1
|
Troß J, Arias-Martinez JE, Carter-Fenk K, Cole-Filipiak NC, Schrader P, McCaslin LM, Head-Gordon M, Ramasesha K. Femtosecond Core-Level Spectroscopy Reveals Involvement of Triplet States in the Gas-Phase Photodissociation of Fe(CO) 5. J Am Chem Soc 2024; 146:22711-22723. [PMID: 39092878 DOI: 10.1021/jacs.4c07523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Excitation of iron pentacarbonyl [Fe(CO)5], a prototypical photocatalyst, at 266 nm causes the sequential loss of two CO ligands in the gas phase, creating catalytically active, unsaturated iron carbonyls. Despite numerous studies, major aspects of its ultrafast photochemistry remain unresolved because the early excited-state dynamics have so far eluded spectroscopic observation. This has led to the long-held assumption that ultrafast dissociation of gas-phase Fe(CO)5 proceeds exclusively on the singlet manifold. Herein, we present a combined experimental-theoretical study employing ultrafast extreme ultraviolet transient absorption spectroscopy near the Fe M2,3-edge, which features spectral evolution on 100 fs and 3 ps time scales, alongside high-level electronic structure theory, which enables characterization of the molecular geometries and electronic states involved in the ultrafast photodissociation of Fe(CO)5. We assign the 100 fs evolution to spectroscopic signatures associated with intertwined structural and electronic dynamics on the singlet metal-centered states during the first CO loss and the 3 ps evolution to the competing dissociation of Fe(CO)4 along the lowest singlet and triplet surfaces to form Fe(CO)3. Calculations of transient spectra in both singlet and triplet states as well as spin-orbit coupling constants along key structural pathways provide evidence for intersystem crossing to the triplet ground state of Fe(CO)4. Thus, our work presents the first spectroscopic detection of transient excited states during ultrafast photodissociation of gas-phase Fe(CO)5 and challenges the long-standing assumption that triplet states do not play a role in the ultrafast dynamics.
Collapse
Affiliation(s)
- Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
2
|
Gaba NP, de Moura CEV, Majumder R, Sokolov AY. Simulating transient X-ray photoelectron spectra of Fe(CO) 5 and its photodissociation products with multireference algebraic diagrammatic construction theory. Phys Chem Chem Phys 2024; 26:15927-15938. [PMID: 38805029 DOI: 10.1039/d4cp00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate simulations of transient X-ray photoelectron spectra (XPS) provide unique opportunities to bridge the gap between theory and experiment in understanding the photoactivated dynamics in molecules and materials. However, simulating X-ray photoelectron spectra along a photochemical reaction pathway is challenging as it requires accurate description of electronic structure incorporating core-hole screening, orbital relaxation, electron correlation, and spin-orbit coupling in excited states or at nonequilibrium ground-state geometries. In this work, we employ the recently developed multireference algebraic diagrammatic construction theory (MR-ADC) to investigate the core-ionized states and X-ray photoelectron spectra of Fe(CO)5 and its photodissociation products (Fe(CO)4, Fe(CO)3) following excitation with 266 nm light. The simulated transient Fe 3p and CO 3σ XPS spectra incorporating spin-orbit coupling and high-order electron correlation effects are shown to be in a good agreement with the experimental measurements by Leitner et al. [J. Chem. Phys., 2018, 149, 044307]. Our calculations suggest that core-hole screening, spin-orbit coupling, and ligand-field splitting effects are similarly important in reproducing the experimentally observed chemical shifts in transient Fe 3p XPS spectra of iron carbonyl complexes. Our results also demonstrate that the MR-ADC methods can be very useful in interpreting the transient XPS spectra of transition metal compounds.
Collapse
Affiliation(s)
- Nicholas P Gaba
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Carlos E V de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
3
|
Walmsley T, McManus JW, Kumagai Y, Nagaya K, Harries J, Iwayama H, Ashfold MNR, Britton M, Bucksbaum PH, Downes-Ward B, Driver T, Heathcote D, Hockett P, Howard AJ, Lee JWL, Liu Y, Kukk E, Milesevic D, Minns RS, Niozu A, Niskanen J, Orr-Ewing AJ, Owada S, Robertson PA, Rolles D, Rudenko A, Ueda K, Unwin J, Vallance C, Brouard M, Burt M, Allum F, Forbes R. The Role of Momentum Partitioning in Covariance Ion Imaging Analysis. J Phys Chem A 2024; 128:4548-4560. [PMID: 38713032 PMCID: PMC11163424 DOI: 10.1021/acs.jpca.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
We present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation. We apply these techniques to extensively characterize the dissociation of 1-iodopropane and 2-iodopropane dications prepared by site-selective ionization of the iodine atom using extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Our assignments are supported by classical simulations, using parameters largely obtained directly from the experimental data.
Collapse
Affiliation(s)
- Tiffany Walmsley
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Joseph W. McManus
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Yoshiaki Kumagai
- Department
of Applied Physics, Tokyo University of
Agriculture and Technology, Tokyo 184-8588, Japan
| | - Kiyonobu Nagaya
- Department
of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - James Harries
- National
Institutes for Quantum Science and Technology (QST), SPring-8, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Iwayama
- Institute
for Molecular Science, Okazaki 444-8585, Japan
- Sokendai
(The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | | | - Mathew Britton
- Linac Coherent
Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Philip H. Bucksbaum
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Briony Downes-Ward
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Taran Driver
- Linac Coherent
Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - David Heathcote
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Paul Hockett
- National Research
Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Andrew J. Howard
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jason W. L. Lee
- Deutsches Elektronen-Synchrotron
(DESY), Hamburg 22607, Germany
| | - Yusong Liu
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Edwin Kukk
- Department
of Physics and Astronomy, University
of Turku, Turku FI-20014, Finland
| | - Dennis Milesevic
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Russell S. Minns
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Akinobu Niozu
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8526, Japan
| | - Johannes Niskanen
- Department
of Physics and Astronomy, University
of Turku, Turku FI-20014, Finland
| | | | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan
Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Patrick A. Robertson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Daniel Rolles
- J.R. Macdonald
Laboratory, Department of Physics, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Artem Rudenko
- J.R. Macdonald
Laboratory, Department of Physics, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Kiyoshi Ueda
- Department of Chemistry, Tohoku University, Sendai 980-8578, Japan
| | - James Unwin
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Claire Vallance
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Mark Brouard
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Michael Burt
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Felix Allum
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
- Linac Coherent
Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ruaridh Forbes
- Linac Coherent
Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| |
Collapse
|
4
|
Nagamori K, Haze M, Okuda Y, Yamasaki K, Kohguchi H. Primary and Secondary Processes in the Ultraviolet Photodissociation of CpCo(CO) 2 (Cyclopentadienylcobalt Dicarbonyl). J Phys Chem A 2023; 127:9921-9931. [PMID: 37972309 DOI: 10.1021/acs.jpca.3c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We investigated the photodissociation dynamics of CpCo(CO)2 (cyclopentadienylcobalt dicarbonyl) in metal-to-ligand charge transfer (MLCT) bands. By employing DFT calculations, the absorption band (210-240 nm) was characterized as a charge transfer from the Co center to the Cp (cyclopentadienyl, C5H5) ligand. Ion imaging was utilized to analyze the CO fragments and coordinatively unsaturated complexes (CpCoCO, CpCo, and CoC3H3) across the entire MLCT band. Measuring the production yields of individual unsaturated complexes as a function of photolysis wavelength by considering wavelength dependence indicated the involvement of several photochemical pathways: the first photodissociation and sequential dissociation of CpCo(CO)2, and the second photodissociation of unsaturated intermediates within the pulse duration of the photolysis laser. The recoil velocity shifts of CpCo and CoC3H3 were attributed to the onset of the sequential dissociation of CpCoCO. Evidence for the second photodissociation of CpCoCO was obtained through the matching of linear momenta between the CO(v = 0, 1) and CpCo fragments. The DFT calculations performed to determine the electronic structures and potential energy curves for photoinduced CO loss in CpCo(CO)2 and CpCoCO supported our interpretation of the experimental results. This study presents a practical approach to selectively detecting specific processes among the mixture of products and intermediates when photolyzing transition-metal carbonyls, as their concurrent generation is unavoidable in laser-based experiments.
Collapse
Affiliation(s)
- Keigo Nagamori
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misato Haze
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yuuka Okuda
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Katsuyoshi Yamasaki
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hiroshi Kohguchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
5
|
Turner JJ, George MW, Poliakoff M, Perutz RN. Photochemistry of transition metal carbonyls. Chem Soc Rev 2022; 51:5300-5329. [PMID: 35708003 DOI: 10.1039/d1cs00826a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this Tutorial Review is to outline the fundamental photochemistry of metal carbonyls, and to show how the advances in technology have increased our understanding of the detailed mechanisms, particularly how relatively simple experiments can provide deep understanding of complex problems. We recall some important early experiments that demonstrate the key principles underlying current research, concentrating on the binary carbonyls and selected substituted metal carbonyls. At each stage, we illustrate with examples from recent applications. This review first considers the detection of photochemical intermediates in three environments: glasses and matrices; gas phase; solution. It is followed by an examination of the theory underpinning these observations. In the final two sections, we briefly address applications to the characterization and behaviour of complexes with very labile ligands such as N2, H2 and alkanes, concentrating on key mechanistic points, and also describe some principles and examples of photocatalysis.
Collapse
Affiliation(s)
- James J Turner
- School of Chemistry University of Nottingham, NG7 2RD, UK.
| | | | | | - Robin N Perutz
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
6
|
Cole-Filipiak NC, Troß J, Schrader P, McCaslin LM, Ramasesha K. Ultrafast infrared transient absorption spectroscopy of gas-phase Ni(CO) 4 photodissociation at 261 nm. J Chem Phys 2022; 156:144306. [DOI: 10.1063/5.0080844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We employ ultrafast mid-infrared transient absorption spectroscopy to probe the rapid loss of carbonyl ligands from gas-phase nickel tetracarbonyl following ultraviolet photoexcitation at 261 nm. Here, nickel tetracarbonyl undergoes prompt dissociation to produce nickel tricarbonyl in a singlet excited state; this electronically excited tricarbonyl loses another CO group over tens of picoseconds. Our results also suggest the presence of a parallel, concerted dissociation mechanism to produce nickel dicarbonyl in a triplet excited state, which likely dissociates to nickel monocarbonyl. Mechanisms for the formation of these photoproducts in multiple electronic excited states are theoretically predicted with one-dimensional cuts through the potential energy surfaces and computation of spin–orbit coupling constants using equation of motion coupled cluster methods (EOM-CC) and coupled cluster theory with single and double excitations (CCSD). Bond dissociation energies are calculated with CCSD, and anharmonic frequencies of ground and excited state species are computed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT).
Collapse
Affiliation(s)
- Neil C. Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Laura M. McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| |
Collapse
|
7
|
Allum F, Music V, Inhester L, Boll R, Erk B, Schmidt P, Baumann TM, Brenner G, Burt M, Demekhin PV, Dörner S, Ehresmann A, Galler A, Grychtol P, Heathcote D, Kargin D, Larsson M, Lee JWL, Li Z, Manschwetus B, Marder L, Mason R, Meyer M, Otto H, Passow C, Pietschnig R, Ramm D, Schubert K, Schwob L, Thomas RD, Vallance C, Vidanović I, von Korff Schmising C, Wagner R, Walter P, Zhaunerchyk V, Rolles D, Bari S, Brouard M, Ilchen M. A localized view on molecular dissociation via electron-ion partial covariance. Commun Chem 2022; 5:42. [PMID: 36697752 PMCID: PMC9814695 DOI: 10.1038/s42004-022-00656-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d3/2 and 4d5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.
Collapse
Affiliation(s)
- Felix Allum
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Valerija Music
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Philipp Schmidt
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Günter Brenner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Philipp V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Arno Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | | | | | - David Heathcote
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Denis Kargin
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Mats Larsson
- Stockholm University, AlbaNova University Center, 114 21, Stockholm, Sweden
| | - Jason W L Lee
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Zheng Li
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Bastian Manschwetus
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Lutz Marder
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Robert Mason
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Huda Otto
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Christopher Passow
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Rudolf Pietschnig
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Daniel Ramm
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Richard D Thomas
- Stockholm University, AlbaNova University Center, 114 21, Stockholm, Sweden
| | - Claire Vallance
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Igor Vidanović
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | | | - René Wagner
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Daniel Rolles
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, 1228 Martin Luther King Jr. Dr., Manhattan, KS, 66506, USA
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Markus Ilchen
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany.
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
8
|
Banerjee A, Coates MR, Kowalewski M, Wikmark H, Jay RM, Wernet P, Odelius M. Photoinduced bond oscillations in ironpentacarbonyl give delayed synchronous bursts of carbonmonoxide release. Nat Commun 2022; 13:1337. [PMID: 35288563 PMCID: PMC8921231 DOI: 10.1038/s41467-022-28997-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Early excited state dynamics in the photodissociation of transition metal carbonyls determines the chemical nature of short-lived catalytically active reaction intermediates. However, time-resolved experiments have not yet revealed mechanistic details in the sub-picosecond regime. Hence, in this study the photoexcitation of ironpentacarbonyl Fe(CO)5 is simulated with semi-classical excited state molecular dynamics. We find that the bright metal-to-ligand charge-transfer (MLCT) transition induces synchronous Fe-C oscillations in the trigonal bipyramidal complex leading to periodically reoccurring release of predominantly axial CO. Metaphorically the photoactivated Fe(CO)5 acts as a CO geyser, as a result of dynamics in the potential energy landscape of the axial Fe-C distances and non-adiabatic transitions between manifolds of bound MLCT and dissociative metal-centered (MC) excited states. The predominant release of axial CO ligands and delayed release of equatorial CO ligands are explained in a unified mechanism based on the σ*(Fe-C) anti-bonding character of the receiving orbital in the dissociative MC states. The photodissociation of transition metal carbonyls is involved in catalysis and synthetic processes. Here the authors, using semi-classical excited state molecular dynamics, observe details of the early stage dynamics in the photodissociation of Fe(CO)5, including synchronous bursts of CO at periodic intervals of 90 femtoseconds.
Collapse
|
9
|
Nagamori K, Haze M, Nakata H, Zingsheim O, Yamasaki K, Kohguchi H. Generation of Highly Vibrationally Excited CO in Sequential Photodissociation of Iron Carbonyl Complexes. J Phys Chem A 2022; 126:306-313. [PMID: 35007077 DOI: 10.1021/acs.jpca.1c09922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet photochemistry of iron pentacarbonyl, Fe(CO)5, was investigated with resonantly enhanced multiphoton ionization (REMPI) spectroscopy and ion imaging. The REMPI spectrum of CO photofragments, generated by ultraviolet irradiation of Fe(CO)5, showed the generation in the highly vibrationally excited states with v = 11-15. Analysis of the band intensities observed in the 213-235 nm region indicated that the high-v CO generation was maximized at around 220 nm. Generation yields of the coordinatively unsaturated intermediates, Fe(CO)n=1-4, were measured as a function of the photolysis wavelength using a nonresonant detection scheme. The yield spectrum of FeCO was correlated with that of the high-v CO fragments, suggesting high-v CO generation in the photodissociation of FeCO. The density functional theory calculations of the excited states of FeCO showed an intense photoabsorption to the metal-centered state near 220 nm. The theoretical results were consistent with the interpretation of FeCO + hν → Fe + high-v CO, which was experimentally indicated. The momentum distribution obtained from the velocity distributions of Fe, Fe(CO)4, and CO fragments further supported that Fe is the counter-product of the high-v CO fragment. The present results provided selective observation of the photochemistry of the unsaturated iron carbonyl complexes, which has not been well elucidated in laser-based experiments because of the uncontrollable sequential photodissociation producing mixed Fe(CO)n intermediates.
Collapse
Affiliation(s)
- Keigo Nagamori
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misato Haze
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hiroyuki Nakata
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Oliver Zingsheim
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
| | - Katsuyoshi Yamasaki
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hiroshi Kohguchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
10
|
Linguerri R, Olsson E, Nyman G, Hochlaf M, Eland JHD, Feifel R. Unimolecular Double Photoionization-Induced Processes in Iron Pentacarbonyl. Inorg Chem 2021; 60:17966-17975. [PMID: 34699196 PMCID: PMC8653154 DOI: 10.1021/acs.inorgchem.1c02533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The dissociations
of nascent Fe(CO)5++ ions
created by 40.81 eV photoionization of iron pentacarbonyl have been
examined using threefold and fourfold electron–ion coincidence
measurements. The energies and forms of the ions have been explored
by high-level calculations, revealing several new structures. The
most stable form of Fe(CO)5++ has a quite different
geometry from that of the neutral molecule. The dissociation pattern
can be modeled as a sequence of CO evaporations followed by two-body
charge separations. Each Fe(CO)n++ (n = 1–4) dication is stable in a restricted
energy range; as its internal energy increases, it first ejects a
neutral CO, then loses CO+ by charge separation at higher
energy. In the initial stages, charge-retaining CO evaporations dominate
over charge separation, but the latter become more competitive as
the number of residual CO ligands decreases. At energies where ionization
is mainly from the CO ligands, new Fe–C and C–C bonds
are created by a mechanism which might be relevant to catalysis by
Fe. Dissociations of nascent Fe(CO)5++ ions by sequential CO evaporations, leading (in restricted
energy
ranges) to stable Fe(CO)n++ (n = 1−4) dicationic species. At energies
where ionization is mainly from the CO ligands, new Fe−C and
C−C bonds are created by a mechanism which might be relevant
to catalysis by Fe.
Collapse
Affiliation(s)
- Roberto Linguerri
- COSYS/LISIS, Université Gustave Eiffel, 5 Bd Descartes, 77454, Champs sur Marne, France
| | - Emelie Olsson
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58 Gothenburg, Sweden
| | - Gunnar Nyman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Majdi Hochlaf
- COSYS/LISIS, Université Gustave Eiffel, 5 Bd Descartes, 77454, Champs sur Marne, France
| | - John H D Eland
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QZ Oxford, U.K
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58 Gothenburg, Sweden
| |
Collapse
|
11
|
Cole-Filipiak NC, Troß J, Schrader P, McCaslin LM, Ramasesha K. Ultraviolet photodissociation of gas-phase iron pentacarbonyl probed with ultrafast infrared spectroscopy. J Chem Phys 2021; 154:134308. [PMID: 33832268 DOI: 10.1063/5.0041074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well known that ultraviolet photoexcitation of iron pentacarbonyl results in rapid loss of carbonyl ligands leading to the formation of coordinatively unsaturated iron carbonyl compounds. We employ ultrafast mid-infrared transient absorption spectroscopy to probe the photodissociation dynamics of gas-phase iron pentacarbonyl following ultraviolet excitation at 265 and 199 nm. After photoexcitation at 265 nm, our results show evidence for sequential dissociation of iron pentacarbonyl to form iron tricarbonyl via a short-lived iron tetracarbonyl intermediate. Photodissociation at 199 nm results in the prompt production of Fe(CO)3 within 0.25 ps via several energetically accessible pathways. An additional 15 ps time constant extracted from the data is tentatively assigned to intersystem crossing to the triplet manifold of iron tricarbonyl or iron dicarbonyl. Mechanisms for formation of iron tetracarbonyl, iron tricarbonyl, and iron dicarbonyl are proposed and theoretically validated with one-dimensional cuts through the potential energy surface as well as bond dissociation energies. Ground state calculations are computed at the CCSD(T) level of theory and excited states are computed with EOM-EE-CCSD(dT).
Collapse
Affiliation(s)
- Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| |
Collapse
|
12
|
Hansen CS, Marchetti B, Karsili TNV, Ashfold MNR. Ultraviolet photodissociation of gas-phase transition metal complexes: dicarbonylcyclopentadienyliodoiron(II). Mol Phys 2021. [DOI: 10.1080/00268976.2020.1813343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Nakata H, Nagamori K, Haze M, Yamasaki K, Kohguchi H. Primary and Secondary Loss of CO and NO Ligands in the Ultraviolet Photodissociation of the Heteroleptic Co(CO) 3NO Complex. J Phys Chem A 2020; 124:10694-10704. [PMID: 33320007 DOI: 10.1021/acs.jpca.0c07812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photodissociation dynamics of the heteroleptic Co(CO)3NO complex were investigated in the metal-to-carbonyl (CO) ligand charge-transfer band to compare the reactivity of the CO and nitrosyl (NO) ligands. The final state distributions of both the CO and NO fragments were measured using resonance-enhanced multiphoton ionization (REMPI) spectroscopy and velocity-map ion-imaging. The primary CO photofragment was differentiated from the secondary fragments of the subsequent unimolecular decomposition of coordinatively unsaturated intermediates by comparing the momentum distributions. The internal energy of the Co(CO)2NO intermediate was sufficiently high (≥348 kJ/mol) to be generated in the electronic excited state, indicating the occurrence of the primary CO elimination on an excited state. The NO fragments exhibited two velocity components. The analysis of the final state distributions suggested that the higher- and lower-kinetic-energy components originated from the direct primary elimination and sequential elimination, respectively. The direct photoelimination through a transiently bent ligand conformation was illustrated on the basis of a two-dimensional REMPI approach and time-dependent density functional theory calculations. The present results of both ligands demonstrate the correlation between elimination mechanisms and possible ligand conformations in the electronic excited state.
Collapse
Affiliation(s)
- Hiroyuki Nakata
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 Hiroshima, Japan
| | - Keigo Nagamori
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 Hiroshima, Japan
| | - Misato Haze
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 Hiroshima, Japan
| | - Katsuyoshi Yamasaki
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 Hiroshima, Japan
| | - Hiroshi Kohguchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 Hiroshima, Japan
| |
Collapse
|
14
|
Wernet P. Chemical interactions and dynamics with femtosecond X-ray spectroscopy and the role of X-ray free-electron lasers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170464. [PMID: 30929622 PMCID: PMC6452048 DOI: 10.1098/rsta.2017.0464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
X-ray free-electron lasers with intense, tuneable and short-pulse X-ray radiation are transformative tools for the investigation of transition-metal complexes and metalloproteins. This becomes apparent in particular when combining the experimental observables from X-ray spectroscopy with modern theoretical tools for calculations of electronic structures and X-ray spectra from first principles. The combination gives new insights into how charge and spin densities change in chemical reactions and how they determine reactivity. This is demonstrated for the investigations of structural dynamics with metal K-edge absorption spectroscopy, spin states in excited-state dynamics with metal 3p-3d exchange interactions, the frontier-orbital interactions in dissociation and substitution reactions with metal-specific X-ray spectroscopy, and studies of metal oxidation states with femtosecond pulses for 'probe-before-destroy' spectroscopy. The role of X-ray free-electron lasers is addressed with thoughts about how they enable 'bringing back together' different aspects of the same problem and this is thought to go beyond a conventional review paper where these aspects are formulated in italic font type in a prequel, an interlude and in a sequel. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
|
15
|
Nakata H, Nagamori K, Yamasaki K, Kohguchi H. Detection of direct NO ligand loss in the ultraviolet photodissociation of Co(CO)3NO. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Leitner T, Josefsson I, Mazza T, Miedema PS, Schröder H, Beye M, Kunnus K, Schreck S, Düsterer S, Föhlisch A, Meyer M, Odelius M, Wernet P. Time-resolved electron spectroscopy for chemical analysis of photodissociation: Photoelectron spectra of Fe(CO)5, Fe(CO)4, and Fe(CO)3. J Chem Phys 2018; 149:044307. [DOI: 10.1063/1.5035149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. Leitner
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - I. Josefsson
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - T. Mazza
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - P. S. Miedema
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - H. Schröder
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - M. Beye
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - K. Kunnus
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - S. Schreck
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - S. Düsterer
- Deutsches Elektronen-Synchrotron DESY, FS-FLASH, Notkestrasse 85, 22607 Hamburg, Germany
| | - A. Föhlisch
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - M. Meyer
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Ph. Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| |
Collapse
|