1
|
Schweighofer SV, Inamdar K, Jans DC, Jakobs S. STED super-resolution microscopy of mitochondrial translocases. Methods Enzymol 2024; 707:299-327. [PMID: 39488379 DOI: 10.1016/bs.mie.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The mitochondrial translocases of the outer membrane (TOM) and of the inner membrane (TIM) act together to facilitate the import of nuclear-encoded proteins across the mitochondrial membranes. Stimulated Emission Depletion (STED) super-resolution microscopy enables the in situ imaging of such complexes in single cells at sub-diffraction resolution. STED microscopy requires only conventional sample preparation techniques and provides super-resolved raw data without the need for further image processing. In this chapter, we provide a detailed example protocol for STED microscopy of TOM20 and mitochondrial DNA in fixed mammalian cells. The protocol includes instructions on sample preparation for immunolabeling, including cell line selection, fixation, permeabilization, blocking, labeling and mounting, but also recommendations for sample and microscope performance evaluation. The protocol is supplemented by considerations on key factors that influence the quality of the final image and also includes some considerations for the analysis of the acquired images. While the protocol described here is aimed at imaging TOM20 and DNA, it contains all the information for an immediate adaptation to other cellular targets.
Collapse
Affiliation(s)
- Sarah V Schweighofer
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy TNM, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Kaushik Inamdar
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel C Jans
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy TNM, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Le Bourdellès G, Mercier L, Roos J, Bancelin S, Nägerl UV. Impact of a tilted coverslip on two-photon and STED microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:743-752. [PMID: 38404309 PMCID: PMC10890867 DOI: 10.1364/boe.510512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/27/2024]
Abstract
The advent of super-resolution microscopy has opened up new avenues to unveil brain structures with unprecedented spatial resolution in the living state. Yet, its application to live animals remains a genuine challenge. Getting optical access to the brain in vivo requires the use of a 'cranial window', whose mounting greatly influences image quality. Indeed, the coverslip used for the cranial window should lie as orthogonal as possible to the optical axis of the objective, or else significant optical aberrations occur. In this work, we assess the effect of the tilt angle of the coverslip on STED and two-photon microscopy, in particular, image brightness and spatial resolution. We then propose an approach to measure and reduce the tilt using a simple device added to the microscope, which can ensure orthogonality with a precision of 0.07°.
Collapse
Affiliation(s)
| | - Luc Mercier
- Univ. Bordeaux, CNRS, IINS, UMR5297, F-33000 Bordeaux, France
| | - Johannes Roos
- Univ. Bordeaux, CNRS, IINS, UMR5297, F-33000 Bordeaux, France
| | - Stéphane Bancelin
- Univ. Bordeaux, CNRS, IINS, UMR5297, F-33000 Bordeaux, France
- IOGS, CNRS, LP2N, UMR5298, F-33400 Talence, France
- Univ. Bordeaux, CNRS, LP2N, UMR5298, F-33400 Talence, France
| | | |
Collapse
|
3
|
Gormal RS, Martinez-Marmol R, Brooks AJ, Meunier FA. Location, location, location: Protein kinase nanoclustering for optimised signalling output. eLife 2024; 13:e93902. [PMID: 38206309 PMCID: PMC10783869 DOI: 10.7554/elife.93902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates and perform their critical functions, PK localisation is therefore tightly regulated in space and time, relying upon a range of clustering mechanisms. These include post-translational modifications, protein-protein and protein-lipid interactions, as well as liquid-liquid phase separation, allowing spatial restriction and ultimately regulating access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclustering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a cellular quantal unit of signalling output capable of integration and regulation in space and time. We will specifically outline the various super-resolution microscopy approaches currently used to elucidate the composition and mechanisms driving PK nanoscale clustering and explore the pathological consequences of altered kinase clustering in the context of neurodegenerative disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Andrew J Brooks
- Frazer Institute, The University of QueenslandWoolloongabbaAustralia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- School of Biomedical Sciences, The University of QueenslandSt LuciaAustralia
| |
Collapse
|
4
|
Danusso R, Rosati R, Possenti L, Lombardini E, Gigli F, Costantino ML, Ferrazzi E, Casagrande G, Lattuada D. Human umbilical cord blood cells suffer major modification by fixatives and anticoagulants. Front Physiol 2023; 14:1070474. [PMID: 37008002 PMCID: PMC10050555 DOI: 10.3389/fphys.2023.1070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: Developing techniques for the tagless isolation of homogeneous cell populations in physiological-like conditions is of great interest in medical research. A particular case is Gravitational Field-Flow Fractionation (GrFFF), which can be run avoiding cell fixation, and that was already used to separate viable cells. Cell dimensions have a key role in this process. However, their dimensions under physiological-like conditions are not easily known since the most diffused measurement techniques are performed on fixed cells, and the fixation used to preserve tissues can alter the cell size. This work aims to obtain and compare cell size data under physiological-like conditions and in the presence of a fixative.Methods: We developed a new protocol that allows the analysis of blood cells in different conditions. Then, we applied it to obtain a dataset of human cord blood cell dimensions from 32 subjects, comparing two tubes with anticoagulants (EDTA and Citrate) and two tubes with different preservatives (CellRescue and CellSave). We analyzed a total of 2071 cells by using confocal microscopy via bio-imaging to assess dimensions (cellular and nuclear) and morphology.Results: Cell diameter measured does not differ when using the different anticoagulants, except for the increase reported for monocyte in the presence of citrate. Instead, cell dimensions differ when comparing anticoagulants and cell preservative tubes, with a few exceptions. Cells characterized by high cytoplasm content show a reduction in their size, while morphology appears always preserved. In a subgroup of cells, 3D reconstruction was performed. Cell and nucleus volumes were estimated using different methods (specific 3D tool or reconstruction from 2D projection).Discussion: We found that some cell types benefit from a complete 3D analysis because they contain non-spherical structures (mainly for cells characterized by poly-lobated nucleus). Overall, we showed the effect of the preservatives mixture on cell dimensions. Such an effect must be considered when dealing with problems highly dependent on cell size, such as GrFFF. Additionally, such information is crucial in computational models increasingly being employed to simulate biological events.
Collapse
Affiliation(s)
- Roberta Danusso
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Riccardo Rosati
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Luca Possenti
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Elena Lombardini
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Gigli
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria Laura Costantino
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Enrico Ferrazzi
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giustina Casagrande
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Debora Lattuada
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- *Correspondence: Debora Lattuada,
| |
Collapse
|
5
|
Wang Y, Soto Rodriguez PED, Woythe L, Sánchez S, Samitier J, Zijlstra P, Albertazzi L. Multicolor Super-Resolution Microscopy of Protein Corona on Single Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37345-37355. [PMID: 35961006 PMCID: PMC9412947 DOI: 10.1021/acsami.2c06975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles represent a promising class of material for nanomedicine and molecular biosensing. The formation of a protein corona due to nonspecific particle-protein interactions is a determining factor for the biological fate of nanoparticles in vivo and strongly impacts the performance of nanoparticles when used as biosensors. Nonspecific interactions are usually highly heterogeneous, yet little is known about the heterogeneity of the protein corona that may lead to inter- and intraparticle differences in composition and protein distribution. Here, we present a super-resolution microscopic approach to study the protein corona on single silica nanoparticles and subsequent cellular interactions using multicolor stimulated emission depletion (STED) microscopy. We demonstrate that STED resolves structural features of protein corona on single particles including the distribution on the particle surface and the degree of protein internalization in porous particles. Using multicolor measurements of multiple labeled protein species, we determine the composition of the protein corona at the single-particle level. We quantify particle-to-particle differences in the composition and find that the composition is considerably influenced by the particle geometry. In a subsequent cellular uptake measurement, we demonstrate multicolor STED of protein corona on single particles internalized by cells. Our study shows that STED microscopy opens the window toward mechanistic understanding of protein coronas and aids in the rational design of nanoparticles as nanomedicines and biosensors.
Collapse
Affiliation(s)
- Yuyang Wang
- Department
of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Paul E. D. Soto Rodriguez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Laura Woythe
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeige Lluís Companys 23, 08010 Barcelona, Spain
| | - Josep Samitier
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department
of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Peter Zijlstra
- Department
of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
6
|
Super-resolved 3D-STED microscopy identifies a layer-specific increase in excitatory synapses in the hippocampal CA1 region of Neuroligin-3 KO mice. Biochem Biophys Res Commun 2021; 582:144-149. [PMID: 34715405 DOI: 10.1016/j.bbrc.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
The chemical synapse is one type of cell-adhesion system that transmits information from a neuron to another neuron in the complex neuronal network in the brain. Synaptic transmission is the rate-limiting step during the information processing in the neuronal network and its plasticity is involved in cognitive functions. Thus, morphological and electrophysiological analyses of synapses are of particular importance in neuroscience research. In the current study, we applied super-resolved three-dimensional stimulated emission depletion (3D-STED) microscopy for the morphological analyses of synapses. This approach allowed us to estimate the precise number of excitatory and inhibitory synapses in the mouse hippocampal tissue. We discovered a region-specific increase in excitatory synapses in a model mouse of autism spectrum disorder, Neuroligin-3 KO, with this method. This type of analysis will open a new field in developmental neuroscience in the future.
Collapse
|
7
|
Valli J, Sanderson J. Super-Resolution Fluorescence Microscopy Methods for Assessing Mouse Biology. Curr Protoc 2021; 1:e224. [PMID: 34436832 DOI: 10.1002/cpz1.224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Super-resolution (diffraction unlimited) microscopy was developed 15 years ago; the developers were awarded the Nobel Prize in Chemistry in recognition of their work in 2014. Super-resolution microscopy is increasingly being applied to diverse scientific fields, from single molecules to cell organelles, viruses, bacteria, plants, and animals, especially the mammalian model organism Mus musculus. In this review, we explain how super-resolution microscopy, along with fluorescence microscopy from which it grew, has aided the renaissance of the light microscope. We cover experiment planning and specimen preparation and explain structured illumination microscopy, super-resolution radial fluctuations, stimulated emission depletion microscopy, single-molecule localization microscopy, and super-resolution imaging by pixel reassignment. The final section of this review discusses the strengths and weaknesses of each super-resolution technique and how to choose the best approach for your research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jessica Valli
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
8
|
Ren J, Han KY. 2.5D microscopy with polarization independent SLM for enhanced detection efficiency and aberration correction. OPTICS EXPRESS 2021; 29:27530-27541. [PMID: 34615167 PMCID: PMC8687110 DOI: 10.1364/oe.434260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Fast, volumetric imaging by fluorescence microscopy is essential in studying biological phenomena and cellular functions. Recently, single-shot 2.5D microscopy showed promising results for high-throughput quantitative subcellular analysis via extended depth of field imaging without sequential z-scanning; however, the detection efficiency was limited and it lacked depth-induced aberration correction. Here we report that a spatial light modulator (SLM) in a polarization insensitive configuration can significantly improve the detection efficiency of 2.5D microscopy, while also compensating for aberrations at large imaging depths caused by the refractive index mismatch between the sample and the immersion medium. We highlight the improved efficiency via quantitative single-molecule RNA imaging of mammalian cells with a 2-fold improvement in the fluorescence intensity compared to a conventional SLM-based microscopy. We demonstrate the aberration correction capabilities and extended depth of field by imaging thick specimens with fewer z-scanning steps.
Collapse
|
9
|
Bancelin S, Mercier L, Murana E, Nägerl UV. Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue. NEUROPHOTONICS 2021; 8:035001. [PMID: 34136589 PMCID: PMC8200361 DOI: 10.1117/1.nph.8.3.035001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 05/30/2023]
Abstract
Significance: Stimulated emission depletion (STED) microscopy enables nanoscale imaging of live samples, but it requires a specific spatial beam shaping that is highly sensitive to optical aberrations, limiting its depth penetration. Therefore, there is a need for methods to reduce optical aberrations and improve the spatial resolution of STED microscopy inside thick biological tissue. Aim: The aim of our work was to develop and validate a method based on adaptive optics to achieve an a priori correction of spherical aberrations as a function of imaging depth. Approach: We first measured the aberrations in a phantom sample of gold and fluorescent nanoparticles suspended in an agarose gel with a refractive index closely matching living brain tissue. We then used a spatial light modulator to apply corrective phase shifts and validate this calibration approach by imaging neurons in living brain slices. Results: After quantifying the spatial resolution in depth in phantom samples, we demonstrated that the corrections can substantially increase image quality in living brain slices. Specifically, we could measure structures as small as 80 nm at a depth of 90 μ m inside the biological tissue and obtain a 60% signal increase after correction. Conclusion: We propose a simple and robust approach to calibrate and compensate the distortions of the STED beam profile introduced by spherical aberrations with increasing imaging depth and demonstrated that this method offers significant improvements in microscopy performance for nanoscale cellular imaging in live tissue.
Collapse
Affiliation(s)
- Stéphane Bancelin
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Luc Mercier
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Emanuele Murana
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - U. Valentin Nägerl
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| |
Collapse
|
10
|
Velasco MGM, Zhang M, Antonello J, Yuan P, Allgeyer ES, May D, M’Saad O, Kidd P, Barentine AES, Greco V, Grutzendler J, Booth MJ, Bewersdorf J. 3D super-resolution deep-tissue imaging in living mice. OPTICA 2021; 8:442-450. [PMID: 34239948 PMCID: PMC8243577 DOI: 10.1364/optica.416841] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 05/08/2023]
Abstract
Stimulated emission depletion (STED) microscopy enables the three-dimensional (3D) visualization of dynamic nanoscale structures in living cells, offering unique insights into their organization. However, 3D-STED imaging deep inside biological tissue is obstructed by optical aberrations and light scattering. We present a STED system that overcomes these challenges. Through the combination of two-photon excitation, adaptive optics, red-emitting organic dyes, and a long-working-distance water-immersion objective lens, our system achieves aberration-corrected 3D super-resolution imaging, which we demonstrate 164 µm deep in fixed mouse brain tissue and 76 µm deep in the brain of a living mouse.
Collapse
Affiliation(s)
- Mary Grace M. Velasco
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Mengyang Zhang
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Jacopo Antonello
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Peng Yuan
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Current Address: Department of Biology, Stanford University, Stanford, California 94304, USA
| | - Edward S. Allgeyer
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Current Address: The Gurdon Institute, University of Cambridge, Cambridge CB21QN, UK
| | - Dennis May
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Ons M’Saad
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Phylicia Kidd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Andrew E. S. Barentine
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Valentina Greco
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Jaime Grutzendler
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Martin J. Booth
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Joerg Bewersdorf
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Corresponding author:
| |
Collapse
|
11
|
Wu Z, Xu X, Xi P. Stimulated emission depletion microscopy for biological imaging in four dimensions: A review. Microsc Res Tech 2021; 84:1947-1958. [PMID: 33713513 DOI: 10.1002/jemt.23750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
Stimulated emission depletion (STED) microscopy allows high lateral and axial resolution, long term imaging in living cells. Here we review recent technical advances in STED microscopy, with emphasis on resolution and measurement range of XYZt four dimensions. Different STED technical advances and novel STED probes are discussed with their respective application in biological subcellular imaging. This review may serve as a practical guide for choosing a suitable approach to the advanced STED super-resolution imaging.
Collapse
Affiliation(s)
- Zhaoyang Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Xinzhu Xu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.,UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
12
|
Xin W, Zhang Q, Gu M. Inverse design of optical needles with central zero-intensity points by artificial neural networks. OPTICS EXPRESS 2020; 28:38718-38732. [PMID: 33379435 DOI: 10.1364/oe.410073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Optical needles with central zero-intensity points have attracted much attention in the field of 3D super-resolution microscopy, optical lithography, optical storage and Raman spectroscopy. Nevertheless, most of the studies create few types of optical needles with central zero-intensity points based on the theory and intuition with time-consuming parameter sweeping and complex pre-select of parameters. Here, we report on the inverse design of optical needles with central zero-intensity points by dipole-based artificial neural networks (DANNs), permitting the creation of needles which are close to specific length and amplitude. The resolution of these optical needles with central zero-intensity points is close to axial diffraction limit (∼1λ). Additionally, the DANNs can realize the inverse design of several types on-axis distributions, such as optical needles and multifocal distributions.
Collapse
|
13
|
The effects of size and shape of the ovarian cancer spheroids on the drug resistance and migration. Gynecol Oncol 2020; 159:563-572. [PMID: 32958270 DOI: 10.1016/j.ygyno.2020.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND High fatality in ovarian cancer is attributed to metastasis, propagated by the release of multi-cellular aggregates/spheroids into the peritoneal cavity and their subsequent mesothelial invasion of peritoneal organs. Spheroids are therefore a common and clinically relevant in vitro model for ovarian cancer research. Spheroids in patients vary significantly in size and shape and display enhanced resistance to anti-cancer drugs compared to monolayers. However, there is no consensus on how spheroid size and shape affect drug resistance. Moreover, existing data regarding the influence of epithelial-to-mesenchymal transition (EMT) profile on spheroid shape and migration is inconclusive. METHODS We formed spheroids with OVCAR-3 and OVCAR-8 cells, chosen for their established genetic similarity to the patient tumor samples. We monitored their morphology using confocal microscope with dipping objective and fluorescent microscope. We characterized important EMT biomarkers; E-cadherin, Vimentin and Slug through western blotting in monolayers and spheroids. We treated these spheroids with Taxol and Cisplatin and investigated their migratory profile based on their morphology. RESULTS We report two distinct multicellular structures: loose aggregates (OVCAR-3) and compact spheroids (OVCAR-8). We attribute these different morphologies to the expression of the EMT biomarkers, and their changes upon spheroid formation. Importantly, we did not observe a difference in resistance to the anti-cancer drugs as a function of spheroid size and shape. However, migration capacity of compact spheroid (OVCAR-8) was 15-fold higher compared to that of loose aggregates (OVCAR-3). CONCLUSIONS These results highlight the importance of spheroid size and shape on anti-cancer drug resistance and migration profiles. The results of this study can, therefore, help to elucidate general rules for ovarian cancer studies based on 3D samples.
Collapse
|
14
|
Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy. Nat Protoc 2020; 15:2773-2784. [PMID: 32737465 DOI: 10.1038/s41596-020-0360-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/18/2020] [Indexed: 11/08/2022]
Abstract
Spherical aberration (SA) occurs when light rays entering at different points of a spherical lens are not focused to the same point of the optical axis. SA that occurs inside the lens elements of a fluorescence microscope is well understood and corrected for. However, SA is also induced when light passes through an interface of refractive index (RI)-mismatched substances (i.e., a discrepancy between the RI of the immersion medium and the RI of the sample). SA due to RI mismatches has many deleterious effects on imaging. Perhaps most important for 3D imaging is that the distance the image plane moves in a sample is not equivalent to the distance traveled by an objective (or stage) during z-stack acquisition. This non-uniform translation along the z axis gives rise to artifactually elongated images (if the objective is immersed in a medium with a higher RI than that of the sample) or compressed images (if the objective is immersed in a medium with a lower RI than that of the sample) and alters the optimal axial sampling rate. In this tutorial, we describe why this distortion occurs, how it impacts quantitative measurements and axial resolution, and what can be done to avoid SA and thereby prevent distorted images. In addition, this tutorial aims to better inform researchers of how to correct RI mismatch-induced axial distortions and provides a practical ImageJ/Fiji-based tool to reduce the prevalence of volumetric measurement errors and lost axial resolution.
Collapse
|
15
|
Tröger J, Hoischen C, Perner B, Monajembashi S, Barbotin A, Löschberger A, Eggeling C, Kessels MM, Qualmann B, Hemmerich P. Comparison of Multiscale Imaging Methods for Brain Research. Cells 2020; 9:E1377. [PMID: 32492970 PMCID: PMC7349602 DOI: 10.3390/cells9061377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
A major challenge in neuroscience is how to study structural alterations in the brain. Even small changes in synaptic composition could have severe outcomes for body functions. Many neuropathological diseases are attributable to disorganization of particular synaptic proteins. Yet, to detect and comprehensively describe and evaluate such often rather subtle deviations from the normal physiological status in a detailed and quantitative manner is very challenging. Here, we have compared side-by-side several commercially available light microscopes for their suitability in visualizing synaptic components in larger parts of the brain at low resolution, at extended resolution as well as at super-resolution. Microscopic technologies included stereo, widefield, deconvolution, confocal, and super-resolution set-ups. We also analyzed the impact of adaptive optics, a motorized objective correction collar and CUDA graphics card technology on imaging quality and acquisition speed. Our observations evaluate a basic set of techniques, which allow for multi-color brain imaging from centimeter to nanometer scales. The comparative multi-modal strategy we established can be used as a guide for researchers to select the most appropriate light microscopy method in addressing specific questions in brain research, and we also give insights into recent developments such as optical aberration corrections.
Collapse
Affiliation(s)
- Jessica Tröger
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany;
| | - Christian Hoischen
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany; (C.H.); (B.P.); (S.M.)
| | - Birgit Perner
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany; (C.H.); (B.P.); (S.M.)
- Molecular Genetics Lab, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Shamci Monajembashi
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany; (C.H.); (B.P.); (S.M.)
| | - Aurélien Barbotin
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX13PJ, UK;
| | - Anna Löschberger
- Advanced Development Light Microscopy, Carl Zeiss Microscopy GmbH, Carl-Zeiss-Promenade 10, 07745 Jena, Germany;
| | - Christian Eggeling
- MRC Human Immunology Unit & Wolfson Imaging Center Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK;
- Dep. Biophysical Imaging, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, and Institute for Applied Optics and Biophysics, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany;
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany;
| | - Peter Hemmerich
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany; (C.H.); (B.P.); (S.M.)
| |
Collapse
|
16
|
Barbotin A, Urbančič I, Galiani S, Eggeling C, Booth M, Sezgin E. z-STED Imaging and Spectroscopy to Investigate Nanoscale Membrane Structure and Dynamics. Biophys J 2020; 118:2448-2457. [PMID: 32359408 PMCID: PMC7231928 DOI: 10.1016/j.bpj.2020.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Super-resolution stimulated emission depletion (STED) microcopy provides optical resolution beyond the diffraction limit. The resolution can be increased laterally (xy) or axially (z). Two-dimensional STED has been extensively used to elucidate the nanoscale membrane structure and dynamics via imaging or combined with spectroscopy techniques such as fluorescence correlation spectroscopy (FCS) and spectral imaging. On the contrary, z-STED has not been used in this context. Here, we show that a combination of z-STED with FCS or spectral imaging enables us to see previously unobservable aspects of cellular membranes. We show that thanks to an axial resolution of ∼100 nm, z-STED can be used to distinguish axially close-by membranes, early endocytic vesicles, or tubular membrane structures. Combination of z-STED with FCS and spectral imaging showed diffusion dynamics and lipid organization in these structures, respectively.
Collapse
Affiliation(s)
- Aurélien Barbotin
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Iztok Urbančič
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Jožef Stefan Institute, Ljubljana, Slovenia
| | - Silvia Galiani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology e.V., Jena, Germany
| | - Martin Booth
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
17
|
Schneider F, Hernandez-Varas P, Christoffer Lagerholm B, Shrestha D, Sezgin E, Julia Roberti M, Ossato G, Hecht F, Eggeling C, Urbančič I. High photon count rates improve the quality of super-resolution fluorescence fluctuation spectroscopy. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:164003. [PMID: 33191951 PMCID: PMC7655148 DOI: 10.1088/1361-6463/ab6cca] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 05/15/2023]
Abstract
Probing the diffusion of molecules has become a routine measurement across the life sciences, chemistry and physics. It provides valuable insights into reaction dynamics, oligomerisation, molecular (re-)organisation or cellular heterogeneities. Fluorescence correlation spectroscopy (FCS) is one of the widely applied techniques to determine diffusion dynamics in two and three dimensions. This technique relies on the temporal autocorrelation of intensity fluctuations but recording these fluctuations has thus far been limited by the detection electronics, which could not efficiently and accurately time-tag photons at high count rates. This has until now restricted the range of measurable dye concentrations, as well as the data quality of the FCS recordings, especially in combination with super-resolution stimulated emission depletion (STED) nanoscopy. Here, we investigate the applicability and reliability of (STED-)FCS at high photon count rates (average intensities of more than 1 MHz) using novel detection equipment, namely hybrid detectors and real-time gigahertz sampling of the photon streams implemented on a commercial microscope. By measuring the diffusion of fluorophores in solution and cytoplasm of live cells, as well as in model and cellular membranes, we show that accurate diffusion and concentration measurements are possible in these previously inaccessible high photon count regimes. Specifically, it offers much greater flexibility of experiments with biological samples with highly variable intensity, e.g. due to a wide range of expression levels of fluorescent proteins. In this context, we highlight the independence of diffusion properties of cytosolic GFP in a concentration range of approx. 0.01-1 µm. We further show that higher photon count rates also allow for much shorter acquisition times, and improved data quality. Finally, this approach also pronouncedly increases the robustness of challenging live cell STED-FCS measurements of nanoscale diffusion dynamics, which we testify by confirming a free diffusion pattern for a fluorescent lipid analogue on the apical membrane of adherent cells.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Pablo Hernandez-Varas
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Core Facility for Integrated Microscopy, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Dilip Shrestha
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - M Julia Roberti
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, 68163 Mannheim, Germany
| | - Giulia Ossato
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, 68163 Mannheim, Germany
| | - Frank Hecht
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, 68163 Mannheim, Germany
| | - Christian Eggeling
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Iztok Urbančič
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Sharma R, Singh M, Sharma R. Recent advances in STED and RESOLFT super-resolution imaging techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:117715. [PMID: 31748155 DOI: 10.1016/j.saa.2019.117715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Stimulated emission depletion (STED) and reversible saturable optical fluorescence transition (RESOLFT) microscopy are the super-resolution imaging techniques that can acquire nanoscale spatial resolution. The spatial resolution of the other far-field optical microscopic techniques is bound by diffraction limit, however, STED/RESOLFT techniques eliminate the diffraction barrier. These microscopic techniques have taken the limits of optical image resolution down to the nanometer scale and opened new paths for biomedical and nanophosphor research. In this paper, we review the recent advancements of these techniques in the field of nanoscopy using continuous wave (CW) laser sources. Further, we discuss the main limitation of the STED microscopy in terms of essential requirements of higher depletion beam power and photobleaching issues. The RESOLFT microscopic technique can be considered as an alternate technique to overcome limitations of existing STED microscopy. Moreover, the Bessel and Gaussian-Bessel beam STED microscopic techniques are also reviewed to produce deep images with faster scanning of the samples. The organic molecules as well as the fluorescent doped nanoparticles like ZnSe:Mn having characteristics of excited state absorption can be investigated using RESOLFT microscopy.
Collapse
Affiliation(s)
- Reena Sharma
- Department of Physics, University Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| | - Manjot Singh
- Department of Physics, University Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| | - Rajesh Sharma
- Department of Physics, University Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
19
|
Wen L, Fan Z, Mikulski Z, Ley K. Imaging of the immune system - towards a subcellular and molecular understanding. J Cell Sci 2020; 133:133/5/jcs234922. [PMID: 32139598 DOI: 10.1242/jcs.234922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune responses involve many types of leukocytes that traffic to the site of injury, recognize the insult and respond appropriately. Imaging of the immune system involves a set of methods and analytical tools that are used to visualize immune responses at the cellular and molecular level as they occur in real time. We will review recent and emerging technological advances in optical imaging, and their application to understanding the molecular and cellular responses of neutrophils, macrophages and lymphocytes. Optical live-cell imaging provides deep mechanistic insights at the molecular, cellular, tissue and organism levels. Live-cell imaging can capture quantitative information in real time at subcellular resolution with minimal phototoxicity and repeatedly in the same living cells or in accessible tissues of the living organism. Advanced FRET probes allow tracking signaling events in live cells. Light-sheet microscopy allows for deeper tissue penetration in optically clear samples, enriching our understanding of the higher-level organization of the immune response. Super-resolution microscopy offers insights into compartmentalized signaling at a resolution beyond the diffraction limit, approaching single-molecule resolution. This Review provides a current perspective on live-cell imaging in vitro and in vivo with a focus on the assessment of the immune system.
Collapse
Affiliation(s)
- Lai Wen
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Zbigniew Mikulski
- Microscopy Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA .,Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Abstract
Fluorescence microscopy has long been a valuable tool for biological and medical imaging. Control of optical parameters such as the amplitude, phase, polarization and propagation angle of light gives fluorescence imaging great capabilities ranging from super-resolution imaging to long-term real-time observation of living organisms. In this review, we discuss current fluorescence imaging techniques in terms of the use of tailored or structured light for the sample illumination and fluorescence detection, providing a clear overview of their working principles and capabilities.
Collapse
Affiliation(s)
- Jialei Tang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
- These authors contributed equally to this work
| | - Jinhan Ren
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
- These authors contributed equally to this work
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
21
|
Coto Hernández I, Castello M, Tortarolo G, Jowett N, Diaspro A, Lanzanò L, Vicidomini G. Efficient two-photon excitation stimulated emission depletion nanoscope exploiting spatiotemporal information. NEUROPHOTONICS 2019; 6:045004. [PMID: 31720309 PMCID: PMC6830046 DOI: 10.1117/1.nph.6.4.045004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Stimulated emission depletion (STED) microscopy is a powerful bioimaging technique that theoretically provides molecular spatial resolution while preserving the most important assets of fluorescence microscopy. When combined with two-photon excitation (2PE) microscopy (2PE-STED), subdiffraction resolution may be achieved for thick biological samples. The most straightforward implementation of 2PE-STED microscopy entails introduction of an STED beam operating in continuous wave (CW) into a conventional Ti:sapphire-based 2PE microscope (2PE CW-STED). In this implementation, resolution enhancement is typically achieved using time-gated detection schemes, often resulting in drastic signal-to-noise/-background ratio (SNR/SBR) reductions. Herein, we employ a pixel-by-pixel phasor approach to discard fluorescence photons lacking super-resolution information to enhance image SNR/SBR in 2PE CW-STED microscopy. We compare this separation of photons by lifetime tuning approach against other postprocessing algorithms and combine it with image deconvolution to further optimize image quality.
Collapse
Affiliation(s)
- Iván Coto Hernández
- Massachusetts Eye and Ear and Harvard Medical School, Surgical Photonics and Engineering Laboratory, Boston, United States
| | - Marco Castello
- Istituto Italiano di Tecnologia, Molecular Microscopy and Spectroscopy, Genoa, Italy
| | - Giorgio Tortarolo
- Istituto Italiano di Tecnologia, Molecular Microscopy and Spectroscopy, Genoa, Italy
| | - Nate Jowett
- Massachusetts Eye and Ear and Harvard Medical School, Surgical Photonics and Engineering Laboratory, Boston, United States
| | - Alberto Diaspro
- Istituto Italiano di Tecnologia, Nanoscopy and NIC@IIT, Genoa, Italy
- University of Genoa, Department of Physics, Genoa, Italy
| | - Luca Lanzanò
- Istituto Italiano di Tecnologia, Nanoscopy and NIC@IIT, Genoa, Italy
| | - Giuseppe Vicidomini
- Istituto Italiano di Tecnologia, Molecular Microscopy and Spectroscopy, Genoa, Italy
| |
Collapse
|
22
|
Zdankowski P, McGloin D, Swedlow JR. Full volume super-resolution imaging of thick mitotic spindle using 3D AO STED microscope. BIOMEDICAL OPTICS EXPRESS 2019; 10:1999-2009. [PMID: 31086714 PMCID: PMC6484978 DOI: 10.1364/boe.10.001999] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 05/08/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is one of a suite of modern optical microscopy techniques capable of bypassing the conventional diffraction limit in fluorescent imaging. STED makes use of a spiral phase mask to enable 2D super-resolution imaging whereas to achieve full volumetric 3D super-resolution an additional bottle-beam phase mask must be applied. The resolution achieved in biological samples 10 µm or thicker is limited by aberrations induced mainly by scattering due to refractive index heterogeneity in the sample. These aberrations impact the fidelity of both types of phase mask, and have limited the application of STED to thicker biological systems. Here we apply an automated adaptive optics solution to correct the performance of both STED masks, enhancing robustness and expanding the capabilities of this nanoscopic technique. Corroboration in terms of successful high-quality imaging of the full volume of a 15µm mitotic spindle with resolution of 50nm x 50nm x 150nm achieved in all three dimensions is presented.
Collapse
Affiliation(s)
- Piotr Zdankowski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- SUPA, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 A. Boboli St., 02-525 Warsaw, Poland
| | - David McGloin
- SUPA, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
- School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jason R. Swedlow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
23
|
Pereira A, Sousa M, Almeida AC, Ferreira LT, Costa AR, Novais-Cruz M, Ferrás C, Sousa MM, Sampaio P, Belsley M, Maiato H. Coherent-hybrid STED: high contrast sub-diffraction imaging using a bi-vortex depletion beam. OPTICS EXPRESS 2019; 27:8092-8111. [PMID: 30894786 PMCID: PMC6420153 DOI: 10.1364/oe.27.008092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Stimulated emission depletion (STED) fluorescence microscopy squeezes an excited spot well below the wavelength scale using a doughnut-shaped depletion beam. To generate a doughnut, a scale-free vortex phase modulation (2D-STED) is often used because it provides maximal transverse confinement and radial-aberration immunity (RAI) to the central dip. However, RAI also means blindness to a defocus term, making the axial origin of fluorescence photons uncertain within the wavelength scale provided by the confocal detection pinhole. Here, to reduce the uncertainty, we perturb the 2D-STED phase mask so as to change the sign of the axial concavity near focus, creating a dilated dip. By providing laser depletion power, the dip can be compressed back in three dimensions to retrieve lateral resolution, now at a significantly higher contrast. We test this coherent-hybrid STED (CH-STED) mode in x-y imaging of complex biological structures, such as the dividing cell. The proposed strategy creates an orthogonal direction in the STED parametric space that uniquely allows independent tuning of resolution and contrast using a single depletion beam in a conventional (circular polarization-based) STED setup.
Collapse
Affiliation(s)
- António Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mafalda Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana C. Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Luísa T. Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana Rita Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marco Novais-Cruz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cristina Ferrás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mónica Mendes Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Michael Belsley
- Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helder Maiato
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|