1
|
Lu D, Cheng Z, Zhao T, Yuan L, Gao L, Klabacha J, Pablant N, Tieulent R, Lin Z, Jin Y, Fan Y, Fu J, Zhang H, Lyu B, Wang F. Performance characterization of x-ray crystal spectroscopy highly oriented pyrolytic graphite reflectors based on x-ray diffractometry experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:013507. [PMID: 39878577 DOI: 10.1063/5.0220878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
The use of Highly Oriented Pyrolytic Graphite (HOPG) reflectors is often proposed in the design of X-ray Crystal Spectroscopy (XCS) diagnostic systems for the next-generation tokamak devices, including the ITER project. This study introduces an experimental study based on the X-Ray Diffractometry (XRD) method to evaluate the performance of HOPG reflectors. The experimental method provides both the angular responses and the reflectivities of the HOPG reflectors. A demonstrative XRD experiment is conducted, and the details of the experiment are introduced. This method enables precise studies on HOPG reflectors, facilitating the design of XCS diagnostic systems for future tokamaks.
Collapse
Affiliation(s)
- Dian Lu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Science, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230031, China
| | - Zhifeng Cheng
- ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France
| | - Tianlei Zhao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Lingxiong Yuan
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Lan Gao
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA
| | - Jonathan Klabacha
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA
| | - Novimir Pablant
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA
| | - Raphael Tieulent
- ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France
| | - Zichao Lin
- Institute of Plasma Physics, HFIPS, Chinese Academy of Science, Hefei 230031, China
| | - Yifei Jin
- Institute of Plasma Physics, HFIPS, Chinese Academy of Science, Hefei 230031, China
| | - Yu Fan
- Institute of Plasma Physics, HFIPS, Chinese Academy of Science, Hefei 230031, China
| | - Jia Fu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Science, Hefei 230031, China
| | - Hongming Zhang
- Institute of Plasma Physics, HFIPS, Chinese Academy of Science, Hefei 230031, China
| | - Bo Lyu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Science, Hefei 230031, China
| | - Fudi Wang
- Institute of Plasma Physics, HFIPS, Chinese Academy of Science, Hefei 230031, China
| |
Collapse
|
2
|
Swee C, Geiger B, Ford O, O'Mullane M, Poloskei P, Reimold F, Romba T, Wegner T. High-n Rydberg transition spectroscopy for heavy impurity transport studies in W7-X (invited). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:093539. [PMID: 39324763 DOI: 10.1063/5.0219589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/24/2024] [Indexed: 09/27/2024]
Abstract
Here, we present a novel spectroscopy approach to investigate impurity transport by analyzing line-radiation following high-n Rydberg transitions. While high-n Rydberg states of impurity ions are unlikely to be populated via impact excitation, they can be accessed by charge exchange (CX) reactions along the neutral beams in high-temperature plasmas. Hence, localized radiation of highly ionized impurities, free of passive contributions, can be observed at multiple wavelengths in the visible range. For the analysis and modeling of the observed Rydberg transitions, a technique for calculating effective emission coefficients is presented that can well reproduce the energy dependence seen in datasets available on the OPEN-ADAS database. By using the rate coefficients and comparing modeling results with the new high-n Rydberg CX measurements, impurity transport coefficients are determined with well-documented 2σ confidence intervals for the first time. This demonstrates that high-n Rydberg spectroscopy provides important constraints on the determination of impurity transport coefficients. By additionally considering Bolometer measurements, which provide constraints on the overall impurity emissivity and, therefore, impurity densities, error bars can be reduced even further.
Collapse
Affiliation(s)
- Colin Swee
- Department of Engineering Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Benedikt Geiger
- Department of Engineering Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Oliver Ford
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - Martin O'Mullane
- University of Strathclyde, 107 Rottenrow, Glasgow G4 0N, United Kingdom
| | - Peter Poloskei
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - Felix Reimold
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - Thilo Romba
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - Thomas Wegner
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| |
Collapse
|
3
|
Wegner T, Kunkel F. Development of a new manipulator for the laser blow-off system at Wendelstein 7-X. FUSION ENGINEERING AND DESIGN 2023. [DOI: 10.1016/j.fusengdes.2023.113691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Fornal T, Kubkowska M, Książek I, Książek K, Romba T, Burhenn R, Buttenschön B, Ford O, Vano L. Effect of spatial distribution of impurity ions on the signal of ‘C/O monitor for Wendelstein 7-X’ - an indicator of plasma wall interactions. NUCLEAR MATERIALS AND ENERGY 2022. [DOI: 10.1016/j.nme.2022.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Beidler CD, Smith HM, Alonso A, Andreeva T, Baldzuhn J, Beurskens MNA, Borchardt M, Bozhenkov SA, Brunner KJ, Damm H, Drevlak M, Ford OP, Fuchert G, Geiger J, Helander P, Hergenhahn U, Hirsch M, Höfel U, Kazakov YO, Kleiber R, Krychowiak M, Kwak S, Langenberg A, Laqua HP, Neuner U, Pablant NA, Pasch E, Pavone A, Pedersen TS, Rahbarnia K, Schilling J, Scott ER, Stange T, Svensson J, Thomsen H, Turkin Y, Warmer F, Wolf RC, Zhang D. Demonstration of reduced neoclassical energy transport in Wendelstein 7-X. Nature 2021; 596:221-226. [PMID: 34381232 PMCID: PMC8357633 DOI: 10.1038/s41586-021-03687-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak1 is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator's non-turbulent 'neoclassical' energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas3,4. The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible1,5. Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization.
Collapse
Affiliation(s)
- C D Beidler
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany.
| | - H M Smith
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - A Alonso
- Laboratorio Nacional de Fusion, CIEMAT, Madrid, Spain
| | - T Andreeva
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - J Baldzuhn
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | | | - M Borchardt
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - S A Bozhenkov
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - K J Brunner
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - H Damm
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - M Drevlak
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - O P Ford
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - G Fuchert
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - J Geiger
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - P Helander
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - U Hergenhahn
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - M Hirsch
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - U Höfel
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - Ye O Kazakov
- Laboratory for Plasma Physics (LPP), École royale militaire/Koninklijke Militaire School (ERM/KMS), Brussels, Belgium
| | - R Kleiber
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - M Krychowiak
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - S Kwak
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - A Langenberg
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - H P Laqua
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - U Neuner
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - N A Pablant
- Princeton Plasma Physics Laboratory, Princeton, NJ, USA
| | - E Pasch
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - A Pavone
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - T S Pedersen
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - K Rahbarnia
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - J Schilling
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - E R Scott
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - T Stange
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - J Svensson
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - H Thomsen
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - Y Turkin
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - F Warmer
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - R C Wolf
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| | - D Zhang
- Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
| |
Collapse
|
6
|
Pablant NA, Langenberg A, Alonso JA, Bitter M, Bozhenkov SA, Ford OP, Hill KW, Kring J, Marchuck O, Svensson J, Traverso P, Windisch T, Yakusevitch Y. Correction and verification of x-ray imaging crystal spectrometer analysis on Wendelstein 7-X through x-ray ray tracing. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:043530. [PMID: 34243399 DOI: 10.1063/5.0043513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 06/13/2023]
Abstract
X-ray ray tracing is used to develop ion-temperature corrections for the analysis of the X-ray Imaging Crystal Spectrometer (XICS) used at Wendelstein 7-X (W7-X) and perform verification on the analysis methods. The XICS is a powerful diagnostic able to measure ion-temperature, electron-temperature, plasma flow, and impurity charge state densities. While these systems are relatively simple in design, accurate characterization of the instrumental response and validation of analysis techniques are difficult to perform experimentally due to the requirement of extended x-ray sources. For this reason, a ray tracing model has been developed that allows characterization of the spectrometer and verification of the analysis methods while fully considering the real geometry of the XICS system and W7-X plasma. Through the use of ray tracing, several important corrections have been found that must be accounted for in order to accurately reconstruct the ion-temperature profiles. The sources of these corrections are described along with their effect on the analyzed profiles. The implemented corrections stem from three effects: (1) effect of sub-pixel intensity distribution during de-curving and spatial binning, (2) effect of sub-pixel intensity distribution during forward model evaluation and generation of residuals, and (3) effect of defocus and spherical aberrations on the instrumental response. Possible improvements to the forward model and analysis procedures are explored, along with a discussion of trade-offs in terms of computational complexity. Finally, the accuracy of the tomographic inversion technique in stellarator geometry is investigated, providing for the first time a verification exercise for inversion accuracy in stellarator geometry and a complete XICS analysis tool-chain.
Collapse
Affiliation(s)
- N A Pablant
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - A Langenberg
- Max-Planck-Institut für Plasmaphysik, Greifswald 17491, Germany
| | - J A Alonso
- Laboratorio Nacional de Fusión, CIEMAT, Madrid 28040, Spain
| | - M Bitter
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - S A Bozhenkov
- Max-Planck-Institut für Plasmaphysik, Greifswald 17491, Germany
| | - O P Ford
- Max-Planck-Institut für Plasmaphysik, Greifswald 17491, Germany
| | - K W Hill
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - J Kring
- Auburn University, Auburn, Alabama 36849, USA
| | - O Marchuck
- Institut für Energie und Klimaforschung, Plasmaphysik, Forschungszentrum Jülich, Jülich 52425, Germany
| | - J Svensson
- Max-Planck-Institut für Plasmaphysik, Greifswald 17491, Germany
| | - P Traverso
- Auburn University, Auburn, Alabama 36849, USA
| | - T Windisch
- Max-Planck-Institut für Plasmaphysik, Greifswald 17491, Germany
| | - Y Yakusevitch
- University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
7
|
Yan W, Chen Z, Zhang X, Cheng Z, Yang Z, Shi Y, Jin W, Ding Y, Liang Y. Investigation of argon transport by X-Ray imaging crystal spectrometer on J-TEXT. FUSION ENGINEERING AND DESIGN 2021. [DOI: 10.1016/j.fusengdes.2020.112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Wegner T, Geiger B, Foest R, Jansen van Vuuren A, Winters VR, Biedermann C, Burhenn R, Buttenschön B, Cseh G, Joda I, Kocsis G, Kunkel F, Quade A, Schäfer J, Schmitz O, Szepesi T. Preparation, analysis, and application of coated glass targets for the Wendelstein 7-X laser blow-off system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:083503. [PMID: 32872937 DOI: 10.1063/1.5144943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Coated glass targets are a key component of the Wendelstein 7-X laser blow-off system that is used for impurity transport studies. The preparation and analysis of these glass targets as well as their performance is examined in this paper. The glass targets have a high laser damage threshold and are coated via physical vapor deposition with µm thick films. In addition, nm-thin layers of Ti are used as an interface layer for improved ablation efficiency and reduced coating stress. Hence, the metallic or ceramic coating has a lateral homogeneity within 2% and contaminants less than 5%, being optimal for laser ablation processing. With this method, a short (few ms) and well defined pulse of impurities with about 1017 particles can be injected close to the last closed flux surface of Wendelstein 7-X. In particular, a significant amount of atoms with a velocity of about 1 km/s enters the plasma within 1 ms. The atoms are followed by a negligible concentration of slower clusters and macro-particles. This qualifies the use of the targets and applied laser settings for impurity transport studies with the laser blow-off system in Wendelstein 7-X.
Collapse
Affiliation(s)
- Th Wegner
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - B Geiger
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - R Foest
- Leibniz Institut für Plasmaforschung und Technologie e.V., 17489 Greifswald, Germany
| | | | - V R Winters
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - C Biedermann
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - R Burhenn
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - B Buttenschön
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - G Cseh
- Wigner Research Center for Physics, 1121 Budapest, Hungary
| | - I Joda
- University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - G Kocsis
- Wigner Research Center for Physics, 1121 Budapest, Hungary
| | - F Kunkel
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - A Quade
- Leibniz Institut für Plasmaforschung und Technologie e.V., 17489 Greifswald, Germany
| | - J Schäfer
- Leibniz Institut für Plasmaforschung und Technologie e.V., 17489 Greifswald, Germany
| | - O Schmitz
- University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - T Szepesi
- Wigner Research Center for Physics, 1121 Budapest, Hungary
| |
Collapse
|
9
|
Ford OP, Vanó L, Alonso JA, Baldzuhn J, Beurskens MNA, Biedermann C, Bozhenkov SA, Fuchert G, Geiger B, Hartmann D, Jaspers RJE, Kappatou A, Langenberg A, Lazerson SA, McDermott RM, McNeely P, Neelis TWC, Pablant NA, Pasch E, Rust N, Schroeder R, Scott ER, Smith HM, Wegner T, Kunkel F, Wolf RC. Charge exchange recombination spectroscopy at Wendelstein 7-X. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:023507. [PMID: 32113444 DOI: 10.1063/1.5132936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The Charge Exchange Recombination Spectroscopy (CXRS) diagnostic has become a routine diagnostic on almost all major high temperature fusion experimental devices. For the optimized stellarator Wendelstein 7-X (W7-X), a highly flexible and extensive CXRS diagnostic has been built to provide high-resolution local measurements of several important plasma parameters using the recently commissioned neutral beam heating. This paper outlines the design specifics of the W7-X CXRS system and gives examples of the initial results obtained, including typical ion temperature profiles for several common heating scenarios, toroidal flow and radial electric field derived from velocity measurements, beam attenuation via beam emission spectra, and normalized impurity density profiles under some typical plasma conditions.
Collapse
Affiliation(s)
- O P Ford
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - L Vanó
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - J A Alonso
- CIEMAT, Avenida Complutense, 40, 28040 Madrid, Spain
| | - J Baldzuhn
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - M N A Beurskens
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - C Biedermann
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - S A Bozhenkov
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - G Fuchert
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - B Geiger
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - D Hartmann
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - R J E Jaspers
- Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - A Kappatou
- Max-Planck Institut für Plasmaphysik, 85748 Garching, Germany
| | - A Langenberg
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - S A Lazerson
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - R M McDermott
- Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - P McNeely
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - T W C Neelis
- Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - N A Pablant
- Princeton University Plasma Physics Laboratory, Princeton, New Jersey 08544, USA
| | - E Pasch
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - N Rust
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - R Schroeder
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - E R Scott
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - H M Smith
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - Th Wegner
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - F Kunkel
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - R C Wolf
- Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany
| |
Collapse
|
10
|
Fornal T, Książek I, Kaczmarczyk J, Figacz W, Kubkowska M, Burhenn R, Kunkel F, Laube R, Renard S. XUV diagnostic to monitor H-like emission from B, C, N, and O for the W7-X stellarator. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:093508. [PMID: 31575249 DOI: 10.1063/1.5099448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
The "C/O Monitor" system for the Wendelstein 7-X (W7-X) stellarator is a dedicated spectrometer with high throughput and high time resolution (order of 1 ms) for fast monitoring of content of low-Z impurities in the plasma. The observed spectral lines are fixed to Lyman-α lines of H-like atoms of carbon (3.4 nm), oxygen (1.9 nm), nitrogen (2.5 nm), and boron (4.9 nm). The quality of the wall condition will be monitored by the measurements of oxygen being released from the walls during the experiments. The strong presence of carbon is an indication for enhanced plasma-wall interaction or overload of plasma facing components. The presence of nitrogen (together with oxygen) may indicate a possible leakage in the vacuum system, whereas the intensity of the spectral emission of boron indicates the status of the boron layer evaporated onto the wall in order to reduce the influx of heavier steel ingredients or oxygen. The spectrometer will be fixed in a nearly horizontal position and is divided into two vacuum chambers, each containing two spectral channels assigned to two impurity species. Each channel will consist of a separate dispersive element and detector. The line-of-sight of both subspectrometers will cross at the main magnetic axis. This paper presents the conceptual design of the "C/O Monitor" for W7-X which has already entered the executive stage.
Collapse
Affiliation(s)
- Tomasz Fornal
- Institute of Plasma Physics and Laser Microfusion, Hery 23 St. 01-497 Warsaw, Poland
| | - Ireneusz Książek
- Institute of Physics, Opole University, ul. Oleska 48, 45-052 Opole, Poland
| | - Jacek Kaczmarczyk
- Institute of Plasma Physics and Laser Microfusion, Hery 23 St. 01-497 Warsaw, Poland
| | - Waldemar Figacz
- Institute of Plasma Physics and Laser Microfusion, Hery 23 St. 01-497 Warsaw, Poland
| | - Monika Kubkowska
- Institute of Plasma Physics and Laser Microfusion, Hery 23 St. 01-497 Warsaw, Poland
| | - Rainer Burhenn
- Max-Planck-Institut fürPlasmaphysik, Wendelsteinstrasse 1, 17491 Greifswald, Germany
| | - Falk Kunkel
- Max-Planck-Institut fürPlasmaphysik, Wendelsteinstrasse 1, 17491 Greifswald, Germany
| | - Ralph Laube
- Max-Planck-Institut fürPlasmaphysik, Wendelsteinstrasse 1, 17491 Greifswald, Germany
| | | |
Collapse
|
11
|
Langenberg A, Svensson J, Marchuk O, Fuchert G, Bozhenkov S, Damm H, Pasch E, Pavone A, Thomsen H, Pablant NA, Burhenn R, Wolf RC. Inference of temperature and density profiles via forward modeling of an x-ray imaging crystal spectrometer within the Minerva Bayesian analysis framework. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:063505. [PMID: 31255024 DOI: 10.1063/1.5086283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
At the Wendelstein 7-X stellarator, the X-ray imaging crystal spectrometer provides line integrated measurements of ion and electron temperatures, plasma flows, as well as impurity densities from a spectroscopic analysis of tracer impurity radiation. In order to infer the actual profiles from line integrated data, a forward modeling approach has been developed within the Minerva Bayesian analysis framework. In this framework, the inversion is realized on the basis of a complete forward model of the diagnostic, including error propagation and utilizing Gaussian processes for generation and inference of arbitrary shaped plasma parameter profiles. For modeling of line integrated data as measured by the detector, the installation geometry of the spectrometer, imaging properties of the crystal, and Gaussian detection noise are considered. The inversion of line integrated data is achieved using the maximum posterior method for plasma parameter profile inference and a Markov chain Monte Carlo sampling of the posterior distribution for calculating uncertainties of the inference process. The inversion method shows a correct and reliable inference of temperature and impurity density profiles from synthesized data within the estimated uncertainties along the whole plasma radius. The application to measured data yields a good match of derived electron temperature profiles to data of the Thomson scattering diagnostic for central electron temperatures between 2 and 5 keV using argon impurities.
Collapse
Affiliation(s)
- A Langenberg
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - J Svensson
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - O Marchuk
- Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung-Plasmaphysik, 52425 Jülich, Germany
| | - G Fuchert
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - S Bozhenkov
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - H Damm
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - E Pasch
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - A Pavone
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - H Thomsen
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - N A Pablant
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - R Burhenn
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - R C Wolf
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| |
Collapse
|
12
|
Wegner T, Geiger B, Kunkel F, Burhenn R, Schröder T, Biedermann C, Buttenschön B, Cseh G, Drews P, Grulke O, Hollfeld K, Killer C, Kocsis G, Krings T, Langenberg A, Marchuk O, Neuner U, Nicolai D, Offermanns G, Pablant NA, Rahbarnia K, Satheeswaran G, Schilling J, Schweer B, Szepesi T, Thomsen H. Design, capabilities, and first results of the new laser blow-off system on Wendelstein 7-X. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:073505. [PMID: 30068134 DOI: 10.1063/1.5037543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
We present a detailed overview and first results of the new laser blow-off system on the stellarator Wendelstein 7-X. The system allows impurity transport studies by the repetitive and controlled injection of different tracer ions into the plasma edge. A Nd:YAG laser is used to ablate a thin metal film, coated on a glass plate, with a repetition rate of up to 20 Hz. A remote-controlled adjustable optical system allows the variation of the laser spot diameter and enables the spot positioning to non-ablated areas on the target between laser pulses. During first experiments, clear spectral lines from higher ionization stages of the tracer ions have been observed in the X-ray to the extreme ultraviolet spectral range. The temporal behavior of the measured emission allows the estimate of transport properties, e.g., impurity transport times in the order of 100 ms. Although the strong injection of impurities is well detectable, the global plasma parameters are barely changed.
Collapse
Affiliation(s)
- Th Wegner
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - B Geiger
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - F Kunkel
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - R Burhenn
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - T Schröder
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - C Biedermann
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - B Buttenschön
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - G Cseh
- Wigner Research Center for Physics, 1121 Budapest, Hungary
| | - P Drews
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | - O Grulke
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - K Hollfeld
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | - C Killer
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - G Kocsis
- Wigner Research Center for Physics, 1121 Budapest, Hungary
| | - T Krings
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | - A Langenberg
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - O Marchuk
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | - U Neuner
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - D Nicolai
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | - N A Pablant
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - K Rahbarnia
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | | | - J Schilling
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - B Schweer
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | - T Szepesi
- Wigner Research Center for Physics, 1121 Budapest, Hungary
| | - H Thomsen
- Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| |
Collapse
|