1
|
Dar DB, Baranova A, Maitra NT. Reformulation of Time-Dependent Density Functional Theory for Nonperturbative Dynamics: The Rabi Oscillation Problem Resolved. PHYSICAL REVIEW LETTERS 2024; 133:096401. [PMID: 39270163 DOI: 10.1103/physrevlett.133.096401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024]
Abstract
Rabi oscillations have long been thought to be out of reach in simulations using time-dependent density functional theory (TDDFT), a prominent symptom of the failure of the adiabatic approximation for nonperturbative dynamics. We present a reformulation of TDDFT which requires response quantities only, thus enabling an adiabatic approximation to predict such dynamics accurately because the functional is evaluated on a density close to the ground state, instead of on the fully nonperturbative density. Our reformulation applies to any real-time dynamics, redeeming TDDFT far from equilibrium. Examples of a resonantly-driven local excitation in a model He atom, and charge-transfer in the LiCN molecule are given.
Collapse
|
2
|
Rauwolf N, Klopper W, Holzer C. Non-linear light-matter interactions from the Bethe-Salpeter equation. J Chem Phys 2024; 160:061101. [PMID: 38341783 DOI: 10.1063/5.0191499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
A route to assess non-linear light-matter interactions from the increasingly popular GW-Bethe-Salpeter equation (GW-BSE) method is outlined. In the present work, the necessary analytic expressions within the static-screened exchange approximation of the BSE are derived. This enables a straightforward implementation of the computation of the first hyperpolarizability as well as two-photon absorption processes for molecular systems. Benchmark calculations on small molecular systems reveal that the GW-BSE method is intriguingly accurate for predicting both first hyperpolarizabilities and two-photon absorption strengths. Using state-of-the-art Kohn-Sham references as a starting point, the accuracy of the GW-BSE method rivals that of the coupled-cluster singles-and-doubles method, outperforming both second-order coupled-cluster and time-dependent density-functional theory.
Collapse
Affiliation(s)
- Nina Rauwolf
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Dar DB, Maitra NT. Oscillator strengths and excited-state couplings for double excitations in time-dependent density functional theory. J Chem Phys 2023; 159:211104. [PMID: 38038212 DOI: 10.1063/5.0176705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Although useful to extract excitation energies of states of double-excitation character in time-dependent density functional theory that are missing in the adiabatic approximation, the frequency-dependent kernel derived earlier [Maitra et al., J. Chem. Phys. 120, 5932 (2004)] was not designed to yield oscillator strengths. These are required to fully determine linear absorption spectra, and they also impact excited-to-excited-state couplings that appear in dynamics simulations and other quadratic response properties. Here, we derive a modified non-adiabatic kernel that yields both accurate excitation energies and oscillator strengths for these states. We demonstrate its performance on a model two-electron system, the Be atom, and on excited-state transition dipoles in the LiH molecule at stretched bond-lengths, in all cases producing significant improvements over the traditional approximations.
Collapse
Affiliation(s)
- Davood B Dar
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
4
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
5
|
Kehry M, Klopper W, Holzer C. Robust relativistic many-body Green's function based approaches for assessing core ionized and excited states. J Chem Phys 2023; 159:044116. [PMID: 37522402 DOI: 10.1063/5.0160265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
A two-component contour deformation (CD) based GW method that employs frequency sampling to drastically reduce the computational effort when assessing quasiparticle states far away from the Fermi level is outlined. Compared to the canonical CD-GW method, computational scaling is reduced by an order of magnitude without sacrificing accuracy. This allows for an efficient calculation of core ionization energies. The improved computational efficiency is used to provide benchmarks for core ionized states, comparing the performance of 15 density functional approximations as Kohn-Sham starting points for GW calculations on a set of 65 core ionization energies of 32 small molecules. Contrary to valence states, GW calculations on core states prefer functionals with only a moderate amount of Hartree-Fock exchange. Moreover, modern ab initio local hybrid functionals are also shown to provide excellent generalized Kohn-Sham references for core GW calculations. Furthermore, the core-valence separated Bethe-Salpeter equation (CVS-BSE) is outlined. CVS-BSE is a convenient tool to probe core excited states. The latter is tested on a set of 40 core excitations of eight small inorganic molecules. Results from the CVS-BSE method for excitation energies and the corresponding absorption cross sections are found to be in excellent agreement with those of reference damped response BSE calculations.
Collapse
Affiliation(s)
- Max Kehry
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Dar D, Roy S, Maitra NT. Curing the Divergence in Time-Dependent Density Functional Quadratic Response Theory. J Phys Chem Lett 2023; 14:3186-3192. [PMID: 36971411 DOI: 10.1021/acs.jpclett.3c00122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The adiabatic approximation in time-dependent density functional theory is known to give an incorrect pole structure in the quadratic response function, leading to unphysical divergences in excited state-to-state transition probabilities and hyperpolarizabilties. We find the form of the exact quadratic response kernel and derive a practical and accurate approximation that cures the divergence. We demonstrate our results on excited state-to-state transition probabilities of a model system and of the LiH molecule.
Collapse
Affiliation(s)
- Davood Dar
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Saswata Roy
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
7
|
Niehaus TA. Exact non-adiabatic coupling vectors for the time-dependent density functional based tight-binding method. J Chem Phys 2023; 158:054103. [PMID: 36754796 DOI: 10.1063/5.0136838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We report on non-adiabatic coupling vectors between electronic excited states for the time-dependent-density functional theory based tight-binding (TD-DFTB) method. The implementation includes orbital relaxation effects that have been previously neglected and covers also the case of range-separated exchange-correlation functionals. Benchmark calculations with respect to first principles TD-DFT highlight the large dependence of non-adiabatic couplings on the functional. Closer investigations of the topology around a conical intersection between excited states show that TD-DFTB delivers near-exact values of the Berry phase, which paves the way for consistent non-adiabatic molecular dynamics simulations for large systems.
Collapse
Affiliation(s)
- Thomas A Niehaus
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Liu J, Lu G, Zhang X. Exciton dispersion and exciton-phonon interaction in solids by time-dependent density functional theory. J Chem Phys 2023; 158:044116. [PMID: 36725491 DOI: 10.1063/5.0137326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Understanding, predicting, and ultimately controlling exciton band structure and exciton dynamics are central to diverse chemical and materials problems. Here, we have developed a first-principles method to determine exciton dispersion and exciton-phonon interaction in semiconducting and insulating solids based on time-dependent density functional theory. The first-principles method is formulated in planewave bases and pseudopotentials and can be used to compute exciton band structures, exciton charge density, ionic forces, the non-adiabatic coupling matrix between excitonic states, and the exciton-phonon coupling matrix. Based on the spinor formulation, the method enables self-consistent noncollinear calculations to capture spin-orbital coupling. Hybrid exchange-correlation functionals are incorporated to deal with long-range electron-hole interactions in solids. A sub-Hilbert space approximation is introduced to reduce the computational cost without loss of accuracy. For validations, we have applied the method to compute the exciton band structure and exciton-phonon coupling strength in transition metal dichalcogenide monolayers; both agree very well with the previous GW-Bethe-Salpeter equation and experimental results. This development paves the way for accurate determinations of exciton dynamics in a wide range of solid-state materials.
Collapse
Affiliation(s)
- Junyi Liu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, USA
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, USA
| | - Xu Zhang
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, USA
| |
Collapse
|
9
|
Wu X, Wen S, Song H, Frauenheim T, Tretiak S, Yam C, Zhang Y. Nonadiabatic Molecular Dynamics Simulations Based on Time-Dependent Density Functional Tight-Binding Method. J Chem Phys 2022; 157:084114. [DOI: 10.1063/5.0100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonadiabatic excited-state molecular dynamics underpin many photophysical and photochemical phenomena, such as exciton dynamics, charge separation and transport. In this work, we present an efficient nonadiabatic molecular dynamic (NAMD) simulation method based on time-dependent density functional tight-binding (TDDFTB) theory. Specifically, the adiabatic electronic structure, an essential NAMD input, is described at the TDDFTB level. The nonadiabatic effects originating from the coupled motions of electrons and nuclei are treated by the trajectory surface hopping algorithm. To improve the computational efficiency, nonadiabatic couplings between excited states within the TDDFTB method are derived and implemented using an analytical approach. Further, the time-dependent nonadiabatic coupling scalars are calculated based on the overlap between molecular orbitals rather than the Slater determinants to speed up the simulations. In addition, the electronic decoherence scheme and a state reassigned unavoided crossings algorithm, which has been implemented in the NEXMD software, are used to improve the accuracy of the simulated dynamics and handle trivial unavoided crossings. Finally, the photoinduced nonadiabatic dynamics of a benzene molecule are simulated to demonstrate our implementation. The results for excited state NAMD simulations of benzene molecule based on TDDFTB method compare well that obtained with numerically expensive time-dependent density functional theory. The proposed methodology provides an attractive theoretical simulation tool for predicting the photophysical and photochemical properties of complex materials.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen JL Computational Science and Applied Research Institute, China
| | | | - Huajing Song
- Los Alamos National Laboratory, United States of America
| | | | - Sergei Tretiak
- Theoretical Division, T-1, Los Alamos National Laboratory, United States of America
| | - ChiYung Yam
- Beijing Computational Science Research Center, Beijing Computational Science Research Center, China
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, United States of America
| |
Collapse
|
10
|
Nascimento DR, Govind N. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Phys Chem Chem Phys 2022; 24:14680-14691. [PMID: 35699090 DOI: 10.1039/d2cp01132h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emergence of state-of-the-art X-ray light sources has paved the way for novel spectroscopies that take advantage of their atomic specificity to shed light on fundamental physical, chemical, and biological processes both in the static and time domains. The success of these experiments hinges on the ability to interpret and predict core-level spectra, which has opened avenues for theory to play a key role. Over the last two decades, linear-response time-dependent density functional theory (LR-TDDFT), despite various theoretical challenges, has become a computationally attractive and versatile framework to study excited-state spectra including X-ray spectroscopies. In this context, we focus our discussion on LR-TDDFT approaches for the computation of X-ray Near-Edge Structure (XANES), Valence-to-Core X-ray Emission (VtC-XES), and Resonant Inelastic X-ray Scattering (RIXS) spectroscopies in molecular systems with an emphasis on Gaussian basis set implementations. We illustrate these approaches with applications and provide a brief outlook of possible new directions.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
11
|
Segatta F, Russo M, Nascimento DR, Presti D, Rigodanza F, Nenov A, Bonvicini A, Arcioni A, Mukamel S, Maiuri M, Muccioli L, Govind N, Cerullo G, Garavelli M. In Silico Ultrafast Nonlinear Spectroscopy Meets Experiments: The Case of Perylene Bisimide Dye. J Chem Theory Comput 2021; 17:7134-7145. [PMID: 34676761 PMCID: PMC8582250 DOI: 10.1021/acs.jctc.1c00570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Spectroscopy simulations are of paramount importance for the interpretation of experimental electronic spectra, the disentangling of overlapping spectral features, and the tracing of the microscopic origin of the observed signals. Linear and nonlinear simulations are based on the results drawn from electronic structure calculations that provide the necessary parameterization of the molecular systems probed by light. Here, we investigate the applicability of excited-state properties obtained from linear-response time-dependent density functional theory (TDDFT) in the description of nonlinear spectra by employing the pseudowavefunction approach and compare them with benchmarks from highly accurate RASSCF/RASPT2 calculations and with high temporal resolution experimental results. As a test case, we consider the prediction of femtosecond transient absorption and two-dimensional electronic spectroscopy of a perylene bisimide dye in solution. We find that experimental signals are well reproduced by both theoretical approaches, showing that the computationally cheaper TDDFT can be a suitable option for the simulation of nonlinear spectroscopy of molecular systems that are too large to be treated with higher-level RASSCF/RASPT2 methods.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Mattia Russo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Daniel R. Nascimento
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Davide Presti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Francesco Rigodanza
- Dipartimento
di Scienze Chimiche, Università degli
studi di Padova, Via
F. Marzolo, Padova I-35131, Italy
| | - Artur Nenov
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Andrea Bonvicini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Alberto Arcioni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Margherita Maiuri
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Luca Muccioli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Giulio Cerullo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| |
Collapse
|
12
|
Kochman MA, Durbeej B, Kubas A. Simulation and Analysis of the Transient Absorption Spectrum of 4-( N, N-Dimethylamino)benzonitrile (DMABN) in Acetonitrile. J Phys Chem A 2021; 125:8635-8648. [PMID: 34550700 PMCID: PMC8503879 DOI: 10.1021/acs.jpca.1c06166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/03/2021] [Indexed: 12/17/2022]
Abstract
4-(N,N-Dimethylamino)benzonitrile (DMABN) is a well-known model compound for dual fluorescence-in sufficiently polar solvents, it exhibits two distinct fluorescence emission bands. The interpretation of its transient absorption (TA) spectrum in the visible range is the subject of a long-standing controversy. In the present study, we resolve this issue by calculating the TA spectrum on the basis of nonadiabatic molecular dynamics simulations. An unambiguous assignment of spectral signals to specific excited-state structures is achieved by breaking down the calculated spectrum into contributions from twisted and nontwisted molecular geometries. In particular, the much-discussed excited-state absorption band near 1.7 eV (ca. 700 nm) is attributed to the near-planar locally excited (LE) minimum on the S1 state. On the technical side, our study demonstrates that the second-order approximate coupled cluster singles and doubles (CC2) method can be used successfully to calculate the TA spectra of moderately large organic molecules, provided that the system in question does not approach a crossing between the lowest excited state and the singlet ground state within the time frame of the simulation.
Collapse
Affiliation(s)
- Michał Andrzej Kochman
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Bo Durbeej
- Division
of Theoretical Chemistry, Department of Physics, Chemistry and Biology
(IFM), Linköping University, 581 83 Linköping, Sweden
| | - Adam Kubas
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
13
|
Wang Z, Wu C, Liu W. NAC-TDDFT: Time-Dependent Density Functional Theory for Nonadiabatic Couplings. Acc Chem Res 2021; 54:3288-3297. [PMID: 34448566 DOI: 10.1021/acs.accounts.1c00312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
First-order nonadiabatic coupling (NAC) matrix elements (fo-NACMEs) are the basic quantities in theoretical descriptions of electronically nonadiabatic processes that are ubiquitous in molecular physics and chemistry. Given the large size of systems of chemical interests, time-dependent density functional theory (TDDFT) is usually the first choice of methods. However, the lack of many-electron wave functions in TDDFT renders the formulation of NAC-TDDFT for fo-NACMEs conceptually difficult. Because of this, various variants of NAC-TDDFT have been proposed in the literature from different standing points, including the Hellmann-Feynman-like expression and auxiliary/pseudo-wave function (AWF)-, equation-of-motion (EOM)-, and time-dependent perturbation theory (TDPT)-based formulations. Based on critical analyses, the following conclusions are made here: (1) The Hellmann-Feynman-like expression, which is rooted in exact wave function theory, is hardly useful due to huge demand on basis sets. (2) Although most popular, the AWF variants of NAC-TDDFT are not theoretically founded and become ambiguous particularly for the fo-NACMEs between two excited states, although they do agree with the EOM and TDPT variants under the Tamm-Dancoff approximation. (3) The TDPT variant of NAC-TDDFT is theoretically most rigorous but suffers from numerical instabilities on the one hand and does not differ to a significant extent from the EOM variant on the other hand. (4) As such, the EOM variant of NAC-TDDFT for the fo-NACMEs between the ground and excited states and between two excited states is solely the right choice in practice. These formal analyses are fully supported by numerical experimentations, taking azulene as a showcase. The proper implementation of the EOM variant of NAC-TDDFT is also highlighted, showing that the fo-NACMEs between the ground and excited states and between two excited states are computationally very much the same as the analytic energy gradients of DFT and TDDFT, respectively. Possible future developments of the EOM variant of NAC-TDDFT are also highlighted. Its extensions to spin-adapted open-shell TDDFT and proper treatment of spin-orbit couplings (which are another source of force for electronically nonadiabatic processes) are particularly warranted in the near future.
Collapse
Affiliation(s)
- Zikuan Wang
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
14
|
Nascimento DR, Biasin E, Poulter BI, Khalil M, Sokaras D, Govind N. Resonant Inelastic X-ray Scattering Calculations of Transition Metal Complexes Within a Simplified Time-Dependent Density Functional Theory Framework. J Chem Theory Comput 2021; 17:3031-3038. [PMID: 33909424 DOI: 10.1021/acs.jctc.1c00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present a time-dependent density functional theory (TDDFT) approach to compute the light-matter couplings between two different manifolds of excited states relative to a common ground state in the context of 4d transition metal systems. These quantities are the necessary ingredients to solve the Kramers-Heisenberg (KH) equation for resonant inelastic X-ray scattering (RIXS) and several other types of two-photon spectroscopies. The procedure is based on the pseudo-wavefunction approach, where the solutions of a TDDFT calculation can be used to construct excited-state wavefunctions, and on the restricted energy window approach, where a manifold of excited states can be rigorously defined based on the energies of the occupied molecular orbitals involved in the excitation process. Thus, the present approach bypasses the need to solve the costly TDDFT quadratic-response equations. We illustrate the applicability of the method to 4d transition metal molecular complexes by calculating the 2p4d RIXS maps of three representative ruthenium complexes and comparing them to experimental results. The method can capture all the experimental features in all three complexes to allow the assignment of the experimental peaks, with relative energies correct to within ∼0.6 eV at the cost of two independent TDDFT calculations.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Benjamin I Poulter
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dimosthenis Sokaras
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
15
|
Niehaus TA. Ground-to-excited derivative couplings for the density functional-based tight-binding method: semi-local and long-range corrected formulations. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Peters LM, Kussmann J, Ochsenfeld C. Combining Graphics Processing Units, Simplified Time-Dependent Density Functional Theory, and Finite-Difference Couplings to Accelerate Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2020; 11:3955-3961. [PMID: 32374606 PMCID: PMC7304892 DOI: 10.1021/acs.jpclett.0c00320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Starting from our recently published implementation of nonadiabatic molecular dynamics (NAMD) on graphics processing units (GPUs), we explore further approaches to accelerate ab initio NAMD calculations at the time-dependent density functional theory (TDDFT) level of theory. We employ (1) the simplified TDDFT schemes of Grimme et al. and (2) the Hammes-Schiffer-Tully approach to obtain nonadiabatic couplings from finite-difference calculations. The resulting scheme delivers an accurate physical picture while virtually eliminating the two computationally most demanding steps of the algorithm. Combined with our GPU-based integral routines for SCF, TDDFT, and TDDFT derivative calculations, NAMD simulations of systems of a few hundreds of atoms at a reasonable time scale become accessible on a single compute node. To demonstrate this and to present a first, illustrative example, we perform TDDFT/MM-NAMD simulations of the rhodopsin protein.
Collapse
Affiliation(s)
- Laurens
D. M. Peters
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Jörg Kussmann
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
17
|
Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding ME, Hättig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Marefat Khah A, Karbalaei Khani S, Müller T, Mack F, Nguyen BD, Parker SM, Perlt E, Rappoport D, Reiter K, Roy S, Rückert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wüllen C, Voora VK, Weigend F, Wodyński A, Yu JM. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys 2020; 152:184107. [PMID: 32414256 PMCID: PMC7228783 DOI: 10.1063/5.0004635] [Citation(s) in RCA: 563] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Guo P Chen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Michael Diedenhofen
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Arnim Hellweg
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Uwe Huniar
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alireza Marefat Khah
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Thomas Müller
- Forschungszentrum Jülich, Jülich Supercomputer Centre, Wilhelm-Jonen Straße, 52425 Jülich, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin Reiter
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Matthias Rückert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Marek Sierka
- TURBOMOLE GmbH, Litzenhardtstraße 19, 76135 Karlsruhe, Germany
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Staße 52, 67663 Kaiserslautern, Germany
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
18
|
Peters LM, Kussmann J, Ochsenfeld C. Nonadiabatic Molecular Dynamics on Graphics Processing Units: Performance and Application to Rotary Molecular Motors. J Chem Theory Comput 2019; 15:6647-6659. [PMID: 31763834 PMCID: PMC6909237 DOI: 10.1021/acs.jctc.9b00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 11/29/2022]
Abstract
Nonadiabatic molecular dynamics (NAMD) simulations of molecular systems require the efficient evaluation of excited-state properties, such as energies, gradients, and nonadiabatic coupling vectors. Here, we investigate the use of graphics processing units (GPUs) in addition to central processing units (CPUs) to efficiently calculate these properties at the time-dependent density functional theory (TDDFT) level of theory. Our implementation in the FermiONs++ program package uses the J-engine and a preselective screening procedure for the calculation of Coulomb and exchange kernels, respectively. We observe good speed-ups for small and large molecular systems (comparable to those observed in ground-state calculations) and reduced (down to sublinear) scaling behavior with respect to the system size (depending on the spatial locality of the investigated excitation). As a first illustrative application, we present efficient NAMD simulations of a series of newly designed light-driven rotary molecular motors and compare their S1 lifetimes. Although all four rotors show different S1 excitation energies, their ability to rotate upon excitation is conserved, making the series an interesting starting point for rotary molecular motors with tunable excitation energies.
Collapse
Affiliation(s)
- Laurens
D. M. Peters
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Jörg Kussmann
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
19
|
Ibele LM, Nicolson A, Curchod BFE. Excited-state dynamics of molecules with classically driven trajectories and Gaussians. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1665199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry, Durham University, Durham, UK
| | | | | |
Collapse
|
20
|
de Wergifosse M, Grimme S. Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra. J Chem Phys 2019; 150:094112. [DOI: 10.1063/1.5080199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
21
|
Parker SM, Roy S, Furche F. Multistate hybrid time-dependent density functional theory with surface hopping accurately captures ultrafast thymine photodeactivation. Phys Chem Chem Phys 2019; 21:18999-19010. [DOI: 10.1039/c9cp03127h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an efficient analytical implementation of first-order nonadiabatic derivative couplings between arbitrary Born–Oppenheimer states in the hybrid time-dependent density functional theory (TDDFT) framework using atom-centered basis functions.
Collapse
Affiliation(s)
- Shane M. Parker
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - Saswata Roy
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - Filipp Furche
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| |
Collapse
|
22
|
Zhang X, Lu G. First-order nonadiabatic couplings in extended systems by time-dependent density functional theory. J Chem Phys 2018; 149:244103. [DOI: 10.1063/1.5065504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xu Zhang
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, USA
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, USA
| |
Collapse
|
23
|
Véril M, Romaniello P, Berger JA, Loos PF. Unphysical Discontinuities in GW Methods. J Chem Theory Comput 2018; 14:5220-5228. [DOI: 10.1021/acs.jctc.8b00745] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Crespo-Otero R, Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem Rev 2018; 118:7026-7068. [DOI: 10.1021/acs.chemrev.7b00577] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | |
Collapse
|
25
|
Segarra-Martí J, Zvereva E, Marazzi M, Brazard J, Dumont E, Assfeld X, Haacke S, Garavelli M, Monari A, Léonard J, Rivalta I. Resolving the Singlet Excited State Manifold of Benzophenone by First-Principles Simulations and Ultrafast Spectroscopy. J Chem Theory Comput 2018; 14:2570-2585. [DOI: 10.1021/acs.jctc.7b01208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Segarra-Martí
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Elena Zvereva
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CentreRussian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia
| | - Marco Marazzi
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Johanna Brazard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, UMR 7504, F-67000 Strasbourg, France
| | - Elise Dumont
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Xavier Assfeld
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, UMR 7504, F-67000 Strasbourg, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Jérémie Léonard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, UMR 7504, F-67000 Strasbourg, France
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| |
Collapse
|
26
|
Bowman DN, Asher JC, Fischer SA, Cramer CJ, Govind N. Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory. Phys Chem Chem Phys 2018; 19:27452-27462. [PMID: 28975162 DOI: 10.1039/c7cp04567k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three meso-substituted tetrapyridyl porphyrins (free base, Ni(ii), and Cu(ii)) were investigated for their optical limiting (OL) capabilities using real-time (RT-), linear-response (LR-), and quadratic-response (QR-) time-dependent density functional theory (TDDFT) methods. These species are experimentally known to display a prominent reverse saturable absorption feature between the Q and B bands of the ground-state absorption (GSA), which has been attributed to increased excited-state absorption (ESA) relative to GSA. A recently developed RT-TDDFT based method for calculating ESA from a LR-TDDFT density was utilized with eight exchange-correlation functionals (BLYP, PBE, B3LYP, CAM-B3LYP, PBE0, M06, BHLYP, and BHandH) and contrasted with calculations of ESA using QR-TDDFT with five exchange-correlation functionals (BLYP, B3LYP, CAM-B3LYP, BHLYP, and BHandH). This allowed for comparison between functionals with varying amounts of exact exchange as well as between the ability of RT-TDDFT and QR-TDDFT to reproduce OL behavior in porphyrin systems. The absorption peak positions and intensities for GSA and ESA are significantly impacted by the choice of DFT functional, with the most critical factor identified as the amount of exact exchange in the functional form. Calculating ESA with QR-TDDFT is found to be significantly more sensitive to the amount of exact exchange than GSA and ESA with RT-TDDFT, as well as GSA with LR-TDDFT. An analogous behavior is also demonstrated for the polycyclic aromatic hydrocarbon coronene. This is problematic when using the same approximate functional for calculation of both GSA and ESA, as the LR- and QR-TDDFT excitation energies will not have similar errors. Overall, the RT-TDDFT method with hybrid functionals reproduces the OL features for the porphyrin systems studied here and is a viable computational approach for efficient screening of molecular complexes for OL properties.
Collapse
Affiliation(s)
- David N Bowman
- Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
27
|
Parker SM, Rappoport D, Furche F. Quadratic Response Properties from TDDFT: Trials and Tribulations. J Chem Theory Comput 2017; 14:807-819. [DOI: 10.1021/acs.jctc.7b01008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shane M. Parker
- Department
of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Filipp Furche
- Department
of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
28
|
Maitra NT. Charge transfer in time-dependent density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:423001. [PMID: 28766507 DOI: 10.1088/1361-648x/aa836e] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.
Collapse
Affiliation(s)
- Neepa T Maitra
- Department of Physics and Astronomy, Hunter College and the Physics Program at the Graduate Center of the City University of New York, 695 Park Avenue, NY 10065, United States of America
| |
Collapse
|
29
|
Li C, Verma P, Hannon KP, Evangelista FA. A low-cost approach to electronic excitation energies based on the driven similarity renormalization group. J Chem Phys 2017; 147:074107. [DOI: 10.1063/1.4997480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Prakash Verma
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Kevin P. Hannon
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
30
|
Hu Z, Jensen L. Importance of double-resonance effects in two-photon absorption properties of Au 25(SR) 18. Chem Sci 2017. [PMID: 28626569 PMCID: PMC5471455 DOI: 10.1039/c7sc00968b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We show that double-resonance effects for Au25(SR)18– are less pronounced and do not lead to significantly enhanced two-photon absorption cross-sections.
The two-photon absorption (TPA) cross-sections of small thiolate-protected gold clusters have been shown to be much larger than typical small organic molecules. In comparison with larger nanoparticles, their TPA cross-sections per gold atom are also found to be larger. Theoretical simulations have suggested that the large enhancement of these TPA cross-sections comes from a one-photon double-resonance mechanism. However, it remains difficult to simulate TPA cross-sections of thiolate-protected gold clusters due to their large system size and a high density of states. In this work, we report a time-dependent density functional theory (TDDFT) study of the TPA spectra of the Au25(SR)18– cluster based on a damped response theory formalism. Damped response theory enables a consistent treatment of on- and off-resonance molecular properties even for molecules with a high density of states, and thus is well-suited for studying the TPA properties of gold clusters. Our results indicate that the one- and two-photon double-resonance effect is much smaller than previously found, and thus is unlikely to be the main cause of the large TPA cross-sections found experimentally. The effect of symmetry breaking of the Au25(SR)18– cluster due to the ligands on the TPA cross-sections has been studied and was found to only slightly increase the cross-section. Furthermore, by comparing with larger nanoparticles we find that the TPA cross-section per gold atom scales linearly with the diameter of the particles, and that the Kerr non-linear response of the Au25(SR)18– cluster is on the same order as that of bulk gold films.
Collapse
Affiliation(s)
- Zhongwei Hu
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802 , USA .
| | - Lasse Jensen
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802 , USA .
| |
Collapse
|