1
|
Schollmeier MS, Bekx JJ, Hartmann J, Schork E, Speicher M, Brodersen AF, Fazzini A, Fischer P, Gaul E, Gonzalez-Izquierdo B, Günther MM, Härle AK, Hollinger R, Kenney K, Park J, Rivas DE, Scutelnic V, Shpilman Z, Wang S, Rocca JJ, Korn G. Differentiating multi-MeV, multi-ion spectra with CR-39 solid-state nuclear track detectors. Sci Rep 2023; 13:18155. [PMID: 37875514 PMCID: PMC10598230 DOI: 10.1038/s41598-023-45208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
The development of high intensity petawatt lasers has created new possibilities for ion acceleration and nuclear fusion using solid targets. In such laser-matter interaction, multiple ion species are accelerated with broad spectra up to hundreds of MeV. To measure ion yields and for species identification, CR-39 solid-state nuclear track detectors are frequently used. However, these detectors are limited in their applicability for multi-ion spectra differentiation as standard image recognition algorithms can lead to a misinterpretation of data, there is no unique relation between track diameter and particle energy, and there are overlapping pit diameter relationships for multiple particle species. In this report, we address these issues by first developing an algorithm to overcome user bias during image processing. Second, we use calibration of the detector response for protons, carbon and helium ions (alpha particles) from 0.1 to above 10 MeV and measurements of statistical energy loss fluctuations in a forward-fitting procedure utilizing multiple, differently filtered CR-39, altogether enabling high-sensitivity, multi-species particle spectroscopy. To validate this capability, we show that inferred CR-39 spectra match Thomson parabola ion spectrometer data from the same experiment. Filtered CR-39 spectrometers were used to detect, within a background of ~ 2 × 1011 sr-1 J-1 protons and carbons, (1.3 ± 0.7) × 108 sr-1 J-1 alpha particles from laser-driven proton-boron fusion reactions.
Collapse
Affiliation(s)
- M S Schollmeier
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany.
| | - J J Bekx
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - J Hartmann
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - E Schork
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - M Speicher
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - A F Brodersen
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - A Fazzini
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - P Fischer
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - E Gaul
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | | | - M M Günther
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - A K Härle
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - R Hollinger
- Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - K Kenney
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - J Park
- Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - D E Rivas
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - V Scutelnic
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| | - Z Shpilman
- Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - S Wang
- Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - J J Rocca
- Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO, 80523, USA
- Physics Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - G Korn
- Marvel Fusion GmbH, Theresienhöhe 12, 80339, Munich, Germany
| |
Collapse
|
2
|
Schulte R, Johnstone C, Boucher S, Esarey E, Geddes CGR, Kravchenko M, Kutsaev S, Loo BW, Méot F, Mustapha B, Nakamura K, Nanni EA, Obst-Huebl L, Sampayan SE, Schroeder CB, Sheng K, Snijders AM, Snively E, Tantawi SG, Van Tilborg J. Transformative Technology for FLASH Radiation Therapy. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:5021. [PMID: 38240007 PMCID: PMC10795821 DOI: 10.3390/app13085021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.
Collapse
Affiliation(s)
- Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carol Johnstone
- Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
| | - Salime Boucher
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Eric Esarey
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Sergey Kutsaev
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - François Méot
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Kei Nakamura
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emilio A. Nanni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Stephen E. Sampayan
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
- Opcondys, Inc., Manteca, CA 95336, USA
| | | | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA
| | | | - Emma Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sami G. Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
3
|
Reimold M, Assenbaum S, Bernert C, Beyreuther E, Brack FE, Karsch L, Kraft SD, Kroll F, Loeser M, Nossula A, Pawelke J, Püschel T, Schlenvoigt HP, Schramm U, Umlandt MEP, Zeil K, Ziegler T, Metzkes-Ng J. Time-of-flight spectroscopy for laser-driven proton beam monitoring. Sci Rep 2022; 12:21488. [PMID: 36509788 PMCID: PMC9744900 DOI: 10.1038/s41598-022-25120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Application experiments with laser plasma-based accelerators (LPA) for protons have to cope with the inherent fluctuations of the proton source. This creates a demand for non-destructive and online spectral characterization of the proton pulses, which are for application experiments mostly spectrally filtered and transported by a beamline. Here, we present a scintillator-based time-of-flight (ToF) beam monitoring system (BMS) for the recording of single-pulse proton energy spectra. The setup's capabilities are showcased by characterizing the spectral stability for the transport of LPA protons for two beamline application cases. For the two beamline settings monitored, data of 122 and 144 proton pulses collected over multiple days were evaluated, respectively. A relative energy uncertainty of 5.5% (1[Formula: see text]) is reached for the ToF BMS, allowing for a Monte-Carlo based prediction of depth dose distributions, also used for the calibration of the device. Finally, online spectral monitoring combined with the prediction of the corresponding depth dose distribution in the irradiated samples is demonstrated to enhance applicability of plasma sources in dose-critical scenarios.
Collapse
Affiliation(s)
- Marvin Reimold
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany.
- Technische Universität Dresden, 01062, Dresden, Germany.
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, 01309, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Leonhard Karsch
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, 01309, Dresden, Germany
| | - Stephan D Kraft
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | - Markus Loeser
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | - Alexej Nossula
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, 01309, Dresden, Germany
| | - Thomas Püschel
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | | |
Collapse
|
4
|
Afshari M, Morris S, Geulig LD, Chitgar ZM, Gibbon P, Thirolf PG, Schreiber J. The role of collisional ionization in heavy ion acceleration by high intensity laser pulses. Sci Rep 2022; 12:18260. [PMID: 36309599 PMCID: PMC9617862 DOI: 10.1038/s41598-022-23148-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
We present here simulation results of the laser-driven acceleration of gold ions using the EPOCH code. Recently, an experiment reported the acceleration of gold ions up to 7 MeV/nucleon with a strong dependency of the charge-state distribution on target thickness and the detection of the highest charge states [Formula: see text]. Our simulations using a developmental branch of EPOCH (4.18-Ionization) show that collisional ionization is the most important cause of charge states beyond Z = 51 up to He-like Au.
Collapse
Affiliation(s)
- M. Afshari
- grid.5252.00000 0004 1936 973XFakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching bei München, Germany
| | - S. Morris
- grid.7372.10000 0000 8809 1613Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - L. D. Geulig
- grid.5252.00000 0004 1936 973XFakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching bei München, Germany
| | - Z. M. Chitgar
- grid.8385.60000 0001 2297 375XInstitute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - P. Gibbon
- grid.8385.60000 0001 2297 375XInstitute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ,grid.5596.f0000 0001 0668 7884Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - P. G. Thirolf
- grid.5252.00000 0004 1936 973XFakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching bei München, Germany
| | - J. Schreiber
- grid.5252.00000 0004 1936 973XFakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching bei München, Germany
| |
Collapse
|
5
|
Bernert C, Assenbaum S, Brack FE, Cowan TE, Curry CB, Garten M, Gaus L, Gauthier M, Göde S, Goethel I, Glenzer SH, Kluge T, Kraft S, Kroll F, Kuntzsch M, Metzkes-Ng J, Loeser M, Obst-Huebl L, Rehwald M, Schlenvoigt HP, Schoenwaelder C, Schramm U, Siebold M, Treffert F, Ziegler T, Zeil K. Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density hydrogen jets. Sci Rep 2022; 12:7287. [PMID: 35508489 PMCID: PMC9068928 DOI: 10.1038/s41598-022-10797-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Abstract
Due to the non-linear nature of relativistic laser induced plasma processes, the development of laser-plasma accelerators requires precise numerical modeling. Especially high intensity laser-solid interactions are sensitive to the temporal laser rising edge and the predictive capability of simulations suffers from incomplete information on the plasma state at the onset of the relativistic interaction. Experimental diagnostics utilizing ultra-fast optical backlighters can help to ease this challenge by providing temporally resolved inside into the plasma density evolution. We present the successful implementation of an off-harmonic optical probe laser setup to investigate the interaction of a high-intensity laser at [Formula: see text] peak intensity with a solid-density cylindrical cryogenic hydrogen jet target of [Formula: see text] diameter as a target test bed. The temporal synchronization of pump and probe laser, spectral filtering and spectrally resolved data of the parasitic plasma self-emission are discussed. The probing technique mitigates detector saturation by self-emission and allowed to record a temporal scan of shadowgraphy data revealing details of the target ionization and expansion dynamics that were so far not accessible for the given laser intensity. Plasma expansion speeds of up to [Formula: see text] followed by full target transparency at [Formula: see text] after the high intensity laser peak are observed. A three dimensional particle-in-cell simulation initiated with the diagnosed target pre-expansion at [Formula: see text] and post processed by ray tracing simulations supports the experimental observations and demonstrates the capability of time resolved optical diagnostics to provide quantitative input and feedback to the numerical treatment within the time frame of the relativistic laser-plasma interaction.
Collapse
Affiliation(s)
- Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
- Technische Universität Dresden, 01062, Dresden, Germany.
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Chandra B Curry
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Marco Garten
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Lennart Gaus
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Maxence Gauthier
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Ilja Goethel
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | | | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | | | | | - Markus Loeser
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Lieselotte Obst-Huebl
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | | | - Christopher Schoenwaelder
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Mathias Siebold
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Franziska Treffert
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| |
Collapse
|
6
|
Time-resolved study of holeboring in realistic experimental conditions. Nat Commun 2021; 12:6999. [PMID: 34853323 PMCID: PMC8636483 DOI: 10.1038/s41467-021-27363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022] Open
Abstract
The evolution of dense plasmas prior to the arrival of the peak of the laser irradiation is critical to understanding relativistic laser plasma interactions. The spectral properties of a reflected laser pulse after the interaction with a plasma can be used to gain insights about the interaction itself, whereas the effect of holeboring has a predominant role. Here we developed an analytical model, describing the non-relativistic temporal evolution of the holeboring velocity in the presence of an arbitrary overdense plasma density and laser intensity profile. We verify this using two-dimensional particle-in-cell simulations, showing a major influence on the holeboring dynamic depending on the density profile. The influence on the reflected laser pulse has been verified during an experiment at the PHELIX laser. We show that this enables the possibility to determine the sub-micrometer scale length of the preplasma by measuring the maximum holeboring velocity and acceleration during the laser-plasma interaction.
Collapse
|
7
|
McIlvenny A, Doria D, Romagnani L, Ahmed H, Booth N, Ditter EJ, Ettlinger OC, Hicks GS, Martin P, Scott GG, Williamson SDR, Macchi A, McKenna P, Najmudin Z, Neely D, Kar S, Borghesi M. Selective Ion Acceleration by Intense Radiation Pressure. PHYSICAL REVIEW LETTERS 2021; 127:194801. [PMID: 34797126 DOI: 10.1103/physrevlett.127.194801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We report on the selective acceleration of carbon ions during the interaction of ultrashort, circularly polarized and contrast-enhanced laser pulses, at a peak intensity of 5.5×10^{20} W/cm^{2}, with ultrathin carbon foils. Under optimized conditions, energies per nucleon of the bulk carbon ions reached significantly higher values than the energies of contaminant protons (33 MeV/nucleon vs 18 MeV), unlike what is typically observed in laser-foil acceleration experiments. Experimental data, and supporting simulations, emphasize different dominant acceleration mechanisms for the two ion species and highlight an (intensity dependent) optimum thickness for radiation pressure acceleration; it is suggested that the preceding laser energy reaching the target before the main pulse arrives plays a key role in a preferential acceleration of the heavier ion species.
Collapse
Affiliation(s)
- A McIlvenny
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - D Doria
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
- Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania
| | - L Romagnani
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
- LULI-CNRS, Ecole Polytechnique, CEA, Universit Paris-Saclay, F-91128 Palaiseau cedex, France
| | - H Ahmed
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
- Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - N Booth
- Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - E J Ditter
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - O C Ettlinger
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - G S Hicks
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - P Martin
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - G G Scott
- Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - S D R Williamson
- SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - A Macchi
- Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR/INO), research unit Adriano Gozzini, Pisa 56124, Italy
- Dipartimento di Fisica Enrico Fermi, Università di Pisa, Pisa 56127, Italy
| | - P McKenna
- SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Z Najmudin
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - D Neely
- Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - S Kar
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Borghesi
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
8
|
Zimmer M, Scheuren S, Ebert T, Schaumann G, Schmitz B, Hornung J, Bagnoud V, Rödel C, Roth M. Analysis of laser-proton acceleration experiments for development of empirical scaling laws. Phys Rev E 2021; 104:045210. [PMID: 34781535 DOI: 10.1103/physreve.104.045210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Numerous experiments on laser-driven proton acceleration in the MeV range have been performed with a large variety of laser parameters since its discovery around the year 2000. Both experiments and simulations have revealed that protons are accelerated up to a maximum cut-off energy during this process. Several attempts have been made to find a universal model for laser proton acceleration in the target normal sheath acceleration regime. While these models can qualitatively explain most experimental findings, they can hardly be used as predictive models, for example, for the energy cut-off of accelerated protons, as many of the underlying parameters are often unknown. Here we analyze experiments on laser proton acceleration in which scans of laser and target parameters were performed. We derive empirical scaling laws from these parameter scans and combine them in a scaling law for the proton energy cut-off that incorporates the laser pulse energy, the laser pulse duration, the focal spot radius, and the target thickness. Using these scaling laws, we give examples for predicting the proton energy cut-off and conversion efficiency for state-of-the-art laser systems.
Collapse
Affiliation(s)
- M Zimmer
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - S Scheuren
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - T Ebert
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - G Schaumann
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - B Schmitz
- Institute for Accelerator Science and Electromagnetic Fields, Technical University of Darmstadt, Schlossgartenstr. 8, 64289 Darmstadt, Germany
| | - J Hornung
- GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
- Friedrich-Schiller-Universität Jena, Fürstengraben 1, 07743 Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - V Bagnoud
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
- GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
| | - C Rödel
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - M Roth
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| |
Collapse
|
9
|
A Few MeV Laser-Plasma Accelerated Proton Beam in Air Collimated Using Compact Permanent Quadrupole Magnets. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proton laser-plasma-based acceleration has nowadays achieved a substantial maturity allowing to seek for possible practical applications, as for example Particle Induced X-ray Emission with few MeV protons. Here we report about the design, implementation, and characterization of a few MeV laser-plasma-accelerated proton beamline in air using a compact and cost-effective beam transport line based on permanent quadrupole magnets. The magnetic beamline coupled with a laser-plasma source based on a 14-TW laser results in a well-collimated proton beam of about 10 mm in diameter propagating in air over a few cm distance.
Collapse
|
10
|
Lécz Z, Sharma A, Andreev A, Fülöp J, Kamperidis C. Sliding-wave acceleration of ions in high-density gas jet targets. Phys Rev E 2021; 103:053210. [PMID: 34134310 DOI: 10.1103/physreve.103.053210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022]
Abstract
A hybrid mechanism of ion acceleration is investigated which demonstrates the higher spectral density of protons at high energies. The interaction of few-cycle terrawatt laser pulses with near-critical density gas target is studied with the help of two-dimensional particle-in-cell simulation. The generation of few MeV protons with high spectral concentration near cutoff is attributed to the propagation of solitary waves in the decaying density profile of the gas jet. Plasma dynamics at longer time scale is explained by semianalytical modeling and conditions for solitary wave breaking are presented.
Collapse
Affiliation(s)
- Zsolt Lécz
- ELI-ALPS, ELI-HU NKft. Dugonics square 13., 6720 Szeged, Hungary
| | - Ashutosh Sharma
- ELI-ALPS, ELI-HU NKft. Dugonics square 13., 6720 Szeged, Hungary
| | - Alexander Andreev
- ELI-ALPS, ELI-HU NKft. Dugonics square 13., 6720 Szeged, Hungary.,Max-Born Institute, Berlin, Germany
| | - József Fülöp
- ELI-ALPS, ELI-HU NKft. Dugonics square 13., 6720 Szeged, Hungary.,Institute of Physics, University of Pécs, Ifjúság str. 6, 7624 Pécs, Hungary
| | | |
Collapse
|
11
|
Laser-driven proton acceleration from ultrathin foils with nanoholes. Sci Rep 2021; 11:5006. [PMID: 33658533 PMCID: PMC7930106 DOI: 10.1038/s41598-021-84264-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Abstract
Structured solid targets are widely investigated to increase the energy absorption of high-power laser pulses so as to achieve efficient ion acceleration. Here we report the first experimental study of the maximum energy of proton beams accelerated from sub-micrometric foils perforated with holes of nanometric size. By showing the lack of energy enhancement in comparison to standard flat foils, our results suggest that the high contrast routinely achieved with a double plasma mirror does not prevent damaging of the nanostructures prior to the main interaction. Particle-in-cell simulations support that even a short scale length plasma, formed in the last hundreds of femtoseconds before the peak of an ultrashort laser pulse, fills the holes and hinders enhanced electron heating. Our findings reinforce the need for improved laser contrast, as well as for accurate control and diagnostics of on-target plasma formation.
Collapse
|
12
|
Ostermayr TM, Kreuzer C, Englbrecht FS, Gebhard J, Hartmann J, Huebl A, Haffa D, Hilz P, Parodi K, Wenz J, Donovan ME, Dyer G, Gaul E, Gordon J, Martinez M, Mccary E, Spinks M, Tiwari G, Hegelich BM, Schreiber J. Laser-driven x-ray and proton micro-source and application to simultaneous single-shot bi-modal radiographic imaging. Nat Commun 2020; 11:6174. [PMID: 33268784 PMCID: PMC7710721 DOI: 10.1038/s41467-020-19838-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
Radiographic imaging with x-rays and protons is an omnipresent tool in basic research and applications in industry, material science and medical diagnostics. The information contained in both modalities can often be valuable in principle, but difficult to access simultaneously. Laser-driven solid-density plasma-sources deliver both kinds of radiation, but mostly single modalities have been explored for applications. Their potential for bi-modal radiographic imaging has never been fully realized, due to problems in generating appropriate sources and separating image modalities. Here, we report on the generation of proton and x-ray micro-sources in laser-plasma interactions of the focused Texas Petawatt laser with solid-density, micrometer-sized tungsten needles. We apply them for bi-modal radiographic imaging of biological and technological objects in a single laser shot. Thereby, advantages of laser-driven sources could be enriched beyond their small footprint by embracing their additional unique properties, including the spectral bandwidth, small source size and multi-mode emission. Here the authors show a synchronized single-shot bi-modal x-ray and proton source based on laser-generated plasma. This source can be useful for radiographic and tomographic imaging.
Collapse
Affiliation(s)
- T M Ostermayr
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany. .,Max-Planck-Institut für Quantenoptik, 85748, Garching, Germany. .,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - C Kreuzer
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - F S Englbrecht
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - J Gebhard
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - J Hartmann
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - A Huebl
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - D Haffa
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - P Hilz
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany.,Helmholtz Institute Jena, 07743, Jena, Germany
| | - K Parodi
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - J Wenz
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany
| | - M E Donovan
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - G Dyer
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - E Gaul
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - J Gordon
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - M Martinez
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - E Mccary
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - M Spinks
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - G Tiwari
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - B M Hegelich
- Center for High Energy Density Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - J Schreiber
- Ludwig-Maximilians-Universität München, Fakultät für Physik, 85748, Garching, Germany. .,Max-Planck-Institut für Quantenoptik, 85748, Garching, Germany.
| |
Collapse
|
13
|
First on-line detection of radioactive fission isotopes produced by laser-accelerated protons. Sci Rep 2020; 10:17183. [PMID: 33057082 PMCID: PMC7560739 DOI: 10.1038/s41598-020-74045-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/24/2020] [Indexed: 12/04/2022] Open
Abstract
The on-going developments in laser acceleration of protons and light ions, as well as the production of strong bursts of neutrons and multi-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {MeV}$$\end{document}MeV photons by secondary processes now provide a basis for novel high-flux nuclear physics experiments. While the maximum energy of protons resulting from Target Normal Sheath Acceleration is presently still limited to around \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$100 \, \hbox {MeV}$$\end{document}100MeV, the generated proton peak flux within the short laser-accelerated bunches can already today exceed the values achievable at the most advanced conventional accelerators by orders of magnitude. This paper consists of two parts covering the scientific motivation and relevance of such experiments and a first proof-of-principle demonstration. In the presented experiment pulses of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$200 \, \hbox {J}$$\end{document}200J at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\approx \, 500 \, \hbox {fs}$$\end{document}≈500fs duration from the PHELIX laser produced more than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^{12}$$\end{document}1012 protons with energies above \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$15 \, \hbox {MeV}$$\end{document}15MeV in a bunch of sub-nanosecond duration. They were used to induce fission in foil targets made of natural uranium. To make use of the nonpareil flux, these targets have to be very close to the laser acceleration source, since the particle density within the bunch is strongly affected by Coulomb explosion and the velocity differences between ions of different energy. The main challenge for nuclear detection with high-purity germanium detectors is given by the strong electromagnetic pulse caused by the laser-matter interaction close to the laser acceleration source. This was mitigated by utilizing fast transport of the fission products by a gas flow to a carbon filter, where the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upgamma$$\end{document}γ-rays were registered. The identified nuclides include those that have half-lives down to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$39 \, \hbox {s}$$\end{document}39s. These results demonstrate the capability to produce, extract, and detect short-lived reaction products under the demanding experimental condition imposed by the high-power laser interaction. The approach promotes research towards relevant nuclear astrophysical studies at conditions currently only accessible at nuclear high energy density laser facilities.
Collapse
|
14
|
Englbrecht FS, Döpp A, Hartmann J, Lindner FH, Groß ML, Wirth HF, Thirolf PG, Karsch S, Schreiber J, Parodi K, Dedes G. Radiation protection modelling for 2.5 Petawatt-laser production of ultrashort x-ray, proton and ion bunches: Monte Carlo model of the Munich CALA facility. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:1048-1073. [PMID: 32702682 DOI: 10.1088/1361-6498/aba8e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The 'Centre for Advanced Laser Applications' (CALA) is a new research institute for laser-based acceleration of electron beams for brilliant x-ray generation, laser-driven sub-nanosecond bunches of protons and heavy ions for biomedical applications like imaging and tumour therapy as well as for nuclear and high-field physics.The radiation sources emerging from experiments using the up to 2.5 petawatt laser pulses with 25 femtosecond duration will be mixed particle-species of high intensity, high energy and pulsed, thus posing new challenges compared to conventional radiation protection. Such worldwide pioneering laser experiments result in source characteristics that require careful a-priori radiation safety simulations.The FLUKA Monte-Carlo code was used to model the five CALA experimental caves, including the corridors, halls and air spaces surrounding the caves. Beams of electrons (<5 GeV), protons (<200 MeV),12C (<400MeV/u) and197Au (<10MeV/u) ions were simulated using spectra, divergences and bunch-charges based on expectations from recent scientific progress.Simulated dose rates locally can exceed 1.5 kSv h-1inside beam dumps. Vacuum pipes in the cave walls for laser transport and extraction channels for the generated x-rays result in small dose leakage to neighboring areas. Secondary neutrons contribute to most of the prompt dose rate outside caves into which the beam is delivered. This secondary radiation component causes non-negligible dose rates to occur behind walls to which large fluences of secondary particles are directed.By employing adequate beam dumps matched to beam-divergence, magnets, passive shielding and laser pulse repetition limits, average dose rates in- and outside the experimental building stay below design specifications (<0.5μSv h-1) for unclassified areas,<2.5μSv h-1for supervised areas,<7.5μSv h-1maximum local dose rate) and regulatory limits (<1mSv a-1for unclassified areas).
Collapse
Affiliation(s)
- Franz S Englbrecht
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
- Author to whom any correspondence should be addressed
| | - Andreas Döpp
- Chair of Experimental Physics - Laser Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Jens Hartmann
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Florian H Lindner
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Martin L Groß
- Laboratory for Extreme Photonics, Ludwig-Maximilians-Universität München, Am Coulombwall 1a, 85748 Garching bei München, Germany
| | - Hans-F Wirth
- Laboratory for Extreme Photonics, Ludwig-Maximilians-Universität München, Am Coulombwall 1a, 85748 Garching bei München, Germany
| | - Peter G Thirolf
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Stefan Karsch
- Chair of Experimental Physics - Laser Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Jörg Schreiber
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
- Max Planck Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - George Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| |
Collapse
|
15
|
Nishiuchi M, Sakaki H, Dover NP, Miyahara T, Shiokawa K, Manabe S, Miyatake T, Kondo K, Kondo K, Iwata Y, Watanabe Y, Kondo K. Ion species discrimination method by linear energy transfer measurement in Fujifilm BAS-SR imaging plate. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:093305. [PMID: 33003787 DOI: 10.1063/5.0016515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
We have developed a novel discrimination methodology to identify ions in multispecies beams with similar charge-to-mass ratios, but different atomic numbers. After an initial separation by charge-to-mass ratios using co-linear electric and magnetic fields, individual ions can be discriminated by considering the linear energy transfer of ions irradiating a stimulable phosphor plate (Fujifilm imaging plate) by comparison with the Monte Carlo calculation. We apply the method to energetic multispecies laser-driven ion beams and use it to identify silver ions produced by the interaction between a high contrast, high intensity laser pulse; and a sub-micrometer silver foil target. We also show that this method can be used to calibrate the imaging plate for arbitrary ion species in the range of Z ≥ 6 with dE/dx > 0.1 MeV/μm without requiring individual calibration.
Collapse
Affiliation(s)
- M Nishiuchi
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - H Sakaki
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - N P Dover
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - T Miyahara
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - K Shiokawa
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - S Manabe
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - T Miyatake
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Ko Kondo
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Ke Kondo
- Research Group for Radiation Materials Engineering, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Y Iwata
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Y Watanabe
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Ki Kondo
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|
16
|
Barberio M, Giusepponi S, Vallières S, Scisció M, Celino M, Antici P. Ultra-Fast High-Precision Metallic Nanoparticle Synthesis using Laser-Accelerated Protons. Sci Rep 2020; 10:9570. [PMID: 32532997 PMCID: PMC7293332 DOI: 10.1038/s41598-020-65282-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/22/2020] [Indexed: 11/09/2022] Open
Abstract
Laser-driven proton acceleration, as produced during the interaction of a high-intensity (I > 1 × 1018 W/cm2), short pulse (<1 ps) laser with a solid target, is a prosperous field of endeavor for manifold applications in different domains, including astrophysics, biomedicine and materials science. These emerging applications benefit from the unique features of the laser-accelerated particles such as short duration, intense flux and energy versatility, which allow obtaining unprecedented temperature and pressure conditions. In this paper, we show that laser-driven protons are perfectly suited for producing, in a single sub-ns laser pulse, metallic nanocrystals with tunable diameter ranging from tens to hundreds of nm and very high precision. Our method relies on the intense and very quick proton energy deposition, which induces in a bulk material an explosive boiling and produces nanocrystals that aggregate in a plasma plume composed by atoms detached from the proton-irradiated surface. The properties of the obtained particles depend on the deposited proton energy and on the duration of the thermodynamical process. Suitably controlling the irradiated dose allows fabricating nanocrystals of a specific size with low polydispersity that can easily be isolated in order to obtain a monodisperse nanocrystal solution. Molecular Dynamics simulations confirm our experimental results.
Collapse
Affiliation(s)
- M Barberio
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, Quebec, J3X 1S2, Canada.
| | - S Giusepponi
- ENEA, C. R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | - S Vallières
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, Quebec, J3X 1S2, Canada
- CELIA, Uni. of Bordeaux, 351 Cours de la Libération, Talence, 33400, France
| | - M Scisció
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, Quebec, J3X 1S2, Canada
- ENEA Fusion and Technologies for Nuclear Safety Department, C.R. Frascati - Via Enrico Fermi 45, Frascati, Italy
| | - M Celino
- ENEA, C. R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | - P Antici
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, Quebec, J3X 1S2, Canada.
| |
Collapse
|
17
|
Würl M, Gianoli C, Englbrecht FS, Schreiber J, Parodi K. A Monte Carlo feasibility study on quantitative laser-driven proton radiography. Z Med Phys 2020; 32:109-119. [PMID: 32532553 PMCID: PMC9948831 DOI: 10.1016/j.zemedi.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Laser-accelerated proton bunches with kinetic energies up to several tens of MeV and at repetition rates in the order of Hz are nowadays achievable at several research centres housing high-power laser system. The unique features of such ultra-short bunches are also arousing interest in the field of radiological and biomedical applications. For many of these applications, accurate positioning of the biological target is crucial, raising the need for on-site imaging. One convenient option is proton radiography, which can exploit the polyenergetic spectrum of laser-accelerated proton bunches. We present a Monte Carlo (MC) feasibility study to assess the applicability and potential of laser-driven proton radiography of millimetre to centimetre sized objects. Our radiography setup consists of a thin time-of-flight spectrometer operated in transmission prior to the object and a pixelated silicon detector for imaging. Proton bunches with kinetic energies up to 20MeV and up to 100MeV were investigated. The water equivalent thickness (WET) of the traversed material is calculated from the energy deposition inside an imaging detector, using an online generated calibration curve that is based on a MC generated look-up table and the reconstructed proton energy distribution. With a dose of 43mGy for a 1mm thin object imaged with protons up to 20MeV, the reconstructed WET of defined regions-of-interest was within 1.5% of the ground truth values. The spatial resolution, which strongly depends on the gap between object and imaging detector, was 2.5lpmm-1 for a realistic distance of 5mm. Due to this relatively high imaging dose, our proposed setup for laser-driven proton radiography is currently limited to objects with low radio-sensitivity, but possibilities for further dose reduction are presented and discussed.
Collapse
Affiliation(s)
- Matthias Würl
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Germany.
| | - Chiara Gianoli
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Germany
| | | | - Jörg Schreiber
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Germany,Max-Planck-Institut für Quantenoptik, Garching, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
18
|
Dover NP, Nishiuchi M, Sakaki H, Kondo K, Alkhimova MA, Faenov AY, Hata M, Iwata N, Kiriyama H, Koga JK, Miyahara T, Pikuz TA, Pirozhkov AS, Sagisaka A, Sentoku Y, Watanabe Y, Kando M, Kondo K. Effect of Small Focus on Electron Heating and Proton Acceleration in Ultrarelativistic Laser-Solid Interactions. PHYSICAL REVIEW LETTERS 2020; 124:084802. [PMID: 32167312 DOI: 10.1103/physrevlett.124.084802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Acceleration of particles from the interaction of ultraintense laser pulses up to 5×10^{21} W cm^{-2} with thin foils is investigated experimentally. The electron beam parameters varied with decreasing spot size, not just laser intensity, resulting in reduced temperatures and divergence. In particular, the temperature saturated due to insufficient acceleration length in the tightly focused spot. These dependencies affected the sheath-accelerated protons, which showed poorer spot-size scaling than widely used scaling laws. It is therefore shown that maximizing laser intensity by using very small foci has reducing returns for some applications.
Collapse
Affiliation(s)
- N P Dover
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M Nishiuchi
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - H Sakaki
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Ko Kondo
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M A Alkhimova
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
| | - A Ya Faenov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
- Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka 565-0871, Japan
| | - M Hata
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - N Iwata
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - H Kiriyama
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - J K Koga
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - T Miyahara
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - T A Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
- Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka 565-0871, Japan
| | - A S Pirozhkov
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - A Sagisaka
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Y Sentoku
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Y Watanabe
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - M Kando
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Kondo
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|
19
|
Sharma A, Kamperidis C. High energy proton micro-bunches from a laser plasma accelerator. Sci Rep 2019; 9:13840. [PMID: 31554895 PMCID: PMC6761098 DOI: 10.1038/s41598-019-50348-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/10/2019] [Indexed: 11/15/2022] Open
Abstract
Recent advances on laser-driven ion accelerators have sparked an increased interest in such energetic particle sources, particularly towards the viability of their usage in a breadth of applications, such as high energy physics and medical applications. Here, we identify a new ion acceleration mechanism and we demonstrate, via particle-in-cell simulations, for the first time the generation of high energy, monochromatic proton micro-bunches while witnessing the acceleration and self-modulation of the accelerated proton beam in a dual-gas target, consisting of mixed ion species. In the proposed ion acceleration mechanism due to the interaction of an ultra-short, ultra-intense (2 PW, 20 fs) laser pulses with near-critical-density partially ionized plasmas (C & H species), we numerically observed high energy monochromatic proton microbunches of high quality (peak proton energy 350 MeV, laser to proton conversion efficiency ~10-4 and angular divergence <10 degree), which can be of high relevance for medical applications. We envisage that through this scheme, the range of attained energies and the monochromaticity of the accelerated protons can be increased with existing laser facilities or allow for laser-driven ion acceleration investigations to be pursued at moderate energies in smaller scale laser laboratories, hence reducing the size of the accelerators. The use of mixed-gas targets will enable high repetition rate operation of these accelerators, free of plasma debris and electromagnetic pulse disruptions.
Collapse
Affiliation(s)
- Ashutosh Sharma
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, H-6720 Szeged, Hungary.
| | | |
Collapse
|
20
|
Haffa D, Bin J, Speicher M, Allinger K, Hartmann J, Kreuzer C, Ridente E, Ostermayr TM, Schreiber J. Temporally Resolved Intensity Contouring (TRIC) for characterization of the absolute spatio-temporal intensity distribution of a relativistic, femtosecond laser pulse. Sci Rep 2019; 9:7697. [PMID: 31118430 PMCID: PMC6531490 DOI: 10.1038/s41598-019-42683-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/05/2019] [Indexed: 12/03/2022] Open
Abstract
Today’s high-power laser systems are capable of reaching photon intensities up to 1022 W cm−2, generating plasmas when interacting with material. The high intensity and ultrashort laser pulse duration (fs) make direct observation of plasma dynamics a challenging task. In the field of laser-plasma physics and especially for the acceleration of ions, the spatio-temporal intensity distribution is one of the most critical aspects. We describe a novel method based on a single-shot (i.e. single laser pulse) chirped probing scheme, taking nine sequential frames at frame rates up to THz. This technique, to which we refer as temporally resolved intensity contouring (TRIC) enables single-shot measurement of laser-plasma dynamics. Using TRIC, we demonstrate the reconstruction of the complete spatio-temporal intensity distribution of a high-power laser pulse in the focal plane at full pulse energy with sub-picosecond resolution.
Collapse
Affiliation(s)
- Daniel Haffa
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximillians-Universität München, 85748, Garching b. München, Germany.
| | - Jianhui Bin
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximillians-Universität München, 85748, Garching b. München, Germany. .,Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Martin Speicher
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximillians-Universität München, 85748, Garching b. München, Germany.
| | - Klaus Allinger
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximillians-Universität München, 85748, Garching b. München, Germany
| | - Jens Hartmann
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximillians-Universität München, 85748, Garching b. München, Germany
| | - Christian Kreuzer
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximillians-Universität München, 85748, Garching b. München, Germany
| | - Enrico Ridente
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximillians-Universität München, 85748, Garching b. München, Germany.,Max-Planck-Institut für Quantenoptik, 85748, Garching b. München, Germany
| | - Tobias M Ostermayr
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximillians-Universität München, 85748, Garching b. München, Germany.,Max-Planck-Institut für Quantenoptik, 85748, Garching b. München, Germany.,Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jörg Schreiber
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximillians-Universität München, 85748, Garching b. München, Germany
| |
Collapse
|
21
|
Bin JH, Ji Q, Seidl PA, Raftrey D, Steinke S, Persaud A, Nakamura K, Gonsalves A, Leemans WP, Schenkel T. Absolute calibration of GafChromic film for very high flux laser driven ion beams. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:053301. [PMID: 31153260 DOI: 10.1063/1.5086822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
We report on the calibration of GafChromic HD-v2 radiochromic film in the extremely high dose regime up to 100 kGy together with very high dose rates up to 7 × 1011 Gy/s. The absolute calibration was done with nanosecond ion bunches at the Neutralized Drift Compression Experiment II particle accelerator at Lawrence Berkeley National Laboratory (LBNL) and covers a broad dose dynamic range over three orders of magnitude. We then applied the resulting calibration curve to calibrate a laser driven ion experiment performed on the BELLA petawatt laser facility at LBNL. Here, we reconstructed the spatial and energy resolved distributions of the laser-accelerated proton beams. The resulting proton distribution is in fair agreement with the spectrum that was measured with a Thomson spectrometer in combination with a microchannel plate detector.
Collapse
Affiliation(s)
- J H Bin
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Q Ji
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - P A Seidl
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - D Raftrey
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - S Steinke
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - A Persaud
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - K Nakamura
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - A Gonsalves
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - W P Leemans
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - T Schenkel
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
22
|
I-BEAT: Ultrasonic method for online measurement of the energy distribution of a single ion bunch. Sci Rep 2019; 9:6714. [PMID: 31040311 PMCID: PMC6491586 DOI: 10.1038/s41598-019-42920-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/10/2019] [Indexed: 11/08/2022] Open
Abstract
The shape of a wave carries all information about the spatial and temporal structure of its source, given that the medium and its properties are known. Most modern imaging methods seek to utilize this nature of waves originating from Huygens' principle. We discuss the retrieval of the complete kinetic energy distribution from the acoustic trace that is recorded when a short ion bunch deposits its energy in water. This novel method, which we refer to as Ion-Bunch Energy Acoustic Tracing (I-BEAT), is a refinement of the ionoacoustic approach. With its capability of completely monitoring a single, focused proton bunch with prompt readout and high repetition rate, I-BEAT is a promising approach to meet future requirements of experiments and applications in the field of laser-based ion acceleration. We demonstrate its functionality at two laser-driven ion sources for quantitative online determination of the kinetic energy distribution in the focus of single proton bunches.
Collapse
|
23
|
Obst-Huebl L, Ziegler T, Brack FE, Branco J, Bussmann M, Cowan TE, Curry CB, Fiuza F, Garten M, Gauthier M, Göde S, Glenzer SH, Huebl A, Irman A, Kim JB, Kluge T, Kraft SD, Kroll F, Metzkes-Ng J, Pausch R, Prencipe I, Rehwald M, Roedel C, Schlenvoigt HP, Schramm U, Zeil K. All-optical structuring of laser-driven proton beam profiles. Nat Commun 2018; 9:5292. [PMID: 30546015 PMCID: PMC6294339 DOI: 10.1038/s41467-018-07756-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022] Open
Abstract
Extreme field gradients intrinsic to relativistic laser-interactions with thin solid targets enable compact MeV proton accelerators with unique bunch characteristics. Yet, direct control of the proton beam profile is usually not possible. Here we present a readily applicable all-optical approach to imprint detailed spatial information from the driving laser pulse onto the proton bunch. In a series of experiments, counter-intuitively, the spatial profile of the energetic proton bunch was found to exhibit identical structures as the fraction of the laser pulse passing around a target of limited size. Such information transfer between the laser pulse and the naturally delayed proton bunch is attributed to the formation of quasi-static electric fields in the beam path by ionization of residual gas. Essentially acting as a programmable memory, these fields provide access to a higher level of proton beam manipulation.
Collapse
Affiliation(s)
- Lieselotte Obst-Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany. .,Technische Universität Dresden, 01062, Dresden, Germany.
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - João Branco
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Michael Bussmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Chandra B Curry
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Frederico Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marco Garten
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Maxence Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sebastian Göde
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Siegfried H Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Axel Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Arie Irman
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Jongjin B Kim
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Stephan D Kraft
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Josefine Metzkes-Ng
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Richard Pausch
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Irene Prencipe
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | | | - Hans-Peter Schlenvoigt
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| |
Collapse
|
24
|
Würl M, Englbrecht FS, Lehrack S, Gianoli C, Lindner FH, Rösch TF, Haffa D, Olivari F, Petasecca M, Lerch MLF, Pogossov A, Tran LT, Assmann W, Schreiber J, Rosenfeld AB, Parodi K. Time-of-flight spectrometry of ultra-short, polyenergetic proton bunches. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:123302. [PMID: 30599609 DOI: 10.1063/1.5052059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
A common approach for spectrum determination of polyenergetic proton bunches from laser-ion acceleration experiments is based on the time-of-flight (TOF) method. However, spectra obtained using this method are typically given in relative units or are estimated based on some prior assumptions on the energy distribution of the accelerated ions. In this work, we present a new approach using the TOF method that allows for an absolute energy spectrum reconstruction from a current signal acquired with a sub-nanosecond fast and 10 µm thin silicon detector. The reconstruction is based on solving a linear least-squares problem, taking into account the response function of the detection system. The general principle of signal generation and spectrum reconstruction by setting up an appropriate system response matrix is presented. Proof-of-principle experiments at a 12 MV Tandem accelerator using different nanosecond-short (quasi-)monoenergetic and polyenergetic proton bunches at energies up to 20 MeV were successfully performed. Within the experimental uncertainties of 2.4% and 12.1% for energy and particle number, respectively, reconstructed energy distributions were found in excellent agreement with the spectra calculated using Monte Carlo simulations and measured by a magnetic spectrometer. This TOF method can hence be used for absolute online spectrometry of laser-accelerated particle bunches.
Collapse
Affiliation(s)
- Matthias Würl
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Franz S Englbrecht
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Sebastian Lehrack
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Chiara Gianoli
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Florian H Lindner
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Thomas F Rösch
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Daniel Haffa
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Francesco Olivari
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Alexandre Pogossov
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Linh T Tran
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Walter Assmann
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Jörg Schreiber
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| |
Collapse
|
25
|
Chen SN, Atzeni S, Gangolf T, Gauthier M, Higginson DP, Hua R, Kim J, Mangia F, McGuffey C, Marquès JR, Riquier R, Pépin H, Shepherd R, Willi O, Beg FN, Deutsch C, Fuchs J. Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas. Sci Rep 2018; 8:14586. [PMID: 30275488 PMCID: PMC6167377 DOI: 10.1038/s41598-018-32726-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/08/2018] [Indexed: 11/25/2022] Open
Abstract
Our understanding of the dynamics of ion collisional energy loss in a plasma is still not complete, in part due to the difficulty and lack of high-quality experimental measurements. These measurements are crucial to benchmark existing models. Here, we show that such a measurement is possible using high-flux proton beams accelerated by high intensity short pulse lasers, where there is a high number of particles in a picosecond pulse, which is ideal for measurements in quickly expanding plasmas. By reducing the energy bandwidth of the protons using a passive selector, we have made proton stopping measurements in partially ionized Argon and fully ionized Hydrogen plasmas with electron temperatures of hundreds of eV and densities in the range 1020-1021 cm-3. In the first case, we have observed, consistently with previous reports, enhanced stopping of protons when compared to stopping power in non-ionized gas. In the second case, we have observed for the first time the regime of reduced stopping, which is theoretically predicted in such hot and fully ionized plasma. The versatility of these tunable short-pulse laser based ion sources, where the ion type and energy can be changed at will, could open up the possibility for a variety of ion stopping power measurements in plasmas so long as they are well characterized in terms of temperature and density. In turn, these measurements will allow tests of the validity of existing theoretical models.
Collapse
Affiliation(s)
- S N Chen
- LULI-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128, Palaiseau cedex, France.
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia.
- Extreme Light Infrastructure - Nuclear Physics/Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Bucharest-Magurele, 077125, Romania.
| | - S Atzeni
- Dipartimento SBAI, Università di Roma "La Sapienza", Roma, Italy
| | - T Gangolf
- LULI-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128, Palaiseau cedex, France
- ILPP, Heinrich-Heine Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - M Gauthier
- LULI-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128, Palaiseau cedex, France
- High Energy Density Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - D P Higginson
- LULI-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128, Palaiseau cedex, France
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - R Hua
- Center for Energy Research, University of California, San Diego, La Jolla, CA, 92093-0417, USA
| | - J Kim
- Center for Energy Research, University of California, San Diego, La Jolla, CA, 92093-0417, USA
| | - F Mangia
- Dipartimento SBAI, Università di Roma "La Sapienza", Roma, Italy
| | - C McGuffey
- Center for Energy Research, University of California, San Diego, La Jolla, CA, 92093-0417, USA
| | - J-R Marquès
- LULI-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128, Palaiseau cedex, France
| | - R Riquier
- LULI-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128, Palaiseau cedex, France
| | - H Pépin
- INRS-EMT, Varennes, Québec, Canada
| | - R Shepherd
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - O Willi
- ILPP, Heinrich-Heine Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - F N Beg
- Center for Energy Research, University of California, San Diego, La Jolla, CA, 92093-0417, USA
| | - C Deutsch
- LPGP-Univ. Paris-Sud, (UMR-CNRS 8578), Orsay, France
| | - J Fuchs
- LULI-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128, Palaiseau cedex, France
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
- Extreme Light Infrastructure - Nuclear Physics/Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Bucharest-Magurele, 077125, Romania
| |
Collapse
|
26
|
Schreiber J, Bolton PR, Parodi K. Erratum: "Invited Review Article: 'Hands-on' laser-driven ion acceleration: A primer for laser-driven source development and potential applications" [Rev. Sci. Instrum. 87, 071101 (2016)]. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:069901. [PMID: 29960570 DOI: 10.1063/1.5041216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Jörg Schreiber
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Paul R Bolton
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Katia Parodi
- Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| |
Collapse
|
27
|
Feng Y, Tiedje HF, Gagnon K, Fedosejevs R. Spectral calibration of EBT3 and HD-V2 radiochromic film response at high dose using 20 MeV proton beams. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:043511. [PMID: 29716332 DOI: 10.1063/1.4996022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Radiochromic film is used extensively in many medical, industrial, and scientific applications. In particular, the film is used in analysis of proton generation and in high intensity laser-plasma experiments where very high dose levels can be obtained. The present study reports calibration of the dose response of Gafchromic EBT3 and HD-V2 radiochromic films up to high exposure densities. A 2D scanning confocal densitometer system is employed to carry out accurate optical density measurements up to optical density 5 on the exposed films at the peak spectral absorption wavelengths. Various wavelengths from 400 to 740 nm are also scanned to extend the practical dose range of such films by measuring the response at wavelengths removed from the peak response wavelengths. Calibration curves for the optical density versus exposure dose are determined and can be used for quantitative evaluation of measured doses based on the measured optical densities. It was found that blue and UV wavelengths allowed the largest dynamic range though at some trade-off with overall accuracy.
Collapse
Affiliation(s)
- Yiwei Feng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G2V4, Alberta, Canada
| | - Henry F Tiedje
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G2V4, Alberta, Canada
| | - Katherine Gagnon
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton T6G2V4, Alberta, Canada
| | - Robert Fedosejevs
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G2V4, Alberta, Canada
| |
Collapse
|
28
|
Seimetz M, Bellido P, García P, Mur P, Iborra A, Soriano A, Hülber T, García López J, Jiménez-Ramos MC, Lera R, Ruiz-de la Cruz A, Sánchez I, Zaffino R, Roso L, Benlloch JM. Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:023302. [PMID: 29495831 DOI: 10.1063/1.5009587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
CR-39 nuclear track material is frequently used for the detection of protons accelerated in laser-plasma interactions. The measurement of track densities allows for determination of particle angular distributions, and information on the kinetic energy can be obtained by the use of passive absorbers. We present a precise method of measuring spectral distributions of laser-accelerated protons in a single etching and analysis process. We make use of a one-to-one relation between proton energy and track size and present a precise calibration based on monoenergetic particle beams. While this relation is limited to proton energies below 1 MeV, we show that the range of spectral measurements can be significantly extended by simultaneous use of absorbers of suitable thicknesses. Examples from laser-plasma interactions are presented, and quantitative results on proton energies and particle numbers are compared to those obtained from a time-of-flight detector. The spectrum end points of continuous energy distributions have been determined with both detector types and coincide within 50-100 keV.
Collapse
Affiliation(s)
- M Seimetz
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Camino de Vera s/n, Ed. 8B-N-1a, 46022 Valencia, Spain
| | - P Bellido
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Camino de Vera s/n, Ed. 8B-N-1a, 46022 Valencia, Spain
| | - P García
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Camino de Vera s/n, Ed. 8B-N-1a, 46022 Valencia, Spain
| | - P Mur
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Camino de Vera s/n, Ed. 8B-N-1a, 46022 Valencia, Spain
| | - A Iborra
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Camino de Vera s/n, Ed. 8B-N-1a, 46022 Valencia, Spain
| | - A Soriano
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Camino de Vera s/n, Ed. 8B-N-1a, 46022 Valencia, Spain
| | - T Hülber
- Radosys Kft., Vegyész u. 17-27, 1116 Budapest, Hungary
| | - J García López
- Departamento Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - M C Jiménez-Ramos
- Centro Nacional de Aceleradores (CNA), U. Sevilla-J. Andalucía-CSIC, Avda. Thomas Alva Edison 7, 41092 Sevilla, Spain
| | - R Lera
- Proton Laser Applications S.L. (PLA), Avda. Vilafranca del Penedès 11, 08734 Olèrdola, Spain
| | - A Ruiz-de la Cruz
- Proton Laser Applications S.L. (PLA), Avda. Vilafranca del Penedès 11, 08734 Olèrdola, Spain
| | - I Sánchez
- Proton Laser Applications S.L. (PLA), Avda. Vilafranca del Penedès 11, 08734 Olèrdola, Spain
| | - R Zaffino
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), C/ dels Til.lers Campus UAB, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - L Roso
- Centro de Láseres Pulsados (CLPU), Calle del Adaja, 37185 Villamayor, Spain
| | - J M Benlloch
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Camino de Vera s/n, Ed. 8B-N-1a, 46022 Valencia, Spain
| |
Collapse
|
29
|
Sharma A. High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target. Sci Rep 2018; 8:2191. [PMID: 29391470 PMCID: PMC5794773 DOI: 10.1038/s41598-018-20506-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 01/19/2018] [Indexed: 11/26/2022] Open
Abstract
Relativistic electron rings hold the possibility of very high accelerating rates, and hopefully a relatively cheap and compact accelerator/collimator for ultrahigh energy proton source. In this work, we investigate the generation of helical shaped quasi-monoenergetic relativistic electron beam and high-energy proton beam from near critical density plasmas driven by petawatt-circularly polarized-short laser pulses. We numerically observe the efficient proton acceleration from magnetic vortex acceleration mechanism by using the three dimensional particle-in-cell simulations; proton beam with peak energy 350 MeV, charge ~10nC and conversion efficiency more than 6% (which implies 2.4 J proton beam out of the 40 J incident laser energy) is reported. We detailed the microphysics involved in the ion acceleration mechanism, which requires investigating the role of self-generated plasma electric and magnetic fields. The concept of efficient generation of quasi-monoenergetic electron and proton beam from near critical density gas targets may be verified experimentally at advanced high power – high repetition rate laser facilities e.g. ELI-ALPS. Such study should be an important step towards the development of high quality electron and proton beam.
Collapse
Affiliation(s)
- Ashutosh Sharma
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, H-6720 Szeged, Hungary.
| |
Collapse
|
30
|
Isolated proton bunch acceleration by a petawatt laser pulse. Nat Commun 2018; 9:423. [PMID: 29379024 PMCID: PMC5788983 DOI: 10.1038/s41467-017-02663-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
Often, the interpretation of experiments concerning the manipulation of the energy distribution of laser-accelerated ion bunches is complicated by the multitude of competing dynamic processes simultaneously contributing to recorded ion signals. Here we demonstrate experimentally the acceleration of a clean proton bunch. This was achieved with a microscopic and three-dimensionally confined near critical density plasma, which evolves from a 1 µm diameter plastic sphere, which is levitated and positioned with micrometer precision in the focus of a Petawatt laser pulse. The emitted proton bunch is reproducibly observed with central energies between 20 and 40 MeV and narrow energy spread (down to 25%) showing almost no low-energetic background. Together with three-dimensional particle-in-cell simulations we track the complete acceleration process, evidencing the transition from organized acceleration to Coulomb repulsion. This reveals limitations of current high power lasers and viable paths to optimize laser-driven ion sources. Monoenergetic proton beams can be useful in many applications but their generation from laser irradiation of targets is challenging. Here the authors demonstrate a laser-accelerated proton bunch with improved density and energy resolution by using a refined target.
Collapse
|
31
|
Lindner FH, Bin JH, Englbrecht F, Haffa D, Bolton PR, Gao Y, Hartmann J, Hilz P, Kreuzer C, Ostermayr TM, Rösch TF, Speicher M, Parodi K, Thirolf PG, Schreiber J. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:013301. [PMID: 29390656 DOI: 10.1063/1.5001990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.
Collapse
Affiliation(s)
- F H Lindner
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - J H Bin
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - F Englbrecht
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - D Haffa
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - P R Bolton
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - Y Gao
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - J Hartmann
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - P Hilz
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - C Kreuzer
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - T M Ostermayr
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - T F Rösch
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - M Speicher
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - K Parodi
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - P G Thirolf
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| | - J Schreiber
- Lehrstuhl für Experimentalphysik - Medizinische Physik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München, Germany
| |
Collapse
|
32
|
Obst L, Göde S, Rehwald M, Brack FE, Branco J, Bock S, Bussmann M, Cowan TE, Curry CB, Fiuza F, Gauthier M, Gebhardt R, Helbig U, Huebl A, Hübner U, Irman A, Kazak L, Kim JB, Kluge T, Kraft S, Loeser M, Metzkes J, Mishra R, Rödel C, Schlenvoigt HP, Siebold M, Tiggesbäumker J, Wolter S, Ziegler T, Schramm U, Glenzer SH, Zeil K. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets. Sci Rep 2017; 7:10248. [PMID: 28860614 PMCID: PMC5579044 DOI: 10.1038/s41598-017-10589-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/09/2017] [Indexed: 11/21/2022] Open
Abstract
We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.
Collapse
Affiliation(s)
- Lieselotte Obst
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Sebastian Göde
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - João Branco
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Michael Bussmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Chandra B Curry
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
- University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Frederico Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Maxence Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - René Gebhardt
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Axel Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Uwe Hübner
- Leibniz Institute of Photonic Technology e.V., 07745, Jena, Germany
| | - Arie Irman
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Lev Kazak
- Universität Rostock, Albert-Einstein-Straße 23-24, 18059, Rostock, Germany
| | - Jongjin B Kim
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Markus Loeser
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Josefine Metzkes
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Rohini Mishra
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Christian Rödel
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
- Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Hans-Peter Schlenvoigt
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Mathias Siebold
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | | | - Steffen Wolter
- Universität Rostock, Albert-Einstein-Straße 23-24, 18059, Rostock, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Siegfried H Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Karl Zeil
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.
| |
Collapse
|
33
|
Schramm U, Bussmann M, Irman A, Siebold M, Zeil K, Albach D, Bernert C, Bock S, Brack F, Branco J, Couperus JP, Cowan TE, Debus A, Eisenmann C, Garten M, Gebhardt R, Grams S, Helbig U, Huebl A, Kluge T, Köhler A, Krämer JM, Kraft S, Kroll F, Kuntzsch M, Lehnert U, Loeser M, Metzkes J, Michel P, Obst L, Pausch R, Rehwald M, Sauerbrey R, Schlenvoigt HP, Steiniger K, Zarini O. First results with the novel petawatt laser acceleration facility in Dresden. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/874/1/012028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Masood U, Cowan TE, Enghardt W, Hofmann KM, Karsch L, Kroll F, Schramm U, Wilkens JJ, Pawelke J. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams. Phys Med Biol 2017; 62:5531-5555. [DOI: 10.1088/1361-6560/aa7124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Göde S, Rödel C, Zeil K, Mishra R, Gauthier M, Brack FE, Kluge T, MacDonald MJ, Metzkes J, Obst L, Rehwald M, Ruyer C, Schlenvoigt HP, Schumaker W, Sommer P, Cowan TE, Schramm U, Glenzer S, Fiuza F. Relativistic Electron Streaming Instabilities Modulate Proton Beams Accelerated in Laser-Plasma Interactions. PHYSICAL REVIEW LETTERS 2017; 118:194801. [PMID: 28548516 DOI: 10.1103/physrevlett.118.194801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 06/07/2023]
Abstract
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a μm-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of B>10 MG and E>0.1 MV/μm fields with a μm-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length ≳0.13λ_{0}sqrt[a_{0}]. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multipurpose applications.
Collapse
Affiliation(s)
- S Göde
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C Rödel
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - K Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - R Mishra
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - F-E Brack
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - T Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - M J MacDonald
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J Metzkes
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - L Obst
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - M Rehwald
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - C Ruyer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - H-P Schlenvoigt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - W Schumaker
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - P Sommer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - T E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - U Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - S Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - F Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|