1
|
Khandagale P, Garcia-Cervera C, deBotton G, Breitzman T, Majidi C, Dayal K. Statistical field theory of polarizable polymer chains with nonlocal dipolar interactions. Phys Rev E 2024; 109:044501. [PMID: 38755880 DOI: 10.1103/physreve.109.044501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 05/18/2024]
Abstract
The electromechanical response of polymeric soft matter to applied electric fields is of fundamental scientific interest as well as relevant to technologies for sensing and actuation. Several existing theoretical and numerical approaches for polarizable polymers subject to a combined applied electric field and stretch are based on discrete monomer models. In these models, accounting for the interactions between the induced dipoles on monomers is challenging due to the nonlocality of these interactions. On the other hand, the framework of statistical field theory provides a continuous description of polymer chains that potentially enables a tractable way to account for these interactions. However, prior formulations using this framework have been restricted to the case of weak anisotropy of the monomer polarizability. This paper formulates a general approach based in the framework of statistical field theory to account for the nonlocal nature of the dipolar interactions without any restrictions on the anisotropy or nonlinearity of the polarizability of the monomer. The approach is based on three key elements: (1) the statistical field theory framework, in which the discrete monomers are regularized to a continuous dipole distribution, (2) a replacement of the nonlocal dipole-dipole interactions by the local electrostatics partial differential equation with the continuous dipole distribution as the forcing, and (3) the use of a completely general relation between the polarization and the local electric field. Rather than treat the dipole-dipole interactions directly, the continuous description in the field theory enables the computationally tractable nonlocal-to-local transformation. Further, it enables the use of a realistic statistical-mechanical ensemble wherein the average far-field applied electric field is prescribed, rather than prescribing the applied field at every point in the polymer domain. The model is applied, using the finite element method, to study the electromechanical response of a polymer chain in the ensemble with fixed far-field applied electric field and fixed chain stretch. The nonlocal dipolar interactions are found to increase, over the case where dipole-dipole interactions are neglected, the magnitudes of the polarization and electric field by orders of magnitude as well as significantly change their spatial distributions. Next, the effect of the relative orientation between the applied field and the chain on the local electric field and polarization is studied. The model predicts that the elastic response of the polymer chain is linear, consistent with the Gaussian approximation, and largely unchanged by the orientation of the applied electric field, though the polarization and local electric field distributions are significantly impacted.
Collapse
Affiliation(s)
- Pratik Khandagale
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
| | - Carlos Garcia-Cervera
- Department of Mathematics, University of California, Santa Barbara CA 93106, USA
- BCAM, Basque Center for Applied Mathematics, E48009 Bilbao, Basque Country, Spain
| | - Gal deBotton
- Department of Mechanical Engineering, Ben Gurion University, 84105 Beer Sheva, Israel
- Department of Biomedical Engineering, Ben Gurion University, 84105 Beer Sheva, Israel
| | | | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
| | - Kaushik Dayal
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Center for Nonlinear Analysis, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA
| |
Collapse
|
2
|
Lequieu J. Combining particle and field-theoretic polymer models with multi-representation simulations. J Chem Phys 2023; 158:244902. [PMID: 37377157 DOI: 10.1063/5.0153104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Particle-based and field-theoretic simulations are both widely used methods to predict the properties of polymeric materials. In general, the advantages of each method are complementary. Field-theoretic simulations are preferred for polymers with high molecular weights and can provide direct access to chemical potentials and free energies, which makes them the method-of-choice for calculating phase diagrams. The trade-off is that field-theoretic simulations sacrifice the molecular details present in particle-based simulations, such as the configurations of individual molecules and their dynamics. In this work, we describe a new approach to conduct "multi-representation" simulations that efficiently map between particle-based and field-theoretic simulations. Our approach involves the construction of formally equivalent particle-based and field-based models, which are then simulated subject to the constraint that their spatial density profiles are equal. This constraint provides the ability to directly link particle-based and field-based simulations and enables calculations that can switch between one representation to the other. By switching between particle/field representations during a simulation, we demonstrate that our approach can leverage many of the advantages of each representation while avoiding their respective limitations. Although our method is illustrated in the context of complex sphere phases in linear diblock copolymers, we anticipate that it will be useful whenever free energies, rapid equilibration, molecular configurations, and dynamic information are all simultaneously desired.
Collapse
Affiliation(s)
- Joshua Lequieu
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
3
|
Wu T, Zhang P. Structure and dynamics of dynamic covalent cross-linked PEOs and PEO/LiPF 6 electrolytes: a coarse-grained simulation study. Phys Chem Chem Phys 2023; 25:14530-14537. [PMID: 37191005 DOI: 10.1039/d3cp00905j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The incorporation of dynamic covalent bonds has been an attractive strategy to synthesize adaptive solid polymer electrolytes (SPEs). Here, we present molecular dynamics results concerning the relationship between ion transport and segmental dynamics for dynamic covalent cross-linked PEO-Li+ SPEs. To dissolve LiPF6 into PEO, a 1/r4-form approximation of ion-dipole interactions is employed as the solvation potential. Its parameters are estimated with the assistance of the Bayesian optimization algorithm and validated by comparing the resulting behaviors of PEO/LiPF6 with experimental observations. The dynamic associations of EO with Li+ and PF6- significantly reduce the segmental mobility of PEO, verifying the coupling of PEO segmental dynamics with ion transport. In order to reproduce the unique behaviors of associative covalent adaptive networks (CANs), the bond-exchange reaction is controlled by the collision probability and the user-defined activation energy (Ea ≥ 0) based on a hybrid of molecular dynamics and Monte Carlo methods. The dynamics of network topology, facilitated by the reshuffling of dynamic covalent bonds, is analyzed using graph theory. The network mesh size varies with time, which can be considered as one of the characteristics for associative CANs. The reshuffling of dynamic bonds releases the constraint from cross-linked structures, and enhances the long-range segmental mobility as well as the mobilities of Li+ and PF6-. By drawing comparisons with its conventionally cross-linked counterpart, the effect of dynamic-bond reshuffling on ion transport is studied for the dynamic covalent cross-linked PEO16-LiPF6 electrolyte in terms of self-diffusivities, cation transference number, and ionic conductivity.
Collapse
Affiliation(s)
- Tongfei Wu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Ping Zhang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Shen K, Nguyen M, Sherck N, Yoo B, Köhler S, Speros J, Delaney KT, Shell MS, Fredrickson GH. Predicting surfactant phase behavior with a molecularly informed field theory. J Colloid Interface Sci 2023; 638:84-98. [PMID: 36736121 DOI: 10.1016/j.jcis.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The computational study of surfactants and self-assembly is challenging because 1) models need to reflect chemistry-specific interactions, and 2) self-assembled structures are difficult to equilibrate with conventional molecular dynamics. We propose to overcome these challenges with a multiscale simulation approach where relative entropy minimization transfers chemically-detailed information from all-atom (AA) simulations to coarse-grained (CG) models that can be simulated using field-theoretic methods. Field-theoretic simulations are not limited by intrinsic physical time scales like diffusion and allow for rigorous equilibration via free energy minimization. This approach should enable the study of properties that are difficult to obtain by particle-based simulations. SIMULATION WORK We apply this workflow to sodium dodecylsulfate. To ensure chemical fidelity we present an AA force field calibrated against interfacial tension experiments. We generate CG models from AA simulation trajectories and show that particle-based and field-theoretic simulations of the CG model reproduce AA simulations and experimental measurements. FINDINGS The workflow captures the complex balance of interactions in a multicomponent system ultimately described by an atomistic model. The resulting CG models can study complex 3D phases like double or alternating gyroids, and reproduce salt effects on properties like aggregation number and shape transitions.
Collapse
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown 10591, NY, United States
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley 94720, CA, United States
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Department of Materials Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| |
Collapse
|
5
|
Budkov YA, Brandyshev PE, Kalikin NN. Theory of self-coacervation in semi-dilute and concentrated zwitterionic polymer solutions. SOFT MATTER 2023; 19:3281-3289. [PMID: 37089119 DOI: 10.1039/d3sm00140g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Based on the random phase approximation, we develop a molecular theory of self-coacervation in zwitterionic polymer solutions. We show that the interplay between the volume interactions of the monomeric units and electrostatic correlations of charged groups on a polymer backbone can result in liquid-liquid phase separation (self-coacervation). We analyse the behavior of the coacervate phase polymer concentration depending on the electrostatic interaction strength - the ratio of the Bjerrum length to the bond length of the chain. We establish that in a wide range of polymer concentration values - from a semi-dilute to a rather concentrated solution - the chain connectivity and excluded volume interaction of the monomeric units have an extremely weak effect on the contribution of the electrostatic interactions of the dipolar monomeric units to the total free energy. We show that for rather weak electrostatic interactions, the electrostatic correlations manifest themselves as Keesom interactions of point-like freely rotating dipoles (Keesom regime), while in the region of strong electrostatic interactions the electrostatic free energy is described by the Debye-Hückel limiting law (Debye regime). We show that for real zwitterionic coacervates the Keesom regime is realized only for sufficiently small polymer concentrations of the coacervate phase, while the Debye regime is approximately realized for rather dense coacervates. Using the mean-field variant of the density functional theory, we calculate the surface tension (surface free energy) of the "coacervate-solvent" interface as a function of the bulk polymer concentration. Obtained results can be used to estimate the parameters of the polymer chains needed for practical applications such as drug encapsulation and delivery, as well as the design of adhesive materials.
Collapse
Affiliation(s)
- Yury A Budkov
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia.
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo, 153045, Russia
| | - Petr E Brandyshev
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia.
| | - Nikolai N Kalikin
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia.
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo, 153045, Russia
| |
Collapse
|
6
|
Beckinghausen M, Spakowitz AJ. Interplay of Polymer Structure, Solvent Ordering, and Charge Fluctuations in Polyelectrolyte Solution Thermodynamics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Michael Beckinghausen
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
- Department of Applied Physics, Stanford University, Stanford, California94305, United States
- Biophysics Program, Stanford University, Stanford, California94305, United States
| |
Collapse
|
7
|
Fredrickson GH, Xie S, Edmund J, Le ML, Sun D, Grzetic DJ, Vigil DL, Delaney KT, Chabinyc ML, Segalman RA. Ionic Compatibilization of Polymers. ACS POLYMERS AU 2022; 2:299-312. [PMID: 36267546 PMCID: PMC9576261 DOI: 10.1021/acspolymersau.2c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Shuyi Xie
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Jerrick Edmund
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - My Linh Le
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - Dan Sun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Douglas J. Grzetic
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Daniel L. Vigil
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Karimpour M, Fedorov DV, Tkatchenko A. Molecular Interactions Induced by a Static Electric Field in Quantum Mechanics and Quantum Electrodynamics. J Phys Chem Lett 2022; 13:2197-2204. [PMID: 35231170 PMCID: PMC8919329 DOI: 10.1021/acs.jpclett.1c04222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
By means of quantum mechanics and quantum electrodynamics applied to coupled harmonic Drude oscillators, we study the interaction between two neutral atoms or molecules subject to a uniform static electric field. Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions, as considered within the employed Drude model for both non-retarded and retarded regimes. For the first case, we present an exact solution for two coupled oscillators obtained by diagonalizing the corresponding quantum-mechanical Hamiltonian and demonstrate that the external field can control the strength of different intermolecular interactions and relative orientations of the molecules. In the retarded regime described by quantum electrodynamics, our analysis shows that field-induced electrostatic and polarization energies remain unchanged (in isotropic and homogeneous vacuum) compared to the non-retarded case. For interacting species modeled by quantum Drude oscillators, the developed framework based on quantum mechanics and quantum electrodynamics yields the leading contributions to molecular interactions under the combined action of external and vacuum fields.
Collapse
Affiliation(s)
- Mohammad
Reza Karimpour
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| | - Dmitry V. Fedorov
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| |
Collapse
|
9
|
Ylitalo AS, Balzer C, Zhang P, Wang ZG. Electrostatic Correlations and Temperature-Dependent Dielectric Constant Can Model LCST in Polyelectrolyte Complex Coacervation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Andrew S. Ylitalo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher Balzer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Gordievskaya YD, Kramarenko EY, Gavrilov AA. The effect of explicit polarity on the conformational behavior of a single polyelectrolyte chain. Phys Chem Chem Phys 2021; 23:26296-26305. [PMID: 34787619 DOI: 10.1039/d1cp03167h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work using dissipative particle dynamics simulations with explicit treatment of polar species we demonstrate that the molecular nature of dielectric media has a significant impact on swelling and collapse of a polyelectrolyte chain in a dilute solution. We show that the small-scale effects related to the presence of polar species lead to the intensification of the electrostatic interactions when the charges are close to each other and/or their density is high enough. As a result, the electrostatic strength , usually regarded as the main parameter governing the polyelectrolyte chain collapse, does not have a universal meaning: the value of λ at which the coil-to-globule transition occurs is found to be dependent on the specific fixed value of the solvent bulk permittivity ε while varying the monomer unit charge Q and vice versa. This effect is observed even when the backbone and the counterions have the same polarity as the solvent beads, i.e. no dielectric mismatch is present. The reason for such behavior is rationalized in terms of the "effective" dielectric permittivity εeff which depends on the volume fraction φ of charged units inside the polymer chain volume; using εeff instead of ε collapses all data onto one master curve describing the chain shrinking with λ. Furthermore, it is shown that a polar chain adopts less swollen conformations in the polyelectrolyte regime and collapses more easily compared to a non-polar chain.
Collapse
Affiliation(s)
- Yulia D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia. .,A. N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russia
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia. .,A. N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russia
| | - Alexey A Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
11
|
Li W, Delaney KT, Fredrickson GH. Self-consistent field theory study of polymer-mediated colloidal interactions in solution: Depletion effects and induced forces. J Chem Phys 2021; 155:154903. [PMID: 34686054 DOI: 10.1063/5.0065742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polymer-mediated colloidal interactions control the stability and phase properties of colloid-polymer mixtures that are critical for a wide range of important applications. In this work, we develop a versatile self-consistent field theory (SCFT) approach to study this type of interaction based on a continuum confined polymer solution model with explicit solvent and confining walls. The model is formulated in the grand canonical ensemble, and the potential of mean force for the polymer-mediated interaction is computed from grand potentials. We focus on the case of non-adsorbing linear polymers and present a systematic investigation on depletion effects using SCFT. The properties of confined polymer solutions are probed, and mean-field profiles of induced interactions are shown across different physical regimes. We expose a detailed parametric dependence of the interaction, concerning both attractive and repulsive parts, on polymer concentration, chain length, and solvent quality and explore the effect of wall surface roughness, demonstrating the versatility of the proposed approach. Our findings show good agreement with previous numerical studies and experiments, yet extend prior work to new regimes. Moreover, the mechanisms of depletion attraction and repulsion, along with the influence of individual control factors, are further discussed. We anticipate that this study will provide useful insights into depletion forces and can be readily extended to examine more complex colloid-polymer mixtures.
Collapse
Affiliation(s)
- Wei Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
12
|
Kong X, Hou KJY, Qin J. Weakening of Solvation-Induced Ordering by Composition Fluctuation in Salt-Doped Block Polymers. ACS Macro Lett 2021; 10:545-550. [PMID: 35570763 DOI: 10.1021/acsmacrolett.1c00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spontaneous ordering of block polymers doped with ions is affected by both selective solvation and long-range Coulombic interaction. The mean-field treatment was recently shown to overestimate the solvation-induced ordering, requiring a large solvation radius to fit experimental phase diagrams, which may be relieved by including composition fluctuations. Treating the composition fluctuations in such systems is challenging because of the need of resolving heterogeneous dielectric profile that couples with the ordering itself. Starting from a minimal model, we develop a Landau-Brazovskiĭ expansion for the free energy of salt-doped block polymer near the ordering transition. It is found that the wavelength for typical composition fluctuations first decreases with salt doping, due to Coulombic interaction, then increases due to ionic solvation. Two mechanisms that weaken the solvation-enhanced ordering are identified: the Brazovskiĭ-type composition fluctuation that stabilizes disordered phase, and the coupling between mismatch in dispersion interaction and the dielectric permittivity through monomeric polarizability.
Collapse
Affiliation(s)
- Xian Kong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kevin Jia-Yu Hou
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Wessén J, Pal T, Das S, Lin YH, Chan HS. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates. J Phys Chem B 2021; 125:4337-4358. [PMID: 33890467 DOI: 10.1021/acs.jpcb.1c00954] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates such as membraneless organelles, underpinned by liquid-liquid phase separation (LLPS), are important for physiological function, with electrostatics, among other interaction types, being a prominent force in their assembly. Charge interactions of intrinsically disordered proteins (IDPs) and other biomolecules are sensitive to the aqueous dielectric environment. Because the relative permittivity of protein is significantly lower than that of water, the interior of an IDP condensate is expected to be a relatively low-dielectric regime, which aside from its possible functional effects on client molecules should facilitate stronger electrostatic interactions among the scaffold IDPs. To gain insight into this LLPS-induced dielectric heterogeneity, addressing in particular whether a low-dielectric condensed phase entails more favorable LLPS than that posited by assuming IDP electrostatic interactions are uniformly modulated by the higher dielectric constant of the pure solvent, we consider a simplified multiple-chain model of polyampholytes immersed in explicit solvents that are either polarizable or possess a permanent dipole. Notably, simulated phase behaviors of these systems exhibit only minor to moderate differences from those obtained using implicit-solvent models with a uniform relative permittivity equals to that of pure solvent. Buttressed by theoretical treatments developed here using random phase approximation and polymer field-theoretic simulations, these observations indicate a partial compensation of effects between favorable solvent-mediated interactions among the polyampholytes in the condensed phase and favorable polyampholyte-solvent interactions in the dilute phase, often netting only a minor enhancement of overall LLPS propensity from the very dielectric heterogeneity that arises from the LLPS itself. Further ramifications of this principle are discussed.
Collapse
Affiliation(s)
- Jonas Wessén
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Tanmoy Pal
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.,Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
14
|
Grzetic DJ, Delaney KT, Fredrickson GH. Electrostatic Manipulation of Phase Behavior in Immiscible Charged Polymer Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Douglas J. Grzetic
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Departments of Chemical Engineering and Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
15
|
Shen KH, Fan M, Hall LM. Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02557] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Zhuang B, Ramanauskaite G, Koa ZY, Wang ZG. Like dissolves like: A first-principles theory for predicting liquid miscibility and mixture dielectric constant. SCIENCE ADVANCES 2021; 7:7/7/eabe7275. [PMID: 33579702 PMCID: PMC7880597 DOI: 10.1126/sciadv.abe7275] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/27/2023]
Abstract
Liquid mixtures are ubiquitous. Miscibility and dielectric constant are fundamental properties that govern the applications of liquid mixtures. However, despite their importance, miscibility is usually predicted qualitatively based on the vaguely defined polarity of the liquids, and the dielectric constant of the mixture is modeled by introducing mixing rules. Here, we develop a first-principles theory for polar liquid mixtures using a statistical field approach, without resorting to mixing rules. With this theory, we obtain simple expressions for the mixture's dielectric constant and free energy of mixing. The dielectric constant predicted by this theory agrees well with measured data for simple binary mixtures. On the basis of the derived free energy of mixing, we can construct a miscibility map in the parameter space of the dielectric constant and molar volume for each liquid. The predicted miscibility shows remarkable agreement with known data, thus providing a quantitative basis for the empirical "like-dissolves-like" rule.
Collapse
Affiliation(s)
- Bilin Zhuang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
- Yale-NUS College, Singapore 138527, Singapore
- Institute of High Performance Computing, Singapore 138632, Singapore
| | | | | | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
17
|
Shah NJ, Dadashi-Silab S, Galluzzo MD, Chakraborty S, Loo WS, Matyjaszewski K, Balsara NP. Effect of Added Salt on Disordered Poly(ethylene oxide)-Block-Poly(methyl methacrylate) Copolymer Electrolytes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Neel J. Shah
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael D. Galluzzo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Saheli Chakraborty
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Budkov YA, Kalikin NN, Kolesnikov AL. Molecular theory of the electrostatic collapse of dipolar polymer gels. Chem Commun (Camb) 2021; 57:3983-3986. [PMID: 33885675 DOI: 10.1039/d0cc08296a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a new quantitative molecular theory of liquid-phase dipolar polymer gels. We model monomer units of the polymer network as a couple of charged sites separated by a fluctuating distance. For the first time, within the random phase approximation, we have obtained an analytical expression for the electrostatic free energy of the dipolar gel. Depending on the coupling parameter of dipole-dipole interactions and the ratio of the dipole length to the subchain Kuhn length, we describe the gel collapse induced by electrostatic interactions in the good solvent regime as a first-order phase transition. This transition can be realized at reasonable physical parameters of the system (temperature, solvent dielectric constant, and dipole moment of monomer units). The obtained results could be potentially used in modern applications of stimuli-responsive polymer gels and microgels, such as drug delivery, nanoreactors, molecular uptake, coatings, superabsorbents, etc.
Collapse
Affiliation(s)
- Yury A Budkov
- School of Applied Mathematics, HSE University, Tallinskaya St. 34, 123458 Moscow, Russia. and G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya St., 1, 153045 Ivanovo, Russia
| | - Nikolai N Kalikin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya St., 1, 153045 Ivanovo, Russia
| | - Andrei L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
19
|
Li W, Carrillo JMY, Sumpter BG, Kumar R. Modulating Microphase Separation of Lamellae-Forming Diblock Copolymers via Ionic Junctions. ACS Macro Lett 2020; 9:1667-1673. [PMID: 35617068 DOI: 10.1021/acsmacrolett.0c00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a molecular dynamics simulation study investigating the phase behavior of lamellae-forming diblock copolymers with a single ionic junction on the backbone. Our results show qualitative agreement with experimental findings regarding enhanced microphase separation with the introduction of an ionic junction at the conjunction point, while further revealing nonmonotonic changes in domain spacing and order-disorder transition as a function of the electrostatic interaction strength. This highlights the dominant roles of entropic and binding effects of counterions under weak and strong ionic correlations, respectively. The location of the ionic junction is found to effectively modulate the charge distribution and chain conformation in the ordered domains; its presence in the middle of a block promotes folding of the block, leading to a smaller domain size. These findings demonstrate the interplay of ionic coupling with steric hindrance and chain end effects, which enhances our understanding of the delicate control over the microphase domain features.
Collapse
Affiliation(s)
- Wei Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
20
|
Kumar R, Muthukumar M. Surface Tension of Dielectric-Air Interfaces. J Phys Chem B 2020; 124:5265-5270. [PMID: 32479081 DOI: 10.1021/acs.jpcb.0c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analytical and semianalytical expressions for the surface tension of dielectric-air interfaces are presented after considering local and nonlocal dielectric effects near interfaces. It is shown that the nonlocal effects of dielectrics are significant for highly polar dielectric fluids such as water. Far from the interface, nonlocal dielectric effects are shown to cause not only the oscillatory potential of the mean force but also a reversal of sign at intermediate distances.
Collapse
Affiliation(s)
- Rajeev Kumar
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| |
Collapse
|
21
|
Li M, Zhuang B, Yu J. Functional Zwitterionic Polymers on Surface: Structures and Applications. Chem Asian J 2020; 15:2060-2075. [DOI: 10.1002/asia.202000547] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Minglun Li
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Bilin Zhuang
- Division of ScienceYale-NUS College Singapore 138527 Singapore
| | - Jing Yu
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
22
|
Martin JM, Delaney KT, Fredrickson GH. Effect of an electric field on the stability of binary dielectric fluid mixtures. J Chem Phys 2020; 152:234901. [DOI: 10.1063/5.0010405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jonathan M. Martin
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
23
|
Hou KJ, Loo WS, Balsara NP, Qin J. Comparing Experimental Phase Behavior of Ion-Doped Block Copolymers with Theoretical Predictions Based on Selective Ion Solvation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kevin J. Hou
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Schauser NS, Grzetic DJ, Tabassum T, Kliegle GA, Le ML, Susca EM, Antoine S, Keller TJ, Delaney KT, Han S, Seshadri R, Fredrickson GH, Segalman RA. The Role of Backbone Polarity on Aggregation and Conduction of Ions in Polymer Electrolytes. J Am Chem Soc 2020; 142:7055-7065. [DOI: 10.1021/jacs.0c00587] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Müller M. Process-directed self-assembly of copolymers: Results of and challenges for simulation studies. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101198] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Budkov YA. A statistical field theory of salt solutions of 'hairy' dielectric particles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:055101. [PMID: 31604337 DOI: 10.1088/1361-648x/ab4d38] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, we formulate a field-theoretical model of dilute salt solutions of electrically neutral spherical colloid particles. Each colloid particle consists of a 'central' charge that is situated at the center and compensating peripheral charges (grafted to it) that are fixed or fluctuating relative to the central charge. In the framework of the random phase approximation, we obtain a general expression for electrostatic free energy of solution and analyze it for different limiting cases. In the limit of infinite number of peripheral charges, when they can be modelled as a continual charged cloud, we obtain an asymptotic behavior of the electrostatic potential of a point-like test charge in a salt colloid solution at long distances, demonstrating the crossover from its monotonic decrease to damped oscillations with a certain wavelength. We show that the obtained crossover is determined by certain Fisher-Widom line. For the same limiting case, we obtain an analytical expression for the electrostatic free energy of a salt-free solution. In the case of nonzero salt concentration, we obtain analytical relations for the electrostatic free energy in two limiting regimes. Namely, when the ionic concentration is much higher than the colloid concentration and the effective size of charge cloud is much bigger than the screening lengths that are attributed to the salt ions and the central charges of colloid particles. The proposed theory could be useful for theoretical description of the phase behavior of salt solutions of metal-organic complexes and polymeric stars.
Collapse
Affiliation(s)
- Yury A Budkov
- School of Applied Mathematics, Tikhonov Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, Tallinskaya st. 34, 123458 Moscow, Russia. Landau Institute for Theoretical Physics, Akademika Semenova av., 1-A, 142432 Chernogolovka, Russia
| |
Collapse
|
27
|
|
28
|
Abstract
Schematic representation of the multipolar molecule surrounded by salt ions in a dielectric solvent medium.
Collapse
Affiliation(s)
- Yury A. Budkov
- School of Applied Mathematics
- National Research University Higher School of Economics
- 123458 Moscow
- Russia
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
| |
Collapse
|
29
|
Spakowitz AJ. Polymer physics across scales: Modeling the multiscale behavior of functional soft materials and biological systems. J Chem Phys 2019; 151:230902. [DOI: 10.1063/1.5126852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Biophysics Program, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
30
|
Seo Y, Shen KH, Brown JR, Hall LM. Role of Solvation on Diffusion of Ions in Diblock Copolymers: Understanding the Molecular Weight Effect through Modeling. J Am Chem Soc 2019; 141:18455-18466. [PMID: 31674178 DOI: 10.1021/jacs.9b07227] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Youngmi Seo
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Jonathan R. Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
31
|
Grzetic DJ, Delaney KT, Fredrickson GH. Field-Theoretic Study of Salt-Induced Order and Disorder in a Polarizable Diblock Copolymer. ACS Macro Lett 2019; 8:962-967. [PMID: 35619489 DOI: 10.1021/acsmacrolett.9b00316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We study a salt-doped polarizable symmetric diblock copolymer using a recently developed field theory that self-consistently embeds dielectric response, ion solvation energies, and van der Waals (vdW) attractions via the incorporation of segment polarizabilities and fixed dipoles. This field theory is amenable to direct simulation via the complex Langevin sampling technique and, thus, requires no approximations beyond the phenomenology of the underlying molecular model. We measure the shift in the order-disorder transition (ODT) of a diblock copolymer with salt-loading in field-theoretic simulations and observe rich behavior in which solvation, dilution and charge screening effects compete to determine whether the ordered or disordered phase is stabilized. At low salt concentrations, the salt behaves as a selective solvent, localizing into the high-dielectric domains and stabilizing the ordered phase. At high salt concentrations, however, the salt localization vanishes due to charge screening effects, and the salt behaves as a nonselective solvent that screens vdW attractions and stabilizes the disordered phase.
Collapse
|
32
|
Grzetic DJ, Delaney KT, Fredrickson GH. Contrasting Dielectric Properties of Electrolyte Solutions with Polar and Polarizable Solvents. PHYSICAL REVIEW LETTERS 2019; 122:128007. [PMID: 30978093 DOI: 10.1103/physrevlett.122.128007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
We examine the static dielectric constant of electrolyte solutions with a polar and/or polarizable small-molecule solvent using a classical field-theoretic approach. We compute corrections to the dielectric constant and screening length due to intra- and intermolecular correlations via a renormalized one-loop approximation, accounting for the excluded volume of both solvent and electrolyte. In the salt-free case, we verify the one-loop theory by comparison with full numerical solutions of the field theory. The one-loop theory predicts either a nonlinear dielectric decrement or increment with increasing salt, depending on whether the fluid correlations are dominated by the dipolar or polarizable nature of the solvent. These contrasting regimes of nonlinear dielectric behavior are consistent with experimental trends in high- and low-dielectric constant electrolyte solutions.
Collapse
Affiliation(s)
- Douglas J Grzetic
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Departments of Chemical Engineering and Materials, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
33
|
Loo WS, Balsara NP. Organizing thermodynamic data obtained from multicomponent polymer electrolytes: Salt‐containing polymer blends and block copolymers. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Whitney S. Loo
- Department of Chemical and Biomolecular EngineeringUniversity of California‐Berkeley Berkeley California 94720
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular EngineeringUniversity of California‐Berkeley Berkeley California 94720
- Materials Sciences DivisionLawrence Berkeley National Laboratory Berkeley California 94720
- Joint Center for Energy Storage Research (JCESR)Lawrence Berkeley National Laboratory Berkeley California 94720
| |
Collapse
|
34
|
|
35
|
|
36
|
Kwon HK, Ma B, Olvera de la Cruz M. Determining the Regimes of Dielectric Mismatch and Ionic Correlation Effects in Ionomer Blends. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Friedowitz S, Salehi A, Larson RG, Qin J. Role of electrostatic correlations in polyelectrolyte charge association. J Chem Phys 2018; 149:163335. [DOI: 10.1063/1.5034454] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sean Friedowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Ali Salehi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ronald G. Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
38
|
Mahalik JP, Sumpter BG, Kumar R. Understanding the effects of symmetric salt on the structure of a planar dipolar polymer brush. J Chem Phys 2018; 149:163334. [PMID: 30384744 DOI: 10.1063/1.5037077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The effects of added salt on a planar dipolar polymer brush immersed in a polar solvent are studied using a field theoretic approach. The field theory developed in this work provides a unified framework for capturing effects of the inhomogeneous dielectric function, translational entropy of ions, crowding due to finite sized ions, ionic size asymmetry, and ion solvation. In this paper, we use the theory to study the effects of ion sizes, their concentration, and ion-solvation on the polymer segment density profiles of a dipolar brush immersed in a solution containing symmetric salt ions. The interplay of crowding effects, translational entropy, and ion solvation is shown to exhibit either an increase or decrease in the brush height. Translational entropy and crowding effects due to finite sizes of the ions tend to cause expansion of the brush as well as uniform distribution of the ions. By contrast, ion-solvation effects, which tend to be stronger for smaller ions, are shown to cause shrinkage of the brush and inhomogeneous distribution of the ions.
Collapse
Affiliation(s)
- Jyoti P Mahalik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G Sumpter
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Rajeev Kumar
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
39
|
Affiliation(s)
- Bilin Zhuang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Department of Materials Science and Engineering, Institute of High Performance Computing, Singapore 138632, Singapore
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
40
|
Affiliation(s)
- Kevin J. Hou
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
41
|
Budkov YA. Nonlocal statistical field theory of dipolar particles in electrolyte solutions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:344001. [PMID: 30015631 DOI: 10.1088/1361-648x/aad3ee] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a nonlocal statistical field theory of a dilute electrolyte solution with a small additive of dipolar particles. We postulate that every dipolar particle is associated with an arbitrary probability distribution function (PDF) of distance between its charge centers. Using the standard Hubbard-Stratonovich transformation, we represent the configuration integral of the system in the functional integral form. We show that in the limit of a small permanent dipole moment, the functional in integrand exponent takes the well known form of the Poisson-Boltzmann-Langevin (PBL) functional. In the mean-field approximation we obtain a non-linear integro-differential equation with respect to the mean-field electrostatic potential, generalizing the PBL equation for the point-like dipoles obtained first by Abrashkin et al. We apply the obtained equation in its linearized form to derivation of the expressions for the mean-field electrostatic potential of the point-like test ion and its solvation free energy in salt-free solution, as well as in solution with salt ions. For the 'Yukawa'-type PDF we obtain analytic relations for both the electrostatic potential and the solvation free energy of the point-like test ion. We obtain a general expression for the bulk electrostatic free energy of the solution within the Random phase approximation (RPA). For the salt-free solution of the dipolar particles for the Yukawa-type PDF we obtain an analytic relation for the electrostatic free energy, resulting in two limiting regimes. Finally, we analyze the limiting laws, following from the general relation for the electrostatic free energy of solution in presence of both the ions and the dipolar particles for the case of Yukawa-type PDF.
Collapse
Affiliation(s)
- Yury A Budkov
- School of Applied Mathematics, Tikhonov Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, Tallinskaya st. 34, 123458 Moscow, Russia. G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st. 1, 153045 Ivanovo, Russia
| |
Collapse
|
42
|
Delaney KT, Fredrickson GH. Theory of polyelectrolyte complexation-Complex coacervates are self-coacervates. J Chem Phys 2018; 146:224902. [PMID: 29166038 DOI: 10.1063/1.4985568] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complexation of mixtures of cationic and anionic polymers to produce complex-coacervate phases is a subject of fundamental importance to colloid and polymer science as well as to applications including drug delivery, sensing technologies, and bio-inspired adhesives. Unfortunately the theoretical underpinnings of complex coacervation are widely misunderstood and conceptual mistakes have propagated in the literature. Here, a simple symmetric polyelectrolyte mixture model in the absence of salt is used to discuss the salient features of the phase diagram, including the location of the critical point, binodals, and spinodals. It is argued that charge compensation by dimerization in the dilute region renders the phase diagram of an oppositely charged polyelectrolyte mixture qualitatively and quantitatively similar to that of a single-component symmetric diblock polyampholyte solution, a system capable of "self-coacervation." The theoretical predictions are verified using fully fluctuating field-theoretic simulations for corresponding polyelectrolyte and diblock polyampholyte models. These represent the first comprehensive, approximation-free phase diagrams for coacervate and self-coacervate systems to appear in the literature.
Collapse
Affiliation(s)
- Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
43
|
Grzetic DJ, Delaney KT, Fredrickson GH. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations. J Chem Phys 2018; 148:204903. [DOI: 10.1063/1.5025720] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Douglas J. Grzetic
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Departments of Chemical Engineering and Materials, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
44
|
Gordievskaya YD, Budkov YA, Kramarenko EY. An interplay of electrostatic and excluded volume interactions in the conformational behavior of a dipolar chain: theory and computer simulations. SOFT MATTER 2018; 14:3232-3235. [PMID: 29683178 DOI: 10.1039/c8sm00346g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of an interplay between electrostatic and excluded volume interactions on the conformational behavior of a dipolar chain has been studied theoretically and by means of molecular dynamics simulations. Every monomer unit of the dipolar chain comprises a dipole formed by a charged group of the chain and an oppositely charged counterion. The counterion is assumed to freely move around the chain but keeping the distance between oppositely charged ions (the dipole length) fixed. The novelty of the developed mean-field theory is that variations of the dipole parameters (the dipole length and the counterion size) have been accounted for in both electrostatic and excluded volume contributions to the total free energy of the dipolar chain. It has been shown that conformational transitions between swollen and collapsed states of the chain can be induced by fine-tuning the balance between electrostatic and excluded volume interactions. In particular, in low-polar media not only globule but also extended coil conformations can be realized even under strong electrostatic attraction. The results of MD simulations of a dipolar chain with variable dipolar length support theoretical conclusions.
Collapse
Affiliation(s)
- Yu D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia.
| | | | | |
Collapse
|
45
|
Martin JM, Li W, Delaney KT, Fredrickson GH. SCFT Study of Diblock Copolymer Melts in Electric Fields: Selective Stabilization of Orthorhombic Fddd Network Phase. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Brown JR, Seo Y, Hall LM. Ion Correlation Effects in Salt-Doped Block Copolymers. PHYSICAL REVIEW LETTERS 2018; 120:127801. [PMID: 29694088 DOI: 10.1103/physrevlett.120.127801] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/12/2017] [Indexed: 06/08/2023]
Abstract
We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.
Collapse
Affiliation(s)
- Jonathan R Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, USA
| | - Youngmi Seo
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, USA
| | - Lisa M Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
47
|
Budkov YA, Kiselev MG. Flory-type theories of polymer chains under different external stimuli. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:043001. [PMID: 29271365 DOI: 10.1088/1361-648x/aa9f56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.
Collapse
Affiliation(s)
- Yu A Budkov
- Tikhonov Moscow Institute of Electronics and Mathematics, School of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia. Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | | |
Collapse
|
48
|
Kolesnikov AL, Budkov YA, Basharova EA, Kiselev MG. Statistical theory of polarizable target compound impregnation into a polymer coil under the influence of an electric field. SOFT MATTER 2017; 13:4363-4369. [PMID: 28489109 DOI: 10.1039/c7sm00417f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The paper presents a theoretical approach for describing the influence of an electric field on the conformation of an electrically neutral dielectric polymer chain dissolved in a dielectric solvent with an admixture of a target compound. Each monomer and each molecule of the target compound carries positive excess polarizability and the solvent is described as a continuous dielectric medium. The model is based on the Flory-type mean-field theory. We demonstrate non-monotonic dependences of the expansion factor and the concentration of the target compound on the strength of the electric field and molecular polarizability. Namely, the target compound concentration in the internal polymer volume as a function of electric field strength has pronounced maxima if the molecules are polarizable. In addition, the expansion factor of the non-polarizable polymer chain can be controlled by the electric field. The dependences of the expansion factor and target compound concentration on the monomer polarizability exhibit minima and intersection points. The intersection points correspond to the equality of dielectric permittivities in the bulk solution and in the internal polymer volume.
Collapse
Affiliation(s)
- A L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Universität Leipzig, Leipzig, Germany.
| | - Yu A Budkov
- National Research University Higher School of Economics, Department of Applied Mathematics, Moscow, Russia.
| | | | - M G Kiselev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, Ivanovo, Russia
| |
Collapse
|
49
|
Budkov YA, Kalikin NN, Kolesnikov AL. Polymer chain collapse induced by many-body dipole correlations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:47. [PMID: 28417323 DOI: 10.1140/epje/i2017-11533-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.
Collapse
Affiliation(s)
- Yu A Budkov
- National Research University Higher School of Economics, Department of Applied Mathematics, Moscow, Russia.
| | - N N Kalikin
- Ivanovo State University, Department of Physics, Ivanovo, Russia
| | - A L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Universität Leipzig, Leipzig, Germany
| |
Collapse
|