
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| |
Collapse
|
5
|
Nussbaum S, Socie E, Fish GC, Diercks NJ, Hempel H, Friedrich D, Moser JE, Yum JH, Sivula K. Photogenerated charge transfer in Dion-Jacobson type layered perovskite based on naphthalene diimide. Chem Sci 2023; 14:6052-6058. [PMID: 37293640 PMCID: PMC10246667 DOI: 10.1039/d3sc00783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023] Open
Abstract
Incorporating organic semiconducting spacer cations into layered lead halide perovskite structures provides a powerful approach to mitigate the typical strong dielectric and quantum confinement effects by inducing charge-transfer between the organic and inorganic layers. Herein we report the synthesis and characterization of thin films of novel DJ-phase organic-inorganic layered perovskite semiconductors using a naphthalene diimide (NDI) based divalent spacer cation, which is shown to accept photogenerated electrons from the inorganic layer. With alkyl chain lengths of 6 carbons, an NDI-based thin film exhibited electron mobility (based on space charge-limited current for quasi-layered 〈n〉 = 5 material) was found to be as high as 0.03 cm2 V-1 s-1 with no observable trap-filling region suggesting trap passivation by the NDI spacer cation.
Collapse
Affiliation(s)
- Simon Nussbaum
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Etienne Socie
- Photochemical Dynamics Group, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - George C Fish
- Photochemical Dynamics Group, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Nicolas J Diercks
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Hannes Hempel
- Department of Structure and Dynamics of Energy Materials, Helmholtz Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 140109 Berlin Germany
| | - Dennis Friedrich
- Institute for Solar Fuels, Helmholtz Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 140109 Berlin Germany
| | - Jacques-E Moser
- Photochemical Dynamics Group, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jun-Ho Yum
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kevin Sivula
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
6
|
Jones RW, Auty AJ, Wu G, Persson P, Appleby MV, Chekulaev D, Rice CR, Weinstein JA, Elliott PIP, Scattergood PA. Direct Determination of the Rate of Intersystem Crossing in a Near-IR Luminescent Cr(III) Triazolyl Complex. J Am Chem Soc 2023. [PMID: 37224437 DOI: 10.1021/jacs.3c01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A detailed understanding of the dynamics of photoinduced processes occurring in the electronic excited state is essential in informing the rational design of photoactive transition-metal complexes. Here, the rate of intersystem crossing in a Cr(III)-centered spin-flip emitter is directly determined through the use of ultrafast broadband fluorescence upconversion spectroscopy (FLUPS). In this contribution, we combine 1,2,3-triazole-based ligands with a Cr(III) center and report the solution-stable complex [Cr(btmp)2]3+ (btmp = 2,6-bis(4-phenyl-1,2,3-triazol-1-yl-methyl)pyridine) (13+), which displays near-infrared (NIR) luminescence at 760 nm (τ = 13.7 μs, ϕ = 0.1%) in fluid solution. The excited-state properties of 13+ are probed in detail through a combination of ultrafast transient absorption (TA) and femtosecond-to-picosecond FLUPS. Although TA spectroscopy allows us to observe the evolution of phosphorescent excited states within the doublet manifold, more significantly and for the first time for a complex of Cr(III), we utilize FLUPS to capture the short-lived fluorescence from initially populated quartet excited states immediately prior to the intersystem crossing process. The decay of fluorescence from the low-lying 4MC state therefore allows us to assign a value of (823 fs)-1 to the rate of intersystem crossing. Importantly, the sensitivity of FLUPS to only luminescent states allows us to disentangle the rate of intersystem crossing from other closely associated excited-state events, something which has not been possible in the spectroscopic studies previously reported for luminescent Cr(III) systems.
Collapse
Affiliation(s)
- Robert W Jones
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Alexander J Auty
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Guanzhi Wu
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Petter Persson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Martin V Appleby
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Craig R Rice
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Paul I P Elliott
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul A Scattergood
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| |
Collapse
|
7
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
8
|
Nazarov AE, Ivanov AI, Rosspeintner A, Angulo G. Full relaxation dynamics recovery from ultrafast fluorescence experiments by means of the stochastic model: Does the solvent response dynamics depend on the fluorophore nature? J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Whittock AL, Abiola TT, Stavros VG. A Perspective on Femtosecond Pump-Probe Spectroscopy in the Development of Future Sunscreens. J Phys Chem A 2022; 126:2299-2308. [PMID: 35394773 PMCID: PMC9036518 DOI: 10.1021/acs.jpca.2c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Given
the negative impacts of overexposure to ultraviolet radiation
(UVR) on humans, sunscreens have become a widely used product. Certain
ingredients within sunscreens are responsible for photoprotection
and these are known, collectively herein, as ultraviolet (UV) filters.
Generally speaking, organic UV filters work by absorbing the potentially
harmful UVR and dissipating this energy as harmless heat. This process
happens on picosecond time scales and so femtosecond pump–probe
spectroscopy (FPPS) is an ideal technique for tracking this energy
conversion in real time. Coupling FPPS with complementary techniques,
including steady-state spectroscopy and computational methods, can
provide a detailed mechanistic picture of how UV filters provide photoprotection.
As such, FPPS is crucial in aiding the future design of UV filters.
This Perspective sheds light on the advancements made over the past
two years on both approved and nature-inspired UV filters. Moreover,
we suggest where FPPS can be further utilized within sunscreen applications
for future considerations.
Collapse
Affiliation(s)
- Abigail L Whittock
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Temitope T Abiola
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
10
|
Angulo G, Pasitsuparoad P. Recalling the effect of fluorescence anisotropy on the measurement of quantum yields. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120751. [PMID: 34929628 DOI: 10.1016/j.saa.2021.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
We present a quantitative analysis of the deviations introduced by the anisotropy of the fluorescence on the measurement of the quantum yield of emission. Errors of up to 40% can be encountered depending on the characteristics of both sample and apparatus. Additionally, we have analyzed the effect of anisotropy on the study of fluorescence quenching in Stern-Volmer experiments, and on the reconstruction of time-resolved emission spectra. We conclude that the use of polarizers is recommended provided they are well characterized.
Collapse
Affiliation(s)
- Gonzalo Angulo
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Pakorn Pasitsuparoad
- Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| |
Collapse
|
11
|
Forjan M, Zgrablić G, Vdović S, Šekutor M, Basarić N, Kabacinski P, Nazari Haghighi Pashaki M, Frey HM, Cannizzo A, Cerullo G. Photogeneration of quinone methide from adamantylphenol in an ultrafast non-adiabatic dehydration reaction. Phys Chem Chem Phys 2022; 24:4384-4393. [PMID: 35112685 PMCID: PMC8849006 DOI: 10.1039/d1cp05690e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
Abstract
The ultrafast photochemical reaction of quinone methide (QM) formation from adamantylphenol was monitored in real time using femtosecond transient absorption spectroscopy and fluorescence upconversion in solution at room temperature. Experiments were complemented by theoretical studies simulating the reaction pathway and elucidating its mechanism. Excitation with sub-20 fs UV pulses and broadband probing revealed ultrafast formation of the long-lived QM intermediate directly in the ground state, occurring with a time constant of around 100 fs. UV-vis transient absorption data covering temporal dynamics from femtoseconds to hundreds of milliseconds revealed persistence of the absorption band assigned to QM and partially overlapped with other contributions tentatively assigned to triplet excited states of the adamantyl derivative and the phenoxyl radical that are clearly distinguished by their evolution on different time scales. Our data, together with the computations, provide evidence of a non-adiabatic photodehydration reaction, which leads to the formation of QM in the ground state via a conical intersection, circumventing the generation of a transient QM excited state.
Collapse
Affiliation(s)
- Mateo Forjan
- Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia.
| | - Goran Zgrablić
- Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia.
| | - Silvije Vdović
- Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia.
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Piotr Kabacinski
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | | | - Hans-Martin Frey
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
12
|
Mentzel P, Holzapfel M, Schmiedel A, Krummenacher I, Braunschweig H, Wodyński A, Kaupp M, Würthner F, Lambert C. Excited states and spin–orbit coupling in chalcogen substituted perylene diimides and their radical anions. Phys Chem Chem Phys 2022; 24:26254-26268. [DOI: 10.1039/d2cp02723b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel series of chalcogen bay-substituted perylene diimides show increasing SOC, which was investigated in detail via (time-resolved) optical spectroscopy, (spectro)electrochemistry, EPR spectroscopy and TD-DFT calculations.
Collapse
Affiliation(s)
- Paul Mentzel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Artur Wodyński
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Farrow GA, Quick M, Kovalenko SA, Wu G, Sadler A, Chekulaev D, Chauvet AAP, Weinstein JA, Ernsting NP. On the intersystem crossing rate in a Platinum(II) donor-bridge-acceptor triad. Phys Chem Chem Phys 2021; 23:21652-21663. [PMID: 34580688 DOI: 10.1039/d1cp03471e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rates of ultrafast intersystem crossing in acceptor-bridge-donor molecules centered on Pt(II) acetylides are investigated. Specifically, a Pt(II) trans-acetylide triad NAP--Pt--Ph-CH2-PTZ [1], with acceptor 4-ethynyl-N-octyl-1,8-naphthalimide (NAP) and donor phenothiazine (PTZ), is examined in detail. We have previously shown that optical excitation in [1] leads to a manifold of singlet charge-transfer states, S*, which evolve via a triplet charge-transfer manifold into a triplet state 3NAP centered on the acceptor ligand and partly to a charge-separated state 3CSS (NAP--Pt-PTZ+). A complex cascade of electron transfer processes was observed, but intersystem crossing (ISC) rates were not explicitly resolved due to lack of spin selectivity of most ultrafast spectroscopies. Here we revisit the question of ISC with a combination and complementary analysis of (i) transient absorption, (ii) ultrafast broadband fluorescence upconversion, FLUP, which is only sensitive to emissive states, and (iii) femtosecond stimulated Raman spectroscopy, FSR. Raman resonance conditions allow us to observe S* and 3NAP exclusively by FSR, through vibrations which are pertinent only to these two states. This combination of methods enabled us to extract the intersystem crossing rates that were not previously accessible. Multiple timescales (1.6 ps to ∼20 ps) are associated with the rise of triplet species, which can now be assigned conclusively to multiple ISC pathways from a manifold of hot charge-transfer singlet states. The analysis is consistent with previous transient infrared spectroscopy data. A similar rate of ISC, up to 20 ps, is observed in the trans-acetylide NAP--Pt--Ph [2] which maintains two acetylide groups across the platinum center but lacks a donor unit, whilst removal of one acetylide group in mono-acetylide NAP--Pt-Cl [3] leads to >10-fold deceleration of the intersystem crossing process. Our work provides insight on the intersystem crossing dynamics of the organo-metallic complexes, and identifies a general method based on complementary ultrafast spectroscopies to disentangle complex spin, electronic and vibrational processes following photoexcitation.
Collapse
Affiliation(s)
- G A Farrow
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - M Quick
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - S A Kovalenko
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - G Wu
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - A Sadler
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - D Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - A A P Chauvet
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - J A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - N P Ernsting
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
14
|
Pattengale B, Ostresh S, Schmuttenmaer CA, Neu J. Interrogating Light-initiated Dynamics in Metal-Organic Frameworks with Time-resolved Spectroscopy. Chem Rev 2021; 122:132-166. [PMID: 34613710 DOI: 10.1021/acs.chemrev.1c00528] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Time-resolved spectroscopy is an essential part of both fundamental and applied chemical research. Such techniques access light-initiated dynamics on time scales ranging from femtosecond to microsecond. Many techniques falling under this description have been applied to gain significant insight into metal-organic frameworks (MOFs), a diverse class of porous coordination polymers. MOFs are highly tunable, both compositionally and structurally, and unique challenges are encountered in applying time-resolved spectroscopy to interrogate their light-initiated properties. These properties involve various excited state mechanisms such as crystallographically defined energy transfer, charge transfer, and localization within the framework, photoconductivity, and structural dynamics. The field of time-resolved MOF spectroscopic studies is quite nascent; each original report cited in this review was published within the past decade. As such, this review is a timely and comprehensive summary of the most significant contributions in this emerging field, with focuses on the overarching spectroscopic concepts applied and on identifying key challenges and future outlooks moving forward.
Collapse
Affiliation(s)
- Brian Pattengale
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Sarah Ostresh
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | | | - Jens Neu
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
15
|
Gelin MF, Borrelli R. Simulation of Nonlinear Femtosecond Signals at Finite Temperature via a Thermo Field Dynamics-Tensor Train Method: General Theory and Application to Time- and Frequency-Resolved Fluorescence of the Fenna-Matthews-Olson Complex. J Chem Theory Comput 2021; 17:4316-4331. [PMID: 34076412 DOI: 10.1021/acs.jctc.1c00158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addressing needs of contemporary nonlinear femtosecond optical spectroscopy, we have developed a fully quantum, numerically accurate wave function-based approach for the calculation of third-order spectroscopic signals of polyatomic molecules and molecular aggregates at finite temperature. The systems are described by multimode nonadiabatic vibronic-coupling Hamiltonians, in which diagonal terms are treated in harmonic approximation, while off-diagonal interstate couplings are assumed to be coordinate independent. The approach is based on the Thermo Field Dynamics (TFD) representation of quantum mechanics and tensor-train (TT) machinery for efficient numerical simulation of quantum evolution of systems with many degrees of freedom. The developed TFD-TT approach is applied to the calculation of time- and frequency-resolved fluorescence spectra of the Fenna-Matthews-Olson (FMO) antenna complex at room temperature taking into account finite time-frequency resolution in fluorescence detection, orientational averaging, and static disorder.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
16
|
Angulo G, Kardaś TM, Rodríguez-Rodríguez H. Some aspects about time broadening in fluorescence up-conversion measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:063003. [PMID: 34243531 DOI: 10.1063/5.0047695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Several aspects contributing to the temporal broadening in the measurement of ultrafast fluorescence by means of up-conversion wave mixing are presented: the characteristics of the sample, those of the collection optics, and the wave mixing with the gate pulse in a non-linear crystal. It is concluded that these contributions are emission wavelength dependent and can be as important as the pulse durations in determining the instrument response function in this technique.
Collapse
Affiliation(s)
- Gonzalo Angulo
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | | |
Collapse
|
17
|
Bialas D, Kirchner E, Röhr MIS, Würthner F. Perspectives in Dye Chemistry: A Rational Approach toward Functional Materials by Understanding the Aggregate State. J Am Chem Soc 2021; 143:4500-4518. [DOI: 10.1021/jacs.0c13245] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Bialas
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eva Kirchner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle I. S. Röhr
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
18
|
Bhattacharyya B, Mukherjee A, Mahadevu R, Pandey A. Tuning radiative lifetimes in semiconductor quantum dots. J Chem Phys 2021; 154:074707. [PMID: 33607898 DOI: 10.1063/5.0036676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Photonic devices stand to benefit from the development of chromophores with tunable, precisely controlled spontaneous emission lifetimes. Here, we demonstrate a method to continuously tune the radiative emission lifetimes of a class of chromophores by varying the density of electronic states involved in the emission process. In particular, we examined the peculiar composition-dependent electronic structure of copper doped CdZnSe quantum dots. It is shown that the nature and density of electronic states involved with the emission process is a function of copper inclusion level, providing a very direct handle for controlling the spontaneous lifetimes. The spontaneous emission lifetimes are estimated by examining the ratios of emission lifetimes to absolute quantum yields and also measured directly by ultrafast luminescence upconversion experiments. We find excellent agreement between these classes of experiments. This scheme enables us to tune spontaneous emission lifetimes by three orders of magnitude from ∼15 ns to over ∼7 µs, which is unprecedented in existing lumophores.
Collapse
Affiliation(s)
- Biswajit Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Arpita Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rekha Mahadevu
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anshu Pandey
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Cao S, Li H, Zhao Z, Zhang S, Chen J, Xu J, Knutson JR, Brand L. Ultrafast Fluorescence Spectroscopy via Upconversion and Its Applications in Biophysics. Molecules 2021; 26:molecules26010211. [PMID: 33401638 PMCID: PMC7794851 DOI: 10.3390/molecules26010211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
In this review, the experimental set-up and functional characteristics of single-wavelength and broad-band femtosecond upconversion spectrophotofluorometers developed in our laboratory are described. We discuss applications of this technique to biophysical problems, such as ultrafast fluorescence quenching and solvation dynamics of tryptophan, peptides, proteins, reduced nicotinamide adenine dinucleotide (NADH), and nucleic acids. In the tryptophan dynamics field, especially for proteins, two types of solvation dynamics on different time scales have been well explored: ~1 ps for bulk water, and tens of picoseconds for “biological water”, a term that combines effects of water and macromolecule dynamics. In addition, some proteins also show quasi-static self-quenching (QSSQ) phenomena. Interestingly, in our more recent work, we also find that similar mixtures of quenching and solvation dynamics occur for the metabolic cofactor NADH. In this review, we add a brief overview of the emerging development of fluorescent RNA aptamers and their potential application to live cell imaging, while noting how ultrafast measurement may speed their optimization.
Collapse
Affiliation(s)
- Simin Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Zenan Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
- Correspondence: (J.X.); (J.R.K.); Tel.: +86-21-6223-3936 (J.X.); +1-301-496-2557 (J.R.K.)
| | - Jay R. Knutson
- Laboratory for Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: (J.X.); (J.R.K.); Tel.: +86-21-6223-3936 (J.X.); +1-301-496-2557 (J.R.K.)
| | - Ludwig Brand
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA;
| |
Collapse
|
20
|
Nazarov AE, Ivanov AI. Effect of the transition rate between two excited states on the spectral dynamics of dual fluorescence: Blurring of the isoemissive point. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Sun K, Xie W, Chen L, Domcke W, Gelin MF. Multi-faceted spectroscopic mapping of ultrafast nonadiabatic dynamics near conical intersections: A computational study. J Chem Phys 2020; 153:174111. [DOI: 10.1063/5.0024148] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weiwei Xie
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, 38 Nöethnitzer Str., Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Maxim F. Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
22
|
Krampf A, Messerschmidt S, Imlau M. Superposed picosecond luminescence kinetics in lithium niobate revealed by means of broadband fs-fluorescence upconversion spectroscopy. Sci Rep 2020; 10:11397. [PMID: 32647163 PMCID: PMC7347870 DOI: 10.1038/s41598-020-68376-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/23/2020] [Indexed: 11/14/2022] Open
Abstract
Various manifestations of small polarons strongly affect the linear and nonlinear optical properties of the oxide crystal lithium niobate (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {LiNbO}_3$$\end{document}LiNbO3, LN). While related transient absorption phenomena in LN have been extensively studied in recent decades, a sound microscopic picture describing the blue-green (photo)luminescence of lithium niobate single crystals is still missing. In particular, almost nothing is known about: (i) the luminescence build-up and (ii) its room temperature decay. We present here the results of our systematic experimental study using nominally undoped and Mg-doped LN crystals with different Mg concentration. Picosecond luminescence was detected by means of femtosecond fluorescence upconversion spectroscopy (FLUPS) extended to the inspection of oxide crystals in reflection geometry. Two distinct luminescence decay components on the picosecond time scale are revealed. While a short exponential decay is present in each sample, a longer non-exponential decay clearly depends on the crystal composition. Since transient absorption spectroscopy excludes geminate small polaron annihilation as microscopic cause of the luminescence, both decay components are discussed in the context of self-trapped exciton (STE) transport and decay.
Collapse
Affiliation(s)
- A Krampf
- School of Physics, Osnabrueck University, Barbarastrasse 7, 49076, Osnabrueck, Germany
| | - S Messerschmidt
- School of Physics, Osnabrueck University, Barbarastrasse 7, 49076, Osnabrueck, Germany
| | - M Imlau
- School of Physics, Osnabrueck University, Barbarastrasse 7, 49076, Osnabrueck, Germany.
| |
Collapse
|
23
|
Verma P, Rosspeintner A, Kumpulainen T. Propyl acetate/butyronitrile mixture is ideally suited for investigating the effect of dielectric stabilization on (photo)chemical reactions. RSC Adv 2020; 10:23682-23689. [PMID: 35517311 PMCID: PMC9054732 DOI: 10.1039/d0ra04525j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
Characterization of propyl acetate/butyronitrile (PA/BuCN) mixtures by various spectroscopic techniques is described. The neat solvents have identical viscosities and refractive indices but their dielectric constants differ significantly. Detailed solvatochromic and titration data show that the mixtures do not exhibit specific solute-solvent interactions or significant dielectric enrichment effects. Therefore, the mixtures are ideally suited for investigating the effect of dielectric stabilization on (photo)chemical reactions. Dynamic Stokes shift experiments performed on two push-pull probes demonstrate that the solvation dynamics are significantly decelerated in the mixtures as compared to the neat solvents. Therefore, the mixtures allow for varying both the extent and time scale of the dielectric stabilization in a predictable manner.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland +41 22 379 6518 +41 22 379 6530
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland +41 22 379 6518 +41 22 379 6530
| | - Tatu Kumpulainen
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland +41 22 379 6518 +41 22 379 6530
| |
Collapse
|
24
|
Beckwith JS, Rumble CA, Vauthey E. Data analysis in transient electronic spectroscopy – an experimentalist's view. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1757942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Joseph S. Beckwith
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | | | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Fedunov RG, Yermolenko IP, Nazarov AE, Ivanov AI, Rosspeintner A, Angulo G. Theory of fluorescence spectrum dynamics and its application to determining the relaxation characteristics of the solvent and intramolecular vibrations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Kim T, Kim W, Vakuliuk O, Gryko DT, Kim D. Two-Step Charge Separation Passing Through the Partial Charge-Transfer State in a Molecular Dyad. J Am Chem Soc 2019; 142:1564-1573. [DOI: 10.1021/jacs.9b12016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Woojae Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Olena Vakuliuk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
27
|
Lübtow MM, Marciniak H, Schmiedel A, Roos M, Lambert C, Luxenhofer R. Ultra-High to Ultra-Low Drug-Loaded Micelles: Probing Host-Guest Interactions by Fluorescence Spectroscopy. Chemistry 2019; 25:12601-12610. [PMID: 31291028 PMCID: PMC6790594 DOI: 10.1002/chem.201902619] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Polymer micelles are an attractive means to solubilize water insoluble compounds such as drugs. Drug loading, formulations stability and control over drug release are crucial factors for drug-loaded polymer micelles. The interactions between the polymeric host and the guest molecules are considered critical to control these factors but typically barely understood. Here, we compare two isomeric polymer micelles, one of which enables ultra-high curcumin loading exceeding 50 wt.%, while the other allows a drug loading of only 25 wt.%. In the low capacity micelles, steady-state fluorescence revealed a very unusual feature of curcumin fluorescence, a high energy emission at 510 nm. Time-resolved fluorescence upconversion showed that the fluorescence life time of the corresponding species is too short in the high-capacity micelles, preventing an observable emission in steady-state. Therefore, contrary to common perception, stronger interactions between host and guest can be detrimental to the drug loading in polymer micelles.
Collapse
Affiliation(s)
- Michael M. Lübtow
- Functional Polymer Materials, Chair for Advanced Materials SynthesisDepartment of Chemistry and Pharmacy and Bavarian Polymer InstituteUniversity of WürzburgRöntgenring 1197070WürzburgGermany
| | - Henning Marciniak
- Institute of Organic Chemistry and Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97070WürzburgGermany
| | - Alexander Schmiedel
- Institute of Organic Chemistry and Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97070WürzburgGermany
| | - Markus Roos
- Institute of Organic Chemistry and Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97070WürzburgGermany
| | - Christoph Lambert
- Institute of Organic Chemistry and Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97070WürzburgGermany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials SynthesisDepartment of Chemistry and Pharmacy and Bavarian Polymer InstituteUniversity of WürzburgRöntgenring 1197070WürzburgGermany
| |
Collapse
|
28
|
Kim W, Nowak-Król A, Hong Y, Schlosser F, Würthner F, Kim D. Solvent-Modulated Charge-Transfer Resonance Enhancement in the Excimer State of a Bay-Substituted Perylene Bisimide Cyclophane. J Phys Chem Lett 2019; 10:1919-1927. [PMID: 30892901 DOI: 10.1021/acs.jpclett.9b00357] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excimer, a configurational mixing between Frenkel exciton and charge-transfer resonance states, is typically regarded as a trap state that hinders desired energy or charge-transfer processes in artificial molecular assemblies. However, in recent days, the excimer has received much attention as a functional intermediate in the excited-state dynamics such as singlet fission or charge-separation processes. In this work, we show that the relative contribution to charge-transfer resonance of the excimer state in a bay-substituted perylene bisimide dimer cyclophane can be modulated by dielectric properties of the solvents employed. Solvent-dependent time-resolved fluorescence and absorption measurements reveal that an enhancement of charge-transfer resonance in the excimer state is reflected by incomplete symmetry-breaking charge-separation processes from the structurally relaxed excimer state by means of dipolar solvation processes in the high dielectric environment.
Collapse
Affiliation(s)
- Woojae Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Agnieszka Nowak-Król
- Institut für Organische Chemie and Center for Nanosystems Chemistry , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Yongseok Hong
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Felix Schlosser
- Institut für Organische Chemie and Center for Nanosystems Chemistry , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| |
Collapse
|
29
|
Liu L, Agathangelou D, Roland T, Crégut O, Duchanois T, Beley M, Léonard J, Gros P, Haacke S. High sensitivity fluorescence up-conversion spectroscopy of 3MLCT emission of metal-organic complexes. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920509009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate the implementation of a broadband fluorescence up-conversion set-up with high signal-to-noise ratio and dynamic range allowing for the detection of weak luminescence from triplet states in Fe(II) NHC complexes. Based on the experimentally determined radiative rates and the emission spectra, these states have dominant MLCT character.
Collapse
|
30
|
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Kardaś TM, Stepanenko Y, Radzewicz C. Noncollinear and nonlinear pulse propagation. Sci Rep 2018; 8:14350. [PMID: 30254201 PMCID: PMC6156600 DOI: 10.1038/s41598-018-32676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/13/2018] [Indexed: 01/18/2023] Open
Abstract
A novel method for numerical modelling of noncollinear and nonlinear interaction of femtosecond laser pulses is presented. The method relies on a separate treatment of each of the interacting pulses by it's own rotated unidirectional pulse propagation equation (UPPE). We show that our method enables accurate simulations of the interaction of pulses travelling at a mutual angle of up to 140°. The limit is imposed by the unidirectionality principal. Additionally, a novel tool facilitating the preparation of noncollinear propagation initial conditions - a 3D Fourier transform based rotation technique - is presented. The method is tested with several linear and nonlinear cases and, finally, four original results are presented: (i) interference of highly chirped pulses colliding at mutual angle of 120°, (ii) optical switching through cross-focusing of perpendicular beams (iii) a comparison between two fluorescence up-conversion processes in BBO with large angles between the input beams and (iv) a degenerate four-wave mixing experiment in a boxcar configuration.
Collapse
Affiliation(s)
- Tomasz M Kardaś
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Yuriy Stepanenko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Czesław Radzewicz
- Department of Physics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
32
|
Kaufmann C, Kim W, Nowak-Król A, Hong Y, Kim D, Würthner F. Ultrafast Exciton Delocalization, Localization, and Excimer Formation Dynamics in a Highly Defined Perylene Bisimide Quadruple π-Stack. J Am Chem Soc 2018; 140:4253-4258. [PMID: 29502406 DOI: 10.1021/jacs.7b11571] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An adequately designed, bay-tethered perylene bisimide (PBI) dimer Bis-PBI was synthesized by Pd/Cu-catalyzed Glaser-type oxidative homocoupling of the respective PBI building block. This newly synthesized PBI dimer self-assembles exclusively and with high binding constants of up to 106 M-1 into a discrete π-stack of four chromophores. Steady-state absorption and emission spectra show the signatures of H-type excitonic coupling among the dye units. Broadband fluorescence upconversion spectroscopy (FLUPS) reveals an ultrafast dynamics in the optically excited state. An initially coherent Frenkel exciton state that is delocalized over the whole quadruple stack rapidly (τ = ∼200 fs) loses its coherence and relaxes into an excimer state. Comparison with Frenkel exciton dynamics in PBI dimeric and oligomeric H-aggregates demonstrates that in the quadruple stack coherent exciton propagation is absent due to its short length of aggregates, thereby it has only one relaxation pathway to the excimer state. Furthermore, the absence of pump-power dependence in transient absorption experiments suggests that multiexciton cannot be generated in the quadruple stack, which is in line with time-resolved fluorescence measurements.
Collapse
Affiliation(s)
- Christina Kaufmann
- Universität Würzburg , Institut für Organische Chemie & Center for Nanosystems Chemistry , Am Hubland , 97074 Würzburg , Germany
| | - Woojae Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Agnieszka Nowak-Król
- Universität Würzburg , Institut für Organische Chemie & Center for Nanosystems Chemistry , Am Hubland , 97074 Würzburg , Germany
| | - Yongseok Hong
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie & Center for Nanosystems Chemistry , Am Hubland , 97074 Würzburg , Germany
| |
Collapse
|
33
|
Baker LA, Marchetti B, Karsili TNV, Stavros VG, Ashfold MNR. Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chem Soc Rev 2018; 46:3770-3791. [PMID: 28580469 DOI: 10.1039/c7cs00102a] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Evolution has ensured that plants and animals have developed effective protection mechanisms against the potentially harmful effects of incident ultraviolet radiation (UVR). Tanning is one such mechanism in humans, but tanning only occurs post-exposure to UVR. Hence, there is ever growing use of commercial sunscreens to pre-empt overexposure to UVR. Key requirements for any chemical filter molecule used in such a photoprotective capacity include a large absorption cross-section in the UV-A and UV-B spectral regions and the availability of one or more mechanisms whereby the absorbed photon energy can be dissipated without loss of the molecular integrity of the chemical filter. Here we summarise recent experimental (mostly ultrafast pump-probe spectroscopy studies) and computational progress towards unravelling various excited state decay mechanisms that afford the necessary photostability in chemical filters found in nature and those used in commercial sunscreens. We also outline ways in which a better understanding of the photophysics and photochemistry of sunscreen molecules selected by nature could aid the design of new and improved commercial sunscreen formulations.
Collapse
Affiliation(s)
- Lewis A Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Barbara Marchetti
- Department of Chemistry, University of Pennsylvania, Philadelphia, USA
| | | | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
34
|
Nançoz C, Licari G, Beckwith JS, Soederberg M, Dereka B, Rosspeintner A, Yushchenko O, Letrun R, Richert S, Lang B, Vauthey E. Influence of the hydrogen-bond interactions on the excited-state dynamics of a push–pull azobenzene dye: the case of Methyl Orange. Phys Chem Chem Phys 2018; 20:7254-7264. [DOI: 10.1039/c7cp08390d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H-bonding with the solvent affects significantly the photoisomerisation of Methyl Orange.
Collapse
Affiliation(s)
- Christoph Nançoz
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Giuseppe Licari
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Joseph S. Beckwith
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Magnus Soederberg
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Bogdan Dereka
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | | | - Romain Letrun
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Sabine Richert
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Bernhard Lang
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| |
Collapse
|
35
|
Beckwith JS, Rosspeintner A, Licari G, Lunzer M, Holzer B, Fröhlich J, Vauthey E. Specific Monitoring of Excited-State Symmetry Breaking by Femtosecond Broadband Fluorescence Upconversion Spectroscopy. J Phys Chem Lett 2017; 8:5878-5883. [PMID: 29144140 DOI: 10.1021/acs.jpclett.7b02754] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most quadrupolar molecules designed for large two-photon absorption cross section have been shown to undergo symmetry breaking upon excitation to the S1 state. This was originally deduced from their strong fluorescence solvatochromism and later visualized in real time using transient infrared spectroscopy. For molecules not containing clear IR marker modes, however, a specific real-time observation of the symmetry breaking process remains lacking. Here we show that this process can be resolved using broadband fluorescence upconversion spectroscopy by monitoring the instantaneous emission transition dipole moment. This approach is illustrated with measurements performed on two quadrupolar molecules, with only one of them undergoing excited-state symmetry breaking in polar solvents.
Collapse
Affiliation(s)
- Joseph S Beckwith
- Physical Chemistry Department, University of Geneva , Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
| | - Arnulf Rosspeintner
- Physical Chemistry Department, University of Geneva , Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
| | - Giuseppe Licari
- Physical Chemistry Department, University of Geneva , Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
| | - Markus Lunzer
- Institute of Applied Synthetic Chemistry, TU Wien , Getreidemarkt 9/163OC, A-1060 Vienna, Austria
| | - Brigitte Holzer
- Institute of Applied Synthetic Chemistry, TU Wien , Getreidemarkt 9/163OC, A-1060 Vienna, Austria
| | - Johannes Fröhlich
- Institute of Applied Synthetic Chemistry, TU Wien , Getreidemarkt 9/163OC, A-1060 Vienna, Austria
| | - Eric Vauthey
- Physical Chemistry Department, University of Geneva , Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
36
|
Dereka B, Svechkarev D, Rosspeintner A, Tromayer M, Liska R, Mohs AM, Vauthey E. Direct Observation of a Photochemical Alkyne–Allene Reaction and of a Twisted and Rehybridized Intramolecular Charge-Transfer State in a Donor–Acceptor Dyad. J Am Chem Soc 2017; 139:16885-16893. [DOI: 10.1021/jacs.7b09591] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bogdan Dereka
- Department of Physical
Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | | | - Arnulf Rosspeintner
- Department of Physical
Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Maximilian Tromayer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163/MC, 1060 Vienna, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163/MC, 1060 Vienna, Austria
| | | | - Eric Vauthey
- Department of Physical
Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
37
|
Gerecke M, Richter C, Quick M, Ioffe IN, Mahrwald R, Kovalenko SA, Ernsting NP. Effect of a Tertiary Butyl Group on Polar Solvation Dynamics in Aqueous Solution: Femtosecond Fluorescence Spectroscopy. J Phys Chem B 2017; 121:9631-9638. [DOI: 10.1021/acs.jpcb.7b05031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mario Gerecke
- Department
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Celin Richter
- Department
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Martin Quick
- Department
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Ilya N. Ioffe
- Department
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Rainer Mahrwald
- Department
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Sergey A. Kovalenko
- Department
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Nikolaus P. Ernsting
- Department
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| |
Collapse
|
38
|
Kumpulainen T, Rosspeintner A, Dereka B, Vauthey E. Influence of Solvent Relaxation on Ultrafast Excited-State Proton Transfer to Solvent. J Phys Chem Lett 2017; 8:4516-4521. [PMID: 28872875 DOI: 10.1021/acs.jpclett.7b01956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A thorough understanding of the microscopic mechanism of excited-state proton transfer (ESPT) and the influence of the solvent environment on its dynamics are of great fundamental interest. We present here a detailed investigation of an ESPT to solvent (DMSO) using time-resolved broadband fluorescence and transient absorption spectroscopies. All excited-state species are resolved spectrally and kinetically using a global target analysis based on the two-step Eigen-Weller model. Reversibility of the initial short-range proton transfer producing excited contact ion pairs (CIP*) is observed unambiguously in fluorescence and must be explicitly considered to obtain the individual rate constants. Close inspection of the early dynamics suggests that the relative populations of the protonated form (ROH*) and CIP* are governed by solvent relaxation that influences the relative energies of the excited states. This constitutes a breakdown of the Eigen-Weller model, although the overall agreement between the data and the analysis using classical rate equations is excellent.
Collapse
Affiliation(s)
- Tatu Kumpulainen
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Bogdan Dereka
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest Ansermet, Geneva, Switzerland
| |
Collapse
|
39
|
Cha WY, Kim W, Mori H, Yoneda T, Osuka A, Kim D. S 2 Fluorescence from [26]Hexaphyrin Dianion. J Phys Chem Lett 2017; 8:3795-3799. [PMID: 28759239 DOI: 10.1021/acs.jpclett.7b01799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
S2 fluorescence from meso-hexakis(pentafluorophenyl)-substituted [26]hexaphyrin dianion was observed as the first example of expanded porphyrins despite its large molecular size and small HOMO-LUMO gap. The population kinetics among S2, S1, and S0 states have been studied by using femtosecond time-resolved absorption and fluorescence spectroscopies. Broad-band fluorescence upconversion spectroscopy allowed for simultaneous observation of S2 fluorescence decay in the visible region and S1 fluorescence rise in the NIR region, both with a time constant of 0.22 ps. The transient absorption spectroscopy revealed the presence of a direct decay path from the S2 state to the S0 state. The observation of S2 fluorescence from highly conjugated molecular systems is quite rare, and S2 fluorescence beyond 700 nm is also quite rare.
Collapse
Affiliation(s)
- Won-Young Cha
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University , Seoul 03722, Korea
| | - Woojae Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University , Seoul 03722, Korea
| | - Hirotaka Mori
- Department of Chemistry, Graduate School of Science, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoki Yoneda
- Department of Chemistry, Graduate School of Science, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
40
|
Ultrafast Dynamics of Sb-Corroles: A Combined Vis-Pump Supercontinuum Probe and Broadband Fluorescence Up-Conversion Study. Molecules 2017; 22:molecules22071174. [PMID: 28703762 PMCID: PMC6152390 DOI: 10.3390/molecules22071174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
Corroles are a developing class of tetrapyrrole-based molecules with significant chemical potential and relatively unexplored photophysical properties. We combined femtosecond broadband fluorescence up-conversion and fs broadband Vis-pump Vis-probe spectroscopy to comprehensively characterize the photoreaction of 5,10,15-tris-pentafluorophenyl-corrolato-antimony(V)-trans-difluoride (Sb-tpfc-F₂). Upon fs Soret band excitation at ~400 nm, the energy relaxed almost completely to Q band electronic excited states with a time constant of 500 ± 100 fs; this is evident from the decay of Soret band fluorescence at around 430 nm and the rise time of Q band fluorescence, as well as from Q band stimulated emission signals at 600 and 650 nm with the same time constant. Relaxation processes on a time scale of 10 and 20 ps were observed in the fluorescence and absorption signals. Triplet formation showed a time constant of 400 ps, with an intersystem crossing yield from the Q band to the triplet manifold of between 95% and 99%. This efficient triplet formation is due to the spin-orbit coupling of the antimony ion.
Collapse
|
41
|
Angulo G, Jedrak J, Ochab-Marcinek A, Pasitsuparoad P, Radzewicz C, Wnuk P, Rosspeintner A. How good is the generalized Langevin equation to describe the dynamics of photo-induced electron transfer in fluid solution? J Chem Phys 2017; 146:244505. [DOI: 10.1063/1.4990044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Gonzalo Angulo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Jedrak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Ochab-Marcinek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pakorn Pasitsuparoad
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Czesław Radzewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Paweł Wnuk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
- Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748 Garching, Germany
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
42
|
Kumpulainen T, Rosspeintner A, Vauthey E. Probe dependence on polar solvation dynamics from fs broadband fluorescence. Phys Chem Chem Phys 2017; 19:8815-8825. [DOI: 10.1039/c7cp00706j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solvation dynamics is remarkably independent of the probe as long as specific interactions remain similar.
Collapse
Affiliation(s)
- Tatu Kumpulainen
- Department of Physical Chemistry
- University of Geneva
- Geneva
- Switzerland
| | | | - Eric Vauthey
- Department of Physical Chemistry
- University of Geneva
- Geneva
- Switzerland
| |
Collapse
|
43
|
Baker LA, Greenough SE, Stavros VG. A Perspective on the Ultrafast Photochemistry of Solution-Phase Sunscreen Molecules. J Phys Chem Lett 2016; 7:4655-4665. [PMID: 27791379 DOI: 10.1021/acs.jpclett.6b02104] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sunscreens are one of the most common ways of providing on-demand additional photoprotection to the skin. Ultrafast transient absorption spectroscopy has recently proven to be an invaluable tool in understanding how the components of commercial sunscreen products display efficient photoprotection. Important examples of how this technique has unravelled the photodynamics of common components are given in this Perspective, and some of the remaining unanswered questions are discussed.
Collapse
Affiliation(s)
- Lewis A Baker
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Simon E Greenough
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
44
|
Flender O, Scholz M, Klein JR, Oum K, Lenzer T. Excited-state relaxation of the solar cell dye D49 in organic solvents and on mesoporous Al 2O 3 and TiO 2 thin films. Phys Chem Chem Phys 2016; 18:26010-26019. [PMID: 27711569 DOI: 10.1039/c6cp05167g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present an ultrafast UV-Vis-NIR transient absorption study of the donor-acceptor solar-cell dye D49 in diisopropyl ether, THF and acetonitrile, as well as on mesoporous Al2O3 and TiO2 thin films. Photoexcitation at 505 nm initially populates the first electronically excited state of the dye having significant intramolecular charge transfer character ("S1/ICT"). On Al2O3 and in the three organic solvents, the dynamics are fully explained in terms of S1/ICT stabilisation (by reorientation of adjacent solvent or D49 molecules and collisional cooling), intramolecular vibrational redistribution and S1/ICT → S0 electronic decay. A substantial decrease of the S1/ICT lifetime is observed with increasing polarity of the surrounding medium suggesting an acceleration of internal conversion. In agreement with these results, the addition of the nonpolar co-adsorbent deoxycholic acid (DCA) to the Al2O3 surface leads to a substantial increase of the S1/ICT lifetime. DCA spacers reduce the local polarity around the dye molecules, thus interrupting D49 "self-solvation". These results are in contrast to a recent experimental study for the indoline dye D131 on Al2O3, where charge transfer from electronically excited D131 to adjacent dye molecules was proposed (Cappel et al., Sci. Rep., 2016, 6, 21276). We do not see evidence for charge transfer processes between D49 molecules and also not for electron injection from D49 into Al2O3 trap states. Charge separation is only observed for D49 bound to TiO2 thin films, with efficient injection of electrons into the conduction band of the semiconductor via formation of a [D49˙+e-] complex and a transient Stark effect signalling the formation of mobile electrons upon dissociation of the complex.
Collapse
Affiliation(s)
- Oliver Flender
- Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| | - Mirko Scholz
- Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| | - Johannes R Klein
- Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| | - Kawon Oum
- Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| | - Thomas Lenzer
- Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| |
Collapse
|
45
|
Kim W, Sung J, Grzybowski M, Gryko DT, Kim D. Modulation of Symmetry-Breaking Intramolecular Charge-Transfer Dynamics Assisted by Pendant Side Chains in π-Linkers in Quadrupolar Diketopyrrolopyrrole Derivatives. J Phys Chem Lett 2016; 7:3060-3066. [PMID: 27455383 DOI: 10.1021/acs.jpclett.6b01248] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of the length of pendant side chains in centrosymmetric quadrupolar molecules on dynamics of their most perplexing photophysical phenomenon, i.e., symmetry-breaking intramolecular charge transfer, has been discovered. Unexpectedly, considerable influence of length of these pendant side chains in π-linkers arose as a structural factor enabling the control of the degree of fluorescence solvatochromism. The symmetry-breaking intramolecular charge-transfer dynamics has been described on quadrupolar diketopyrrolopyrrole derivatives possessing fluorene moieties as π-linkers and diarylamino groups as electron donors. On the basis of the evolution of transient fluorescence spectra obtained by a femtosecond broadband fluorescence up-conversion spectroscopy, it was found that the relative contribution of diffusive solvation and torsional relaxation in overall spectral relaxation can be modulated by the length of pendant side chain in π-linkers. Consequently, we demonstrated that this modulation plays a significant role in determining the photophysical properties of diketopyrrolopyrroles in a polar medium.
Collapse
Affiliation(s)
- Woojae Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University , Seoul 03722, Korea
| | - Jooyoung Sung
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University , Seoul 03722, Korea
| | - Marek Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
46
|
Sung J, Nowak-Król A, Schlosser F, Fimmel B, Kim W, Kim D, Würthner F. Direct Observation of Excimer-Mediated Intramolecular Electron Transfer in a Cofacially-Stacked Perylene Bisimide Pair. J Am Chem Soc 2016; 138:9029-32. [PMID: 27407012 DOI: 10.1021/jacs.6b04591] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have elucidated excimer-mediated intramolecular electron transfer in cofacially stacked PBIs tethered by two phenylene-butadiynylene loops. The electron transfer between energetically equivalent PBIs is revealed by the simultaneous observation of the PBI radical anion and cation bands in the transient absorption spectra. The fluorescence decay time of the excimer states is in good agreement with the rise time of PBI radical bands in transient absorption spectra suggesting that the electron transfer dynamics proceed via the excimer state. We can conclude that the excimer state effectuates the efficient charge transfer in the cofacially stacked PBI dimer.
Collapse
Affiliation(s)
- Jooyoung Sung
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Agnieszka Nowak-Król
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Felix Schlosser
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Benjamin Fimmel
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Woojae Kim
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Dongho Kim
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|