1
|
Wang Q, Parish C, Niedbalski P, Ratnakar J, Kovacs Z, Lumata L. Hyperpolarized 89Y-EDTMP complex as a chemical shift-based NMR sensor for pH at the physiological range. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106837. [PMID: 33039915 PMCID: PMC7895333 DOI: 10.1016/j.jmr.2020.106837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 05/04/2023]
Abstract
Yttrium (III) complexes are interesting due to the similarity of their chemistry with gadolinium complexes that are used as contrast agents in nuclear magnetic resonance (NMR) spectroscopy or imaging (MRI). While most of the paramagnetic Gd3+-based MRI contrast agents are T1 or T2 relaxation-based sensors such as Gd3+-complexes for zinc or pH detection, a number of diamagnetic Y3+-complexes rely on changes in the chemical shift for potential quantitative MRI in biological milieu. 89Y, however, is a challenging nucleus to work with in conventional NMR or MRI due to its inherently low sensitivity and relatively long T1 relaxation time. This insensitivity problem in 89Y-based complexes can be circumvented with the use of dissolution dynamic nuclear polarization (DNP) which allows for several thousand-fold enhancement of the NMR or MRI signal relative to thermal equilibrium signal. Herein, we report on the feasibility of using hyperpolarized 89Y-complexes with phosphonated open-chain ligands, 89Y-EDTMP and 89Y-DTPMP, as potential chemical shift-based pH NMR sensors. Our DNP-NMR data show that hyperpolarized 89Y-DTPMP has an apparent pKa ~ 7.01 with a 4 ppm-wide chemical shift dispersion with the signal disappearing at pH below 6.2. On the other hand, pH titration data on hyperpolarized 89Y-EDTMP show that it has an apparent pKa of pH 6.7 and a 16-ppm wide chemical shift dispersion at pH 5-9 range. In comparison, the previously reported hyperpolarized pH NMR sensor 89Y-DOTP has a pKa of 7.64 and ~ 10-ppm wide chemical shift dispersion at pH 4-9 range. Overall, our data suggest that hyperpolarized 89Y-EDTMP is better than hyperpolarized 89Y-DOTP in terms of pH sensing capability at the physiological range.
Collapse
Affiliation(s)
- Qing Wang
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA; Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Peter Niedbalski
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA; Pulmonary and Critical Care Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - James Ratnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 750390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 750390, USA.
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
2
|
Kocman V, Di Mauro GM, Veglia G, Ramamoorthy A. Use of paramagnetic systems to speed-up NMR data acquisition and for structural and dynamic studies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:36-46. [PMID: 31325686 PMCID: PMC6698407 DOI: 10.1016/j.ssnmr.2019.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/05/2023]
Abstract
NMR spectroscopy is a powerful experimental technique to study biological systems at the atomic resolution. However, its intrinsic low sensitivity results in long acquisition times that in extreme cases lasts for days (or even weeks) often exceeding the lifetime of the sample under investigation. Different paramagnetic agents have been used in an effort to decrease the spin-lattice (T1) relaxation times of the studied nuclei, which are the main cause for long acquisition times necessary for signal averaging to enhance the signal-to-noise ratio of NMR spectra. Consequently, most of the experimental time is "wasted" in waiting for the magnetization to recover between successive scans. In this review, we discuss how to set up an optimal paramagnetic relaxation enhancement (PRE) system to effectively reduce the T1 relaxation times avoiding significant broadening of NMR signals. Additionally, we describe how PRE-agents can be used to provide structural and dynamic information and can even be used to follow the intermediates of chemical reactions and to speed-up data acquisition. We also describe the unique challenges and benefits associated with the application of PRE to solid-state NMR spectroscopy, explaining how the use of PREs is more complex for membrane mimetic systems as PREs can also be exploited to change the alignment of oriented membrane systems. Functionalization of membrane mimetics, such as bicelles, can provide a controlled region of paramagnetic effect that has the potential, together with the desired alignment, to provide crucial biologically relevant structural information. And finally, we discuss how paramagnetic metals can be utilized to further increase the dynamic nuclear polarization (DNP) effects and how to preserve the enhancements when dissolution DNP is implemented.
Collapse
Affiliation(s)
- Vojč Kocman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Parish C, Niedbalski P, Wang Q, Khashami F, Hayati Z, Liu M, Song L, Lumata L. Effects of glassing matrix deuteration on the relaxation properties of hyperpolarized 13C spins and free radical electrons at cryogenic temperatures. J Chem Phys 2019; 150:234307. [PMID: 31228902 PMCID: PMC6588520 DOI: 10.1063/1.5096036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 11/14/2022] Open
Abstract
Glassing matrix deuteration could be a beneficial sample preparation method for 13C dynamic nuclear polarization (DNP) when large electron paramagnetic resonance (EPR) width free radicals are used. However, it could yield the opposite DNP effect when samples are doped with small EPR width free radicals. Herein, we have investigated the influence of solvent deuteration on the 13C nuclear and electron relaxation that go along with the effects on 13C DNP intensities at 3.35 T and 1.2 K. For 13C DNP samples doped with trityl OX063, the 13C DNP signals decreased significantly when the protons are replaced by deuterons in glycerol:water or DMSO:water solvents. Meanwhile, the corresponding solid-state 13C T1 relaxation times of trityl OX063-doped samples generally increased upon solvent deuteration. On the other hand, 13C DNP signals improved by a factor of ∼1.5 to 2 upon solvent deuteration of samples doped with 4-oxo-TEMPO. Despite this 13C DNP increase, there were no significant differences recorded in 13C T1 values of TEMPO-doped samples with nondeuterated or fully deuterated glassing matrices. While solvent deuteration appears to have a negligible effect on the electron T1 relaxation of both free radicals, the electron T2 relaxation times of these two free radicals generally increased upon solvent deuteration. These overall results suggest that while the solid-phase 13C DNP signals are dependent upon the changes in total nuclear Zeeman heat capacity, the 13C relaxation effects are related to 2H/1H nuclear spin diffusion-assisted 13C polarization leakage in addition to the dominant paramagnetic relaxation contribution of free radical centers.
Collapse
Affiliation(s)
- Christopher Parish
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | | | - Qing Wang
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Fatemeh Khashami
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | | | | | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
4
|
Capozzi A, Patel S, Wenckebach WT, Karlsson M, Lerche MH, Ardenkjær-Larsen JH. Gadolinium Effect at High-Magnetic-Field DNP: 70% 13C Polarization of [U- 13C] Glucose Using Trityl. J Phys Chem Lett 2019; 10:3420-3425. [PMID: 31181932 DOI: 10.1021/acs.jpclett.9b01306] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We show that the trityl electron spin resonance (ESR) features, crucial for an efficient dynamic nuclear polarization (DNP) process, are sample-composition-dependent. Working at 6.7 T and 1.1 K with a generally applicable DNP sample solvent mixture such as water/glycerol plus trityl, the addition of Gd3+ leads to a dramatic increase in [U-13C] glucose polarization from 37 ± 4% to 69 ± 3%. This is the highest value reported to date and is comparable to what can be achieved on pyruvic acid. Moreover, performing ESR measurements under actual DNP conditions, we provide experimental evidence that gadolinium doping not only shortens the trityl electron spin-lattice relaxation time but also modifies the radical g-tensor. The latter yielded a considerable narrowing of the ESR spectrum line width. Finally, in the frame of the spin temperature theory, we discuss how these two phenomena affect the DNP performance.
Collapse
Affiliation(s)
- Andrea Capozzi
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - Saket Patel
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - W Thomas Wenckebach
- Paul Scherrer Institute , CH-5232 Villigen , Switzerland
- National High Magnetic Field Laboratory, UF, AMRIS , Gainesville , Florida 32611 , United States
| | - Magnus Karlsson
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - Mathilde H Lerche
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - Jan Henrik Ardenkjær-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
- GE Healthcare , Park Alle 295 , 2605 Brøndby , Denmark
| |
Collapse
|
5
|
Niedbalski P, Kiswandhi A, Parish C, Wang Q, Khashami F, Lumata L. NMR Spectroscopy Unchained: Attaining the Highest Signal Enhancements in Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2018; 9:5481-5489. [PMID: 30179503 DOI: 10.1021/acs.jpclett.8b01687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamic nuclear polarization (DNP) via the dissolution method is one of the most successful methods for alleviating the inherently low Boltzmann-dictated sensitivity in nuclear magnetic resonance (NMR) spectroscopy. This emerging technology has already begun to positively impact chemical and metabolic research by providing the much-needed enhancement of the liquid-state NMR signals of insensitive nuclei such as 13C by several thousand-fold. In this Perspective, we present our viewpoints regarding the key elements needed to maximize the NMR signal enhancements in dissolution DNP, from the very core of the DNP process at cryogenic temperatures, DNP instrumental conditions, and chemical tuning in sample preparation to current developments in minimizing hyperpolarization losses during the dissolution transfer process. The optimization steps discussed herein could potentially provide important experimental and theoretical considerations in harnessing the best possible sensitivity gains in NMR spectroscopy as afforded by optimized dissolution DNP technology.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Andhika Kiswandhi
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Christopher Parish
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Qing Wang
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Fatemeh Khashami
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Lloyd Lumata
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| |
Collapse
|
6
|
Parish C, Niedbalski P, Kiswandhi A, Lumata L. Dynamic nuclear polarization of carbonyl and methyl 13C spins of acetate using 4-oxo-TEMPO free radical. J Chem Phys 2018; 149:054302. [PMID: 30089385 DOI: 10.1063/1.5043378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hyperpolarization of 13C-enriched biomolecules via dissolution dynamic nuclear polarization (DNP) has enabled real-time metabolic imaging of a variety of diseases with superb specificity and sensitivity. The source of the unprecedented liquid-state nuclear magnetic resonance spectroscopic or imaging signal enhancements of >10 000-fold is the microwave-driven DNP process that occurs at a relatively high magnetic field and cryogenic temperature. Herein, we have methodically investigated the relative efficiencies of 13C DNP of single or double 13C-labeled sodium acetate with or without 2H-enrichment of the methyl group and using a 4-oxo-TEMPO free radical as the polarizing agent at 3.35 T and 1.4 K. The main finding of this work is that not all 13C spins in acetate are polarized with equal DNP efficiency using this relatively wide electron spin resonance linewidth free radical. In fact, the carbonyl 13C spins have about twice the solid-state 13C polarization level of methyl 13C spins. Deuteration of the methyl group provides a DNP signal improvement of methyl 13C spins on a par with that of carbonyl 13C spins. On the other hand, both the double 13C-labeled [1,2-13C2] acetate and [1,2-13C2, 2H3] acetate have a relative solid-state 13C polarization at the level of [2-13C] acetate. Meanwhile, the solid-state 13C T1 relaxation times at 3.35 T and 1.4 K were essentially the same for all six isotopomers of 13C acetate. These results suggest that the intramolecular environment of 13C spins plays a prominent role in determining the 13C DNP efficiency, while the solid phase 13C T1 relaxation of these samples is dominated by the paramagnetic effect due to the relatively high concentration of free radicals.
Collapse
Affiliation(s)
- Christopher Parish
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Peter Niedbalski
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Andhika Kiswandhi
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Lloyd Lumata
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
7
|
Niedbalski P, Wang Q, Parish C, Khashami F, Kiswandhi A, Lumata L. Magnetic-Field-Dependent Lifetimes of Hyperpolarized 13C Spins at Cryogenic Temperature. J Phys Chem B 2018; 122:1898-1904. [PMID: 29369632 DOI: 10.1021/acs.jpcb.8b00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Using a home-built cryogen-free dynamic nuclear polarization (DNP) system with a variable magnetic field capability, 13C spin-lattice T1 relaxation times of hyperpolarized [1-13C] carboxylates (sodium acetate, glycine, sodium pyruvate, and pyruvic acid) doped with trityl OX063 free radical were systematically measured for the first time at different field strengths up to 9 T at T = 1.8 K. Our data reveal that the 13C T1 values of these frozen hyperpolarized 13C samples vary drastically with the applied magnetic field B according to an apparent empirical power-law dependence (13C T1 ∝ Bα, 2.3 < α < 3.1), with relaxation values ranging from a few hundred seconds at 1 T to over 200,000 s at fields close to 9 T. This low temperature relaxation behavior can be ascribed approximately to a model that accounts for the combined effect of 13C-1H intramolecular dipolar interaction and the relaxation contribution from the paramagnetic impurities present in the DNP sample. Since the lifetime or T1 storage of the hyperpolarized state is intimately linked to DNP efficiency, these 13C relaxation data at cryogenic temperature have important theoretical and experimental implications as the DNP of 13C-labeled biomolecules is pushed to higher magnetic fields.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Qing Wang
- Department of Physics, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Christopher Parish
- Department of Physics, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Fatemeh Khashami
- Department of Physics, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Andhika Kiswandhi
- Department of Physics, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Lloyd Lumata
- Department of Physics, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
8
|
Sirusi AA, Suh EH, Kovacs Z, Merritt ME. The effect of Ho 3+ doping on 13C dynamic nuclear polarization at 5 T. Phys Chem Chem Phys 2018; 20:728-731. [PMID: 29242884 PMCID: PMC5761062 DOI: 10.1039/c7cp07198a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dissolution dynamic nuclear polarization was introduced in 2003 as a method for producing hyperpolarized 13C solutions suitable for metabolic imaging. The signal to noise ratio for the imaging experiment depends on the maximum polarization achieved in the solid state. Hence, optimization of the DNP conditions is essential. To acquire maximum polarization many parameters related to sample preparation can be modulated. Recently, it was demonstrated that Ho3+, Dy3+, Tb3+, and Gd3+ complexes enhance the polarization at 1.2 K and 3.35 T when using the trityl radical as the primary paramagnetic center. Here, we have investigated the influence of Ho-DOTA on 13C solid state DNP at 1.2 K and 5 T. We have performed 13C DNP on [1-13C] sodium acetate in 1 : 1 (v/v) water/glycerol with 15 mM trityl OX063 radicals in the presence of a series of Ho-DOTA concentrations (0, 0.5, 1, 2, 3, 5 mM). We have found that adding a small amount of Ho-DOTA in the sample preparation not only enhances the 13C polarization but also decreases the buildup time. The optimum Ho-DOTA concentration was 2 mM. In addition, the microwave sweep spectrum changes character in a manner that suggests both the cross effect and thermal mixing are active mechanisms for trityl radical at 5 T and 1.2 K.
Collapse
Affiliation(s)
- Ali A. Sirusi
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, USA
| | - Eul Hyun Suh
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
9
|
Niedbalski P, Parish C, Wang Q, Hayati Z, Song L, Martins AF, Sherry AD, Lumata L. Transition Metal Doping Reveals Link between Electron T 1 Reduction and 13C Dynamic Nuclear Polarization Efficiency. J Phys Chem A 2017; 121:9221-9228. [PMID: 29125294 PMCID: PMC5793213 DOI: 10.1021/acs.jpca.7b09448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optimal efficiency of dissolution dynamic nuclear polarization (DNP) is essential to provide the required high sensitivity enhancements for in vitro and in vivo hyperpolarized 13C nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI). At the nexus of the DNP process are the free electrons, which provide the high spin alignment that is transferred to the nuclear spins. Without changing DNP instrumental conditions, one way to improve 13C DNP efficiency is by adding trace amounts of paramagnetic additives such as lanthanide (e.g., Gd3+, Ho3+, Dy3+, Tb3+) complexes to the DNP sample, which has been observed to increase solid-state 13C DNP signals by 100-250%. Herein, we have investigated the effects of paramagnetic transition metal complex R-NOTA (R = Mn2+, Cu2+, Co2+) doping on the efficiency of 13C DNP using trityl OX063 as the polarizing agent. Our DNP results at 3.35 T and 1.2 K show that doping the 13C sample with 3 mM Mn2+-NOTA led to a substantial improvement of the solid-state 13C DNP signal by a factor of nearly 3. However, the other transition metal complexes Cu2+-NOTA and Co2+-NOTA complexes, despite their paramagnetic nature, had essentially no impact on solid-state 13C DNP enhancement. W-band electron paramagnetic resonance (EPR) measurements reveal that the trityl OX063 electron T1 was significantly reduced in Mn2+-doped samples but not in Cu2+- and Co2+-doped DNP samples. This work demonstrates, for the first time, that not all paramagnetic additives are beneficial to DNP. In particular, our work provides a direct evidence that electron T1 reduction of the polarizing agent by a paramagnetic additive is an essential requirement for the improvement seen in solid-state 13C DNP signal.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Christopher Parish
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Qing Wang
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - André F. Martins
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Lloyd Lumata
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
10
|
Niedbalski P, Parish CR, Wang Q, Hayati Z, Song L, Cleveland ZI, Lumata L. Enhanced Efficiency of 13C Dynamic Nuclear Polarization by Superparamagnetic Iron Oxide Nanoparticle Doping. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:19505-19511. [PMID: 31768206 PMCID: PMC6876865 DOI: 10.1021/acs.jpcc.7b06408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Attainment of high NMR signal enhancements is crucial to the success of in vitro or in vivo hyperpolarized NMR or imaging (MRI) experiments. In this work, we report on the use of a superparamagnetic iron oxide nanoparticle (SPION) MRI contrast agent Feraheme (ferumoxytol) as a beneficial additive in 13C samples for dissolution dynamic nuclear polarization (DNP). Our DNP data at 3.35 T and 1.2 K reveal that addition of 11 mM elemental iron concentration of Feraheme in trityl OX063-doped 3 M [1-13C] acetate samples resulted in a substantial improvement of 13C DNP signal by a factor of almost 3-fold. Concomitant with the large DNP signal increase is the narrowing of the 13C microwave DNP spectra for samples doped with SPION. W-band electron paramagnetic resonance (EPR) spectroscopy data suggest that these two prominent effects of SPION doping on 13C DNP can be ascribed to the shortening of trityl OX063 electron T 1 as explained within the thermal mixing DNP model. Liquid-state 13C NMR signal enhancements as high as 20,000-fold for SPION-doped samples were recorded after dissolution at 9.4 T and 297 K, which is about 3 times the liquid-state NMR signal enhancement of the control sample. While the presence of SPION in hyperpolarized solution drastically reduces 13C T 1, this can be mitigated by polarizing smaller aliquots of DNP samples. Moreover, we have shown that Feraheme nanoparticles (~30 nm in size) can be easily and effectively removed from the hyperpolarized liquid by simple mechanical filtration, thus one can potentially incorporate an in-line filtration for these SPIONS along the dissolution pathway of the hyperpolarizer-a significant advantage over other DNP enhancers such as the lanthanide complexes. The overall results suggest that the commercially-available and FDA-approved Feraheme is a highly efficient DNP enhancer that could be readily translated for use in clinical applications of dissolution DNP.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080 USA
| | - Christopher R. Parish
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080 USA
| | - Qing Wang
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080 USA
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, FL 32310
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, FL 32310
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080 USA
| |
Collapse
|
11
|
Niedbalski P, Parish C, Wang Q, Kiswandhi A, Hayati Z, Song L, Lumata L. 13C Dynamic Nuclear Polarization Using a Trimeric Gd 3+ Complex as an Additive. J Phys Chem A 2017. [PMID: 28631929 DOI: 10.1021/acs.jpca.7b03869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dissolution dynamic nuclear polarization (DNP) is one of the most successful techniques that resolves the insensitivity problem in liquid-state nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) by amplifying the signal by several thousand-fold. One way to further improve the DNP signal is the inclusion of trace amounts of lanthanides in DNP samples doped with trityl OX063 free radical as the polarizing agent. In practice, stable monomeric gadolinium complexes such as Gd-DOTA or Gd-HP-DO3A are used as beneficial additives in DNP samples, further boosting the DNP-enhanced solid-state 13C polarization by a factor of 2 or 3. Herein, we report on the use of a trimeric gadolinium complex as a dopant in 13C DNP samples to improve the 13C DNP signals in the solid-state at 3.35 T and 1.2 K and consequently, in the liquid-state at 9.4 T and 298 K after dissolution. Our results have shown that doping the 13C DNP sample with a complex which holds three Gd3+ ions led to an improvement of DNP-enhanced 13C polarization by a factor of 3.4 in the solid-state, on par with those achieved using monomeric Gd3+ complexes but only requires about one-fifth of the concentration. Upon dissolution, liquid-state 13C NMR signal enhancements close to 20 000-fold, approximately 3-fold the enhancement of the control samples, were recorded in the nearby 9.4 T high resolution NMR magnet at room temperature. Comparable reduction of 13C spin-lattice T1 relaxation time was observed in the liquid-state after dissolution for both the monomeric and trimeric Gd3+ complexes. Moreover, W-band electron paramagnetic resonance (EPR) data have revealed that 3-Gd doping significantly reduces the electron T1 of the trityl OX063 free radical, but produces negligible changes in the EPR spectrum, reminiscent of the results with monomeric Gd3+-complex doping. Our data suggest that the trimeric Gd3+ complex is a highly beneficial additive in 13C DNP samples and that its effect on DNP efficiency can be described in the context of the thermal mixing mechanism.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Qing Wang
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Andhika Kiswandhi
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University , 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University , 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| |
Collapse
|
12
|
Niedbalski P, Parish C, Kiswandhi A, Kovacs Z, Lumata L. Influence of 13C Isotopic Labeling Location on Dynamic Nuclear Polarization of Acetate. J Phys Chem A 2017; 121:3227-3233. [PMID: 28422500 DOI: 10.1021/acs.jpca.7b01844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dynamic nuclear polarization (DNP) via the dissolution method has alleviated the insensitivity problem in liquid-state nuclear magnetic resonance (NMR) spectroscopy by amplifying the signals by several thousand-fold. This NMR signal amplification process emanates from the microwave-mediated transfer of high electron spin alignment to the nuclear spins at high magnetic field and cryogenic temperature. Since the interplay between the electrons and nuclei is crucial, the chemical composition of a DNP sample such as the type of free radical used, glassing solvents, or the nature of the target nuclei can significantly affect the NMR signal enhancement levels that can be attained with DNP. Herein, we have investigated the influence of 13C isotopic labeling location on the DNP of a model 13C compound, sodium acetate, at 3.35 T and 1.4 K using the narrow electron spin resonance (ESR) line width free radical trityl OX063. Our results show that the carboxyl 13C spins yielded about twice the polarization produced in methyl 13C spins. Deuteration of the methyl 13C group, while proven beneficial in the liquid-state, did not produce an improvement in the 13C polarization level at cryogenic conditions. In fact, a slight reduction of the solid-state 13C polarization was observed when 2H spins are present in the methyl group. Furthermore, our data reveal that there is a close correlation between the solid-state 13C T1 relaxation times of these samples and the relative 13C polarization levels. The overall results suggest the achievable solid-state polarization of 13C acetate is directly affected by the location of the 13C isotopic labeling via the possible interplay of nuclear relaxation leakage factor and cross-talks between nuclear Zeeman reservoirs in DNP.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Andhika Kiswandhi
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| |
Collapse
|