1
|
Freitas DP, Pansini FNN, Varandas AJC. Optimized infrared spectrum of ( H 2 O ) m : ( H C N ) n mixtures. J Comput Chem 2024; 45:2842-2847. [PMID: 39193846 DOI: 10.1002/jcc.27491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Using density functional theory at D3-B3LYP/aug-cc-pVDZ level combined with the conductor-like polarizable continuum model (CPCM) solvent model, a study of the IR spectrum ofH 2 O :HCN mixtures is reported. The CPCM solvent effect notably enhances the accuracy of the IR spectra compared to gas-phase calculations, while the dielectric constant value has minimum impact on the final spectrum. An optimized methodology is suggested that effectively minimizes the root mean square deviation between theoretical and experimental data. This novel approach not only enhances the quality of the final IR spectra but also captures relevant spectral features, highlighting its potential to decipher molecular interactions in such intricate mixtures.
Collapse
Affiliation(s)
- D P Freitas
- Departamento de Física, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - F N N Pansini
- Departamento de Física, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - A J C Varandas
- Departamento de Física, Universidade Federal do Espírito Santo, Vitoria, Brazil
- Department of Physics, Qufu Normal University, Qufu, China
- Department of Chemistry, and Chemistry Centre, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Stepanov GO, Penkov NV, Rodionova NN, Petrova AO, Kozachenko AE, Kovalchuk AL, Tarasov SA, Tverdislov VA, Uvarov AV. The heterogeneity of aqueous solutions: the current situation in the context of experiment and theory. Front Chem 2024; 12:1456533. [PMID: 39391834 PMCID: PMC11464478 DOI: 10.3389/fchem.2024.1456533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The advancement of experimental methods has provided new information about the structure and structural fluctuations of water. Despite the appearance of numerous models, which aim to describe a wide range of thermodynamic and electrical characteristics of water, there is a deficit in systemic understanding of structuring in aqueous solutions. A particular challenge is the fact that even pure water is a heterogeneous, multicomponent system composed of molecular and supramolecular structures. The possibility of the existence of such structures and their nature are of fundamental importance for various fields of science. However, great difficulties arise in modeling relatively large supramolecular structures (e.g. extended hydration shells), where the bonds between molecules are characterized by low energy. Generally, such structures may be non-equilibrium but relatively long-lived. Evidently, the short times of water microstructure exchanges do not mean short lifetimes of macrostructures, just as the instability of individual parts does not mean the instability of the entire structure. To explain this paradox, we review the data from experimental and theoretical research. Today, only some of the experimental results on the lifetime of water structures have been confirmed by modeling, so there is not a complete theoretical picture of the structure of water yet. We propose a new hierarchical water macrostructure model to resolve the issue of the stability of water structures. In this model, the structure of water is presented as consisting of many hierarchically related levels (the stratification model). The stratification mechanism is associated with symmetry breaking at the formation of the next level, even with minimal changes in the properties of the previous level. Such a hierarchical relationship can determine the unique physico-chemical properties of water systems and, in the future, provide a complete description of them.
Collapse
Affiliation(s)
- German O. Stepanov
- Department of General and Medical biophysics, Medical Biological Faculty, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Nikita V. Penkov
- Institute of Cell Biophysics RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Natalia N. Rodionova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Anastasia O. Petrova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | | | | | - Sergey A. Tarasov
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Vsevolod A. Tverdislov
- Department of Biophysics Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V. Uvarov
- Department of Molecular Processes and Extreme States of Matter, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Gunasekaran P, Du X, Burley A, Le J, Cheng J, Cuesta A. Water at electrode-electrolyte interfaces: combining HOD vibrational spectra with ab initio-molecular dynamics simulations. Chem Sci 2024:d4sc04766d. [PMID: 39371467 PMCID: PMC11447744 DOI: 10.1039/d4sc04766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024] Open
Abstract
We have undertaken a vibrational study of the structure of interfacial water and its potential dependence using H2O : D2O mixtures to explore the O-H and O-D stretching modes of HOD as well as the bending modes of HOD and H2O. Due to the symmetry reduction, some of the complexity characteristic of the vibrational spectrum of water is removed in HOD. Coupled with potential-dependent ab initio simulations of the gold-water interface, this has enabled a deeper insight into the hydrogen-bond network of interfacial water and into how it is affected by the applied potential. Possibly the most important conclusions of our work are (i) the absence of any ice-like first layer of interfacial water at any potential and (ii) that interfacial water reorients around a stable backbone of hydrogen bonds roughly parallel to the electrode surface. At E > pzc, interfacial water molecules are oriented with the oxygen lone pairs towards the surface and form exclusively or nearly exclusively hydrogen-donating hydrogen bonds with other water molecules. At E < pzc, the oxygen lone pairs instead point away from the surface, but the population of hydrogen-donating water molecules does not vanish. In fact, the population of hydrogen-accepting water molecules only dominates at considerably negative charge densities, due to the weak interaction of the hydrogen atoms of interfacial water molecules with the Au surface.
Collapse
Affiliation(s)
- Pavithra Gunasekaran
- Advanced Centre for Energy and Sustainability (ACES), School of Natural and Computing Sciences, University of Aberdeen AB24 3UE Aberdeen Scotland UK
| | - Xianglong Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChem, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Andrew Burley
- Advanced Centre for Energy and Sustainability (ACES), School of Natural and Computing Sciences, University of Aberdeen AB24 3UE Aberdeen Scotland UK
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang 315201 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChem, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Angel Cuesta
- Advanced Centre for Energy and Sustainability (ACES), School of Natural and Computing Sciences, University of Aberdeen AB24 3UE Aberdeen Scotland UK
- Centre for Energy Transition, University of Aberdeen AB24 3FX, Aberdeen Scotland UK
| |
Collapse
|
4
|
Wang Z, Ju S, Wang Y, Zhang R, Ma L, Song J, Lin K. The isosbestic point in the Raman spectra of the hydration shell. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124413. [PMID: 38728849 DOI: 10.1016/j.saa.2024.124413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Isosbestic point is often observed in a series of spectra, but their interpretation is still controversial, such as whether the continuum model can produce an isosbestic point. In order to answer this question, the Raman spectra of hydration shell with continuous distribution structure in different ionic aqueous solutions were separated by Raman ratio spectra, and an isosbestic point was successfully observed. Our experimental results show that the continuum model can indeed produce the isosbestic point. In order to deepen the understanding of the isosbestic point, we calculate the first moment of the Raman spectra and conduct molecular dynamics (MD) simulations. Both experimental and theoretical findings indicate that elevated temperatures lead to increased disorder among water molecules within the hydration shell.
Collapse
Affiliation(s)
- Zhiqiang Wang
- School of Physics, Xidian University, Xi'an, 710071, P. R. China
| | - Siwen Ju
- School of Physics, Xidian University, Xi'an, 710071, P. R. China
| | - Yuxi Wang
- School of Flexible Electronics (SOFE) & State Key Laboratory of Optoelectronic Materials and Technologies (OEMT), Sun Yat-sen University, Shenzhen, 5181071, P. R. China
| | - Ruiting Zhang
- School of Physics, Xidian University, Xi'an, 710071, P. R. China.
| | - Lin Ma
- School of Physics, Xidian University, Xi'an, 710071, P. R. China
| | - Jiangluqi Song
- School of Physics, Xidian University, Xi'an, 710071, P. R. China
| | - Ke Lin
- School of Physics, Xidian University, Xi'an, 710071, P. R. China; Interdisciplinary Research Center of Smart Sensor, Xidian University, Xi'an, 710071, P. R. China.
| |
Collapse
|
5
|
Rossi B, Tommasini M, Ossi PM, Paolantoni M. Pre-resonance effects in deep UV Raman spectra of normal and deuterated water. Phys Chem Chem Phys 2024; 26:22023-22030. [PMID: 39109787 DOI: 10.1039/d4cp01320d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We have investigated the shape of the OH/OD stretching Raman band of water as a function of the excitation wavelength in the deep UV region (200-266 nm). By analyzing the spectral profiles, we highlighted selective pre-resonance effects in the high wavenumber component of the OH/OD stretching band, associated to distorted H-bonded water configurations. A van't Hoff treatment of the temperature-dependent Raman spectra provides an estimate of the thermal energy associated to the change from ordered (ice-like) to disordered configurations that agrees with values obtained by related methods based on a two-state model of water. These results open the possibility of exploiting the observed pre-resonance deep-UV signal enhancement to investigate H-bonding properties in aqueous media.
Collapse
Affiliation(s)
- B Rossi
- Elettra Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - M Tommasini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy
| | - P M Ossi
- Dipartimento di Chimica, Biologia, Farmacia, Scienze Ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 131, 98166 Messina, Italy.
| | - M Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto, 8 - 06123 Perugia (PG), Italy
| |
Collapse
|
6
|
Shen H, Chen L, Zou X, Wu Q. Modeling Vibrational Sum Frequency Generation Spectra of Interfacial Water on a Gold Surface: The Role of the Fermi Resonance. J Phys Chem B 2024; 128:6638-6647. [PMID: 38922305 DOI: 10.1021/acs.jpcb.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Studying the hydrogen bonding structure of H2O at the metal-water interface is a highly complex yet fascinating endeavor. The intricate interactions and diverse orientations of water molecules on metal surfaces with varying potentials pose a significant challenge in elucidating the coupling between O-H stretching and H-O-H bending modes. In this study, we employed DFT-MD simulation to explore how the orientation of interfacial water molecules changes with the applied potential on the Au(111) surface. Based on the surface-specific velocity-velocity correlation function (ssVVCF) formula, we calculated vibrational sum frequency generation (VSFG) spectra for the O-H stretches. We found that three assigned peaks (∼3300, ∼3450, and 3650 cm-1) shifted toward lower frequencies as the potential moved toward more negative values. Our results align remarkably well with experimental Raman spectroscopy data. Notably, our VSFG analysis revealed a significant change in the VSFG spectra of the hydrogen-bonded O-H groups (∼3300 cm-1), switching from a negative to a positive sign with decreasing potential. This alteration suggests a substantial change in the orientation of these low-frequency O-H groups owing to their increased interactions with the Au surface. In contrast, the orientations of both the high-frequency O-H groups (∼3450 cm-1) and the dangling O-H groups (∼3650 cm-1) remained unaffected by the applied potentials. Furthermore, our analysis of the decomposed vibrational density of states (VDOS) for the H-O-H bending mode uncovered the coupling between the H-O-H bending and O-H stretching vibrations, known as the Fermi resonance. Our work suggests that the H-O-H bending vibration becomes restricted when water molecules transition from the ″one-H-down″ to the ″two-H-down″ conformation, leading to a redshift in the O-H stretching vibration through the Fermi resonance. By constructing the VSFG and decomposed VDOS spectra, we gained valuable insights into the structural changes that Raman spectra alone cannot fully interpret. Specifically, our analysis revealed the critical role of the Fermi resonance effect in shaping the spectroscopic signature of interfacial water molecules on the Au(111) surface.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Ling Chen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Xuefeng Zou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Qingqing Wu
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P. R. China
| |
Collapse
|
7
|
Mandal I, Gangareddy J, Sethurajaperumal A, Nk M, Majji M, Bera S, Rudra P, Ravichandran V, Bysakh S, Jacob N, Rao KDM, Singh RK, Krishnan NMA, Chirumamilla M, Palanisamy T, Motapothula M, Varrla E, Ghosh S, Allu AR. H-Glass Supported Hybrid Gold Nano-Islands for Visible-Light-Driven Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401131. [PMID: 38563587 DOI: 10.1002/smll.202401131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H2) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency. Plasmonic HGNIs are grown on an in-house developed active glass sheet composed of sodium aluminum phosphosilicate oxide glass (H-glass) using the thermal dewetting method at 550 °C under an ambient atmosphere. HGNIs with various oxidation states (Au0, Au+, and Au-) and multiple interfaces are obtained due to the diffusion of the elements from the glass structure, which also facilitates the lifetime of the hot electron to be ≈2.94 ps. H-glass-supported HGNIs demonstrate significant STH conversion efficiency of 0.6%, without any sacrificial agents, via water dissociation. This study unveils the specific role of H-glass-supported HGNIs in facilitating light-driven chemical conversions, offering new avenues for the development of high-performance photocatalysts in various chemical conversion reactions for large-scale commercial applications.
Collapse
Affiliation(s)
- Indrajeet Mandal
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Jagannath Gangareddy
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Abimannan Sethurajaperumal
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Murugasenapathi Nk
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manikanta Majji
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - Susmita Bera
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG CREST), Sector V, Salt Lake, Kolkata, 700091, India
| | - Pratyasha Rudra
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vanmathi Ravichandran
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sandip Bysakh
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Noah Jacob
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - K D M Rao
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rajiv K Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Photovoltaic Metrology Section, Advanced Material and Devices Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
| | - N M Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Manohar Chirumamilla
- Department of Materials and Production, Aalborg University, Skjernvej 4A, Aalborg, 9220, Denmark
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, 21073, Hamburg, Germany
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M Motapothula
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - Eswaraiah Varrla
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Srabanti Ghosh
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amarnath R Allu
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Althorpe SC. Path Integral Simulations of Condensed-Phase Vibrational Spectroscopy. Annu Rev Phys Chem 2024; 75:397-420. [PMID: 38941531 DOI: 10.1146/annurev-physchem-090722-124705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Recent theoretical and algorithmic developments have improved the accuracy with which path integral dynamics methods can include nuclear quantum effects in simulations of condensed-phase vibrational spectra. Such methods are now understood to be approximations to the delocalized classical Matsubara dynamics of smooth Feynman paths, which dominate the dynamics of systems such as liquid water at room temperature. Focusing mainly on simulations of liquid water and hexagonal ice, we explain how the recently developed quasicentroid molecular dynamics (QCMD), fast-QCMD, and temperature-elevated path integral coarse-graining simulations (Te PIGS) methods generate classical dynamics on potentials of mean force obtained by averaging over quantum thermal fluctuations. These new methods give very close agreement with one another, and the Te PIGS method has recently yielded excellent agreement with experimentally measured vibrational spectra for liquid water, ice, and the liquid-air interface. We also discuss the limitations of such methods.
Collapse
Affiliation(s)
- Stuart C Althorpe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
9
|
Hunter KM, Paesani F. Monitoring water harvesting in metal-organic frameworks, one water molecule at a time. Chem Sci 2024; 15:5303-5310. [PMID: 38577368 PMCID: PMC10988614 DOI: 10.1039/d3sc06162k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) have gained prominence as potential materials for atmospheric water harvesting, a vital solution for arid regions and areas experiencing severe water shortages. However, the molecular factors influencing the performance of MOFs in capturing water from the air remain elusive. Among all MOFs, Ni2X2BTDD (X = F, Cl, Br) stands out as a promising water harvester due to its ability to adsorb substantial amounts of water at low relative humidity (RH). Here, we use advanced molecular dynamics simulations carried out with the state-of-the-art MB-pol data-driven many-body potential to monitor water adsorption in the three Ni2X2BTDD variants as a function of RH. Our simulations reveal that the type of halide atom in the three Ni2X2BTDD frameworks significantly influences the corresponding molecular mechanisms of water adsorption: while water molecules form strong hydrogen bonds with the fluoride atoms in Ni2F2BTDD, they tend to form hydrogen bonds with the nitrogen atoms of the triazolate linkers in Ni2Cl2BTDD and Ni2Br2BTDD. Importantly, the large size of the bromide atoms reduces the void volume in the Ni2Br2BTDD pores, which enable water molecules to initiate an extended hydrogen-bond network at lower RH. These findings not only underscore the prospect for precisely tuning structural and chemical modifications of the frameworks to optimize their interaction with water, but also highlight the predictive power of simulations with the MB-pol data-driven many-body potential. By providing a realistic description of water under different thermodynamic conditions and environments, these simulations yield unique, molecular-level insights that can guide the design and optimization of energy-efficient water harvesting materials.
Collapse
Affiliation(s)
- Kelly M Hunter
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
- Halicioğlu Data Science Institute, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
10
|
Lüttschwager NOB. The strength of the OH-bend/OH-stretch Fermi resonance in small water clusters. Phys Chem Chem Phys 2024; 26:10120-10135. [PMID: 38487881 DOI: 10.1039/d3cp06255d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A novel Raman jet-spectrometer is used to study the Fermi resonance between the OH bending overtone and OH stretching fundamental in small cyclic water clusters (H2O)n with n = 3, 4, 5. The new setup features a recirculating vacuum system which reduces the gas consumption by 2 to 3 orders of magnitude and enables long-term measurements of very weak Raman signals. Raman spectra measured from highly diluted expansions with unprecedented signal-to-noise ratio are presented and cluster-specific intensity ratios and effective coupling constants are derived using Markov-Chain Monte-Carlo methods, yielding a high probability for an almost "perfect" resonance for the tetramer and pentamer, i.e. a close frequency match of bend overtone and stretch fundamental with intensity ratios close to 1, but a larger coupling constant for the trimer, with best estimates close to W5 ≲ 50 cm-1 < W4 ≲ 60 cm-1 < W3 ≈ 65 cm-1.
Collapse
Affiliation(s)
- Nils O B Lüttschwager
- Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Tammannstraße 6, 37077 Göttingen, Germany.
| |
Collapse
|
11
|
Li Y, Xu L, Ouyang J, Lei J, Hu J, Xing X, Chen P, Li J, Zhong C, Yang B, Li H. Harmonic and anharmonic studies on THz spectra of two vanillin polymorphs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123869. [PMID: 38198992 DOI: 10.1016/j.saa.2024.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Polymorphism commonly exists in organic molecular crystals. The fingerprint features in low-frequency vibrational range are important information reflecting different intermolecular interactions of polymorphs. Interpreting these features is very helpful to understand vibrational property of polymorphs and reveal the thermodynamic stability. In this work, the low-frequency vibrations of form I and II of vanillin are investigated using terahertz time-domain spectroscopy. Static DFT calculation and ab initio molecular dynamics (AIMD) are employed to interpret their low-frequency vibrations of both forms in harmonic and anharmonic ways, respectively. Their low-frequency vibration characteristics in harmonic calculations are discussed, and anharmonic mode couplings between OH bond stretch and the stretching and bending motion of hydrogen bonds are uncovered. Moreover, the thermodynamic energies including electronic potential energy and vibrational/kinetic energy arising from nuclear motions are calculated. The result reveals that the stability order of the two forms is mainly dependent on their electric potential energy difference.
Collapse
Affiliation(s)
- Yin Li
- School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Li Xu
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, Nanchang City 330013, China
| | - Jinbo Ouyang
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, Nanchang City 330013, China.
| | - Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Jun Hu
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Xiaohong Xing
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, Nanchang City 330013, China
| | - Peng Chen
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, Nanchang City 330013, China
| | - Jiaqing Li
- School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Changqing Zhong
- School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Bo Yang
- School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Heng Li
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China; Jiujiang Research Institute, Xiamen University, Jiujiang 332000, China
| |
Collapse
|
12
|
Takayama T, Otosu T, Yamaguchi S. Theoretical and experimental OD-stretch vibrational spectroscopy of heavy water. J Chem Phys 2024; 160:104504. [PMID: 38465684 DOI: 10.1063/5.0200623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
In view of the current situation in which the OD-stretch vibrational spectra have been scarcely computed with non-polarizable rigid D2O models, we investigate the IR and Raman spectra of D2O by using a newly-reported model TIP4P/2005-HW. From the comparison between the calculations and experimental data, we find the excellent performance of TIP4P/2005-HW for vibrational spectroscopy of D2O in the same manner as TIP4P/2005 for H2O, although one may still conveniently employ an alternative method that regards OH as putative OD to calculate the OD-stretch spectra with similar quality from TIP4P/2005 trajectories. We also demonstrate that the appropriate setting for the spectral simulation of D2O under the time-averaging approximation reflects the slower dynamics (i.e., slower motion of translation and rotation due to the heavier mass and stronger hydrogen bond) of D2O than H2O. Moreover, we show from the theoretical calculations that the established interpretation of the OH-stretch spectra of H2O is finely applicable to the OD-stretch of D2O.
Collapse
Affiliation(s)
- Tetsuyuki Takayama
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
13
|
Finney JM, McCoy AB. Correlations between the Structures and Spectra of Protonated Water Clusters. J Phys Chem A 2024; 128:868-879. [PMID: 38265889 DOI: 10.1021/acs.jpca.3c07338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Badger's rule-like correlations between OH stretching frequencies and intensities and the OH bond length are used to develop a spectral mapping procedure for studies of pure and protonated water clusters. This approach utilizes the vibrationally averaged OH bond lengths, which were obtained from diffusion Monte Carlo simulations that were performed using the general potential developed by Yu and Bowman. Good agreement is achieved between the spectra obtained using this approach and previously reported spectra for H+(H2O)n clusters, with n = 3, 4, and 5, as well as their perdeuterated analogues. The analysis of the spectra obtained by this spectral mapping approach supports previous work that assigned the spectrum of H+(H2O)6 to a mixture of Eigen and Zundel-like structures. Analysis of the calculated spectra also suggests a reassignment of the frequency of one of the transitions that involves the OH stretching vibration of the OH bonds in the hydronium core in the Eigen-like structure of H+(H2O)6 from 1917 cm-1 to roughly 2100 cm-1. For D+(D2O)6, comparison of the measured spectrum to those obtained by using the spectral mapping approach suggests that the carrier of the measured spectrum is one or more of the isomers of D+(D2O)6 that contain a four-membered ring and two flanking water molecules. While there are several candidate structures, the two flanking water molecules most likely form a chain that is bound to the hydronium core.
Collapse
Affiliation(s)
- Jacob M Finney
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Asthagiri DN, Beck TL. MD Simulation of Water Using a Rigid Body Description Requires a Small Time Step to Ensure Equipartition. J Chem Theory Comput 2024; 20:368-374. [PMID: 38156881 DOI: 10.1021/acs.jctc.3c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In simulations of aqueous systems, it is common to freeze the bond vibration and angle bending modes in water to allow for a longer time step δt for integrating the equations of motion. Thus, δt = 2 fs is often used in simulating rigid models of water. We simulate the SPC/E model of water using δt from 0.5 to 3.0 fs and up to 4 fs using hydrogen mass repartitioning. In these simulations, we find that for all but δt = 0.5 fs, equipartition is not obtained between translational and rotational modes, with the rotational modes exhibiting a lower temperature than the translation modes. To probe the reasons for the lack of equipartition, we study the autocorrelation of the translational velocity of the center of mass and the angular velocity of the rigid water molecule, respectively. We find that the rotational relaxation occurs on a timescale comparable to vibrational periods, calling into question the original motivations for freezing the vibrations. Furthermore, a time step with δt ≥ 1 fs is not able to capture accurately the fast rotational relaxation, which reveals its impact as an effective slowing-down of rotational relaxation. The fluctuation-dissipation relation then leads to the conclusion that the rotational temperature should be cooler for δt greater than the reference value of 0.5 fs. Consideration of fluctuation-dissipation in equilibrium molecular dynamics simulations also emphasizes the need to capture the temporal evolution of fluctuations with fidelity and the role of δt in this regard. The time step also influences the solution thermodynamic properties: both the mean system potential energies and the excess entropy of hydration of a soft repulsive cavity are sensitive to δt.
Collapse
Affiliation(s)
- Dilipkumar N Asthagiri
- Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37830-6012, United States
| | - Thomas L Beck
- Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37830-6012, United States
| |
Collapse
|
15
|
LaCour RA, Heindel JP, Head-Gordon T. Predicting the Raman Spectra of Liquid Water with a Monomer-Field Model. J Phys Chem Lett 2023; 14:11742-11749. [PMID: 38116782 DOI: 10.1021/acs.jpclett.3c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The Raman spectrum of liquid water is quite complex, reflecting its strong sensitivity to the local environment of the individual waters. The OH-stretch region of the spectrum, which captures the influence of hydrogen bonding, has only just begun to be unraveled. Here we develop a model for predicting the Raman spectra of the OH-stretch region by considering how local electric fields distort the energy surface of each water monomer. We find that our model is capable of reproducing the bimodal nature of the main peak, with the shoulder at 3250 cm-1 resulting almost entirely from Fermi resonance. Furthermore, we capture the temperature and polarization dependence of the shoulder, which has proven to be difficult to obtain with previous methods, and analyze the origin of this dependence. We expect our model to be generally useful for understanding and predicting how Raman spectra change under different conditions and with different probe reporters beyond water.
Collapse
Affiliation(s)
- R Allen LaCour
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joseph P Heindel
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Lwin E, Fischer TL, Suhm MA. Microhydration of Tertiary Amines: Robust Resonances in Red-Shifted Water. J Phys Chem Lett 2023; 14:10194-10199. [PMID: 37930195 PMCID: PMC10658632 DOI: 10.1021/acs.jpclett.3c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Tertiary amines are strong hydrogen bond acceptors. When a water molecule donates one of the OH groups, its in-phase stretching vibration wavenumber is decreased to such an extent that it comes close to the water bending overtone. This gives rise to anharmonic phenomena such as classical Fermi resonance, resonance with multiple-quantum dark states, or combination transitions with low-frequency intermolecular modes. These effects, which contribute to the spectral breadth of room-temperature hydrogen-bonded amine complexes, are disentangled by Fourier transform infrared spectroscopy in pulsed supersonic slit jet expansions. Monohydrates of the amines quinuclidine, N-methylpyrrolidine, N-methylpiperidine, and dimethylcyclohexylamine exhibit systematic mode coupling signatures. These suggest relatively fast energy flow out of the excited OH stretching fundamental into intra- and intermolecular degrees of freedom of the hydrogen-bonded water molecule. Trimeric complexes are spectroscopically separated from the amine monohydrates.
Collapse
Affiliation(s)
- Eaindra Lwin
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Taija L. Fischer
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Martin A. Suhm
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Shen H, Shen X, Wu Z. Simulating the isotropic Raman spectra of O-H stretching mode in liquid H 2O based on a machine learning potential: the influence of vibrational couplings. Phys Chem Chem Phys 2023; 25:28180-28188. [PMID: 37819214 DOI: 10.1039/d3cp03035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In this study, we trained a deep potential (DP) for H2O, an accurate machine learning (ML) potential. We performed molecular dynamics (MD) simulations of liquid water using the DP model (or DeePMD simulations). Our results showed that the DP model exhibits DFT-level accuracy, and the DeePMD simulation is a promising approach for modeling the structural properties of liquid water. Based on the DeePMD simulation trajectories, we calculated the isotropic Raman spectra of the O-H stretching mode using the surface-specific velocity-velocity correlation function (ssVVCF), showing that the DeePMD/ssVVCF approach can correctly capture the bimodal characteristics of the experimental Raman spectra, with one peak located near 3400 cm-1 and the other near 3250 cm-1. The success of the DeePMD/ssVVCF approach should be credited to (1) the DFT-level accuracy of the DP model for H2O, (2) the ssVVCF formulation considering the coupling between vibrational modes, and (3) non-Condon effects. Furthermore, the DeePMD simulations revealed that the anharmonic interactions between the coupled water molecules in the first and second hydration shells should play an essential role in the strong mixing of the H-O-H bending mode and the O-H stretching mode, leading to the delocalization of the O-H stretching band. In particular, increasing the strength of hydrogen bonds would enhance the bend-stretch coupling, leading to the red-shifting of the O-H vibrational spectra and the increase in the intensity of the shoulder around 3250 cm-1.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| | - Xu Shen
- National Center of Technology Innovation for Intelligent Design and Numerical Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenhua Wu
- Department of Big Data and Artificial Intelligence, Guizhou Vocational Technology College of Electronics & Information, Kaili, 556000, China
| |
Collapse
|
18
|
Huchmala RM, McCoy AB. Exploring the Origins of the Intensity of the OH Stretch-HOH Bend Combination Band in Water. J Phys Chem A 2023; 127:6711-6721. [PMID: 37552561 DOI: 10.1021/acs.jpca.3c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
While the intensity of the OH stretching fundamental transition is strongly correlated to hydrogen-bond strength, the intensity of the corresponding transition to the state with one quantum of excitation in both the OH stretching and HOH bending vibrations in the same water molecule shows a much weaker sensitivity to the hydrogen-bonding environment. The origins of this difference are explored through analyses of the contributions of terms in the expansion of the dipole moment to the calculated intensity. It is found that the leading contribution to the stretch-bend intensity involves the second derivative of the dipole moment with respect to the OH bond length and HOH angle. While this is not surprising, the insensitivity of this derivative to the hydrogen-bonding environment is unexpected. Possible contributions of mode mixing are also explored. While mode mixing leads to splittings of the energies of nearly degenerate excited states, it does not result in significant changes in the sum of the intensities of these transitions. Analysis of changes in the partial charges on the hydrogen atoms upon displacement of the HOH angles shows that these charges generally increase with increasing HOH angle. This effect is partially canceled by a decrease in the charge of the hydrogen atom when a hydrogen bond is broken. The extent of this cancellation increases with the hydrogen bond strength, which is reflected in the observed insensitivity of the intensity of the stretch-bend transition to hydrogen-bond strength.
Collapse
Affiliation(s)
- Rachel M Huchmala
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
Pastorczak M, Duk K, Shahab S, Kananenka AA. Combinational Vibration Modes in H 2O/HDO/D 2O Mixtures Detected Thanks to the Superior Sensitivity of Femtosecond Stimulated Raman Scattering. J Phys Chem B 2023. [PMID: 37201478 DOI: 10.1021/acs.jpcb.3c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Overtones and combinational modes frequently play essential roles in ultrafast vibrational energy relaxation in liquid water. However, these modes are very weak and often overlap with fundamental modes, particularly in isotopologues mixtures. We measured VV and HV Raman spectra of H2O and D2O mixtures with femtosecond stimulated Raman scattering (FSRS) and compared the results with calculated spectra. Specifically, we observed the mode at around 1850 cm-1 and assigned it to H-O-D bend + rocking libration. Second, we found that the H-O-D bend overtone band and the OD stretch + rocking libration combination band contribute to the band located between 2850 and 3050 cm-1. Furthermore, we assigned the broad band located between 4000 and 4200 cm-1 to be composed of combinational modes of high-frequency OH stretching modes with predominantly twisting and rocking librations. These results should help in a proper interpretation of Raman spectra of aqueous systems as well as in the identification of vibrational relaxation pathways in isotopically diluted water.
Collapse
Affiliation(s)
- Marcin Pastorczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Laser Centre, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Katsiaryna Duk
- Institute of Physical Chemistry, Polish Academy of Sciences, Laser Centre, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Samaneh Shahab
- Institute of Physical Chemistry, Polish Academy of Sciences, Laser Centre, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Kringle L, Kay BD, Kimmel GA. Dynamic Heterogeneity and Kovacs' Memory Effects in Supercooled Water. J Phys Chem B 2023; 127:3919-3930. [PMID: 37097190 DOI: 10.1021/acs.jpcb.3c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Understanding the properties of supercooled water is important for developing a comprehensive theory for liquid water and amorphous ices. Because of rapid crystallization for deeply supercooled water, experiments on it are typically carried out under conditions in which the temperature and/or pressure are rapidly changing. As a result, information on the structural relaxation kinetics of supercooled water as it approaches (metastable) equilibrium is useful for interpreting results obtained in this experimentally challenging region of phase space. We used infrared spectroscopy and the fast time resolution obtained by transiently heating nanoscale water films to investigate relaxation kinetics (aging) in supercooled water. When the structural relaxation of the water films was followed using a temperature jump protocol analogous to the classic experiments of Kovacs, similar memory effects were observed. In particular, after suitable aging at one temperature, water's structure displayed an extremum versus the number of heat pulses upon changing to a second temperature before eventually relaxing to a steady-state structure characteristic of that temperature. A random double well model based on the idea of dynamic heterogeneity in supercooled water accounts for the observations.
Collapse
Affiliation(s)
- Loni Kringle
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Bruce D Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
21
|
Takayama T, Otosu T, Yamaguchi S. Transferability of vibrational spectroscopic map from TIP4P to TIP4P-like water models. J Chem Phys 2023; 158:136101. [PMID: 37031108 DOI: 10.1063/5.0146084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
We computed the IR, Raman, and sum frequency generation spectra of water in the OH-stretch region by employing the quantum/classical mixed approach that consists of a vibrational spectroscopic map and molecular dynamics (MD) simulation. We carried out the MD simulation with the TIP4P, TIP4P/2005, and TIP4P/Ice models and applied the map designed for TIP4P by Skinner et al. to each MD trajectory. Although the map is not tuned for TIP4P-like models, TIP4P/2005 and TIP4P/Ice provide the best reproduction of the experimental vibrational spectra of liquid water and crystalline ice, respectively. This result demonstrates the transferability of the map from TIP4P to TIP4P/2005 and TIP4P/Ice, meaning that one can choose an appropriate TIP4P-like model to calculate the vibrational spectra of an aqueous system without rebuilding the map.
Collapse
Affiliation(s)
- Tetsuyuki Takayama
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
22
|
Inoue K, Litman Y, Wilkins DM, Nagata Y, Okuno M. Is Unified Understanding of Vibrational Coupling of Water Possible? Hyper-Raman Measurement and Machine Learning Spectra. J Phys Chem Lett 2023; 14:3063-3068. [PMID: 36947156 DOI: 10.1021/acs.jpclett.3c00398] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The impact of the vibrational coupling of the OH stretch mode on the spectra differs significantly between IR and Raman spectra of water. Unified understanding of the vibrational couplings is not yet achieved. By using a different class of vibrational spectroscopy, hyper-Raman (HR) spectroscopy, together with machine-learning-assisted HR spectra calculation, we examine the impact of the vibrational couplings of water through the comparison of isotopically diluted H2O and pure H2O. We found that the isotopic dilution reduces the HR bandwidths, but the impact of the vibrational coupling is smaller than in the IR and parallel-polarized Raman. Machine learning HR spectra indicate that the intermolecular coupling plays a major role in broadening the bandwidth, while the intramolecular coupling is negligibly small, which is consistent with the IR and Raman spectra. Our result clearly demonstrates a limited impact of the intramolecular vibration, independent of the selection rules of vibrational spectroscopies.
Collapse
Affiliation(s)
- Kazuki Inoue
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Yair Litman
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David M Wilkins
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Masanari Okuno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
23
|
Konstantinovsky D, Perets EA, Santiago T, Olesen K, Wang Z, Soudackov AV, Yan ECY, Hammes-Schiffer S. Design of an Electrostatic Frequency Map for the NH Stretch of the Protein Backbone and Application to Chiral Sum Frequency Generation Spectroscopy. J Phys Chem B 2023; 127:2418-2429. [PMID: 36916645 PMCID: PMC10409516 DOI: 10.1021/acs.jpcb.3c00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
We develop an electrostatic map for the vibrational NH stretch (amide A) of the protein backbone with a focus on vibrational chiral sum frequency generation spectroscopy (chiral SFG). Chiral SFG has been used to characterize protein secondary structure at interfaces using the NH stretch and to investigate chiral water superstructures around proteins using the OH stretch. Interpretation of spectra has been complicated because the NH stretch and OH stretch overlap spectrally. Although an electrostatic map for water OH developed by Skinner and co-workers was used previously to calculate the chiral SFG response of water structures around proteins, a map for protein NH that is directly responsive to biological complexity has yet to be developed. Here, we develop such a map, linking the local electric field to vibrational frequencies and transition dipoles. We apply the map to two protein systems and achieve much better agreement with experiment than was possible in our previous studies. We show that couplings between NH and OH vibrations are crucial to the line shape, which informs the interpretation of chiral SFG spectra, and that the chiral NH stretch response is sensitive to small differences in structure. This work increases the utility of the NH stretch in biomolecular spectroscopy.
Collapse
Affiliation(s)
- Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | - Ethan A. Perets
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
- Current Address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Kristian Olesen
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Zhijie Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | | | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
24
|
Lounasvuori M, Mathis TS, Gogotsi Y, Petit T. Hydrogen-Bond Restructuring of Water-in-Salt Electrolyte Confined in Ti 3C 2T x MXene Monitored by Operando Infrared Spectroscopy. J Phys Chem Lett 2023; 14:1578-1584. [PMID: 36748744 PMCID: PMC9940289 DOI: 10.1021/acs.jpclett.2c03769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
Highly concentrated water-in-salt aqueous electrolytes exhibit a wider potential window compared to conventional, dilute aqueous electrolytes. Coupled with MXenes, a family of two-dimensional transition metal carbides and nitrides with impressive charge storage capabilities, water-in-salt electrolytes present a potential candidate to replace flammable and toxic organic solvents in electrochemical energy storage devices. A new charge storage mechanism was recently discovered during electrochemical cycling of Ti3C2Tx MXene electrodes in lithium-based water-in-salt electrolytes, attributed to intercalation and deintercalation of solvated Li+ ions at anodic potentials. Nevertheless, direct evidence of the state of Li+ solvation during cycling is still missing. Here, we investigate the hydrogen bonding of water intercalated between MXene layers during electrochemical cycling in a water-in-salt electrolyte with operando infrared spectroscopy. The hydrogen-bonding state of the confined water was found to change significantly as a function of potential and the concentration of Li+ ions in the interlayer space. This study provides fundamentally new insights into the electrolyte structural changes while intercalating Li+ in the MXene interlayer space.
Collapse
Affiliation(s)
- Mailis Lounasvuori
- Nanoscale
Solid−Liquid Interfaces, Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Tyler S. Mathis
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Yury Gogotsi
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Tristan Petit
- Nanoscale
Solid−Liquid Interfaces, Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
| |
Collapse
|
25
|
Yu X, Chiang KY, Yu CC, Bonn M, Nagata Y. On the Fresnel factor correction of sum-frequency generation spectra of interfacial water. J Chem Phys 2023; 158:044701. [PMID: 36725499 DOI: 10.1063/5.0133428] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Insights into the microscopic structure of aqueous interfaces are essential for understanding the chemical and physical processes on the water surface, including chemical synthesis, atmospheric chemistry, and events in biomolecular systems. These aqueous interfaces have been probed by heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. To obtain the molecular response from the measured HD-SFG spectra, one needs to correct the measured ssp spectra for local electromagnetic field effects at the interface due to a spatially varying dielectric function. This so-called Fresnel factor correction can change the inferred response substantially, and different ways of performing this correction lead to different conclusions about the interfacial water response. Here, we compare the simulated and experimental spectra at the air/water interface. We use three previously developed models to compare the experiment with theory: an advanced approach taking into account the detailed inhomogeneous interfacial dielectric profile and the Lorentz and slab models to approximate the interfacial dielectric function. Using the advanced model, we obtain an excellent quantitative agreement between theory and experiment, in both spectral shape and amplitude. Remarkably, we find that for the Fresnel factor correction of the ssp spectra, the Lorentz model for the interfacial dielectric function is equally accurate in the hydrogen (H)-bonded region of the response, while the slab model underestimates this response significantly. The Lorentz model, thus, provides a straightforward method to obtain the molecular response from the measured spectra of aqueous interfaces in the H-bonded region.
Collapse
Affiliation(s)
- Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
26
|
Suzuki M, Tsuchiko A, Tanaka Y, Matubayasi N, Mogami G, Uozumi N, Takahashi S. Hyper-mobile Water and Raman 2900 cm -1 Peak Band of Water Observed around Backbone Phosphates of Double Stranded DNA by High-Resolution Spectroscopies and MD Structural Feature Analysis of Water. J Phys Chem B 2023; 127:285-299. [PMID: 36573838 DOI: 10.1021/acs.jpcb.2c06952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-resolution measurements of microwave dielectric relaxation and Raman spectroscopies for waters in double-stranded (ds) 10-mer DNA solution revealed the presence of hyper-mobile water (HMW) and a marked OH stretching band appearing in the range from 2500 to 3100 cm-1, here called the LA band, at the low wavenumber tail of the major OH stretching band of water. Quantitation of the Raman scattering intensity for ds 10-mer DNA in phosphate or tris(hydroxymethyl)aminomethane (TRIS) buffers showed that the LA band was formed by 2000-3000 water molecules per ds 10-mer DNA, indicating collective OH stretching vibrations of water molecules around the backbone phosphate oxygen atoms. The LA band intensity of ds 10-mer DNA in 10 mM TRIS increased and decreased by 30% with the addition of 2 mM MgCl2 and 2 mM CaCl2, respectively. The LA band intensity and the effect of adding Mg(II) or Ca(II) ions to the band intensity were maintained in the presence of 0.14 M KCl; however, the changes induced by the divalent cations were reduced by half. Molecular dynamics calculations of water molecules around the backbone phosphate groups of ds 10-mer DNA indicate the presence of high-density water and broad regions of fluctuating water density, suggesting that they correspond to HMW and the LA band, respectively.
Collapse
Affiliation(s)
- Makoto Suzuki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira Aobaku, Sendai980-8577, Japan.,Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Akira Tsuchiko
- Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji Yamashirocho, Tokushima770-8514, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka560-8531, Japan
| | - George Mogami
- Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira Aobaku, Sendai980-8577, Japan
| |
Collapse
|
27
|
Li C, Xu Y, Yang Y, Wang L, Zhou C. Evolution of Chemical Bonding and Crystalline Swelling-Shrinkage of Montmorillonite upon Temperature Changes Probed by in Situ Fourier Transform Infrared Spectroscopy and X-ray Diffraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14227-14237. [PMID: 36321920 DOI: 10.1021/acs.langmuir.2c02236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Clay minerals are distributed in Earth's crust and troposphere and in Martian crust where temperature varies. Understanding the changes of chemical bonding and crystalline swelling-shrinkage of montmorillonite (Mnt) upon temperature changes is fundamental for studying its surface reactivity and interaction in specific surroundings. However, such an issue remains poorly understood. Here, in situ high- and low-temperature Fourier transform infrared (HT- and LT-FTIR) spectroscopy and X-ray diffraction (HT- and LT-XRD) were performed to study the evolution of chemical bonding and crystalline swelling-shrinkage of sodium-montmorillonite (NaMnt) upon temperature changes. The FTIR results show that the hydroxyl content in NaMnt decreased when the temperature increased from 20 to 700 °C, while it is independent of temperature from 0 to -150 °C. The formation of hydroxyls at the "broken" layer edges of NaMnt is related to adsorbed water molecules on the surfaces, and its content increased when the particle size of the NaMnt decreased. The water molecules in the interlayer space of NaMnt could bond to the tetrahedral sheet of NaMnt through Si2O-H2O bonds. HT- and LT-XRD results reveal that all of those water molecules in NaMnt were removed after heating to 100 °C in the heating chamber. The NaMnt was transformed from a state of monolayer interlayer water molecules at 20 °C to a dehydrated state at 100 °C, and then to a dehydroxylated state at 700 °C. Accordingly, the basal spacings of NaMnt were changed from 1.27 to 0.97 nm and then to 0.96 nm, respectively. When NaMnt was cooled from 20 to -268 °C, a crystalline swelling of NaMnt occurred with an increase of 0.03 nm of basal spacing. This work demonstrates that high/low temperature has a remarkable effect on the hydroxyls and the water molecules in NaMnt, which in turn affects its swelling-shrinkage performance. These findings provide some in-depth understanding of the changes of chemical bonding and crystalline swelling-shrinkage of montmorillonite upon temperature changes and the reasons behind these, which might be helpful for the design of engineering Mnt in high-/low-temperature applications.
Collapse
Affiliation(s)
- Cunjun Li
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou310014, China
- College of Materials Science and Engineering, Guilin University of Technology, 12 Jian Gan Road, Guilin541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, 12 Jian Gan Road, Guilin541004, China
| | - Yanqi Xu
- College of Materials Science and Engineering, Guilin University of Technology, 12 Jian Gan Road, Guilin541004, China
| | - Yan Yang
- Institute of Geology and Geophysics, School of Earth Sciences, Zhejiang University, 148 Tian Mu Shan Road, Hangzhou310027, China
| | - Linjiang Wang
- College of Materials Science and Engineering, Guilin University of Technology, 12 Jian Gan Road, Guilin541004, China
| | - Chunhui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou310014, China
- Qing Yang Institute for Industrial Minerals, Industry Park, You Hua Township, Qingyang242804, China
- Engineering Research Center of Nonmetallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resources, 58 Ti Yu Chang Road, Hangzhou310007, China
| |
Collapse
|
28
|
Konstantinovsky D, Perets EA, Santiago T, Velarde L, Hammes-Schiffer S, Yan ECY. Detecting the First Hydration Shell Structure around Biomolecules at Interfaces. ACS CENTRAL SCIENCE 2022; 8:1404-1414. [PMID: 36313165 PMCID: PMC9615115 DOI: 10.1021/acscentsci.2c00702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 05/15/2023]
Abstract
Understanding the role of water in biological processes remains a central challenge in the life sciences. Water structures in hydration shells of biomolecules are difficult to study in situ due to overwhelming background from aqueous environments. Biological interfaces introduce additional complexity because biomolecular hydration differs at interfaces compared to bulk solution. Here, we perform experimental and computational studies of chiral sum frequency generation (chiral SFG) spectroscopy to probe chirality transfer from a protein to the surrounding water molecules. This work reveals that chiral SFG probes the first hydration shell around the protein almost exclusively. We explain the selectivity to the first hydration shell in terms of the asymmetry induced by the protein structure and specific protein-water hydrogen-bonding interactions. This work establishes chiral SFG as a powerful technique for studying hydration shell structures around biomolecules at interfaces, presenting new possibilities to address grand research challenges in biology, including the molecular origins of life.
Collapse
Affiliation(s)
- Daniel Konstantinovsky
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ethan A. Perets
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ty Santiago
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260, United States
| | - Luis Velarde
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260, United States
| | | | - Elsa C. Y. Yan
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
29
|
Yamaguchi S, Takayama T, Goto Y, Otosu T, Yagasaki T. Experimental and Theoretical Heterodyne-Detected Sum Frequency Generation Spectroscopy of Isotopically Pure and Diluted Water Surfaces. J Phys Chem Lett 2022; 13:9649-9653. [PMID: 36214521 DOI: 10.1021/acs.jpclett.2c02533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The χ(2) (second-order nonlinear optical susceptibility) spectrum of the water surface has been a matter of debate for a few decades. Here, we report that we experimentally measured the isotopic dilution dependence of the χ(2) spectrum and theoretically reproduced it by employing the quantum/classical mixed approach with a new idea to subtract an artifact. The present theoretical framework allows for clarifying the effects of the intramolecular, intermolecular, and Fermi resonance couplings on the OH-stretch vibrational spectra of water at the surface as well as in the bulk.
Collapse
Affiliation(s)
- Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Tetsuyuki Takayama
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Yuki Goto
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Takuma Yagasaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
30
|
Yang N, Huchmala RM, McCoy AB, Johnson MA. Character of the OH Bend-Stretch Combination Band in the Vibrational Spectra of the "Magic" Number H 3O +(H 2O) 20 and D 3O +(D 2O) 20 Cluster Ions. J Phys Chem Lett 2022; 13:8116-8121. [PMID: 35998327 DOI: 10.1021/acs.jpclett.2c02318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental transitions that contribute to the diffuse OH stretching spectrum of water are known to increase in width and intensity with increasing red shift from the free OH frequency. In contrast, the profile of the higher-energy combination band involving the OH stretching and the intramolecular HOH bending modes displays a qualitatively different spectral shape with a much faster falloff on the lower-energy side. We elucidate the molecular origin of this difference by analyzing the shapes of the combination bands in the IR spectra of cryogenically cooled H3O+(H2O)20 and D3O+(D2O)20 clusters. The difference in the shapes of the bands is traced to differences in the dependence of their transition dipole matrix elements on the hydrogen-bonding environment. The fact that individual transitions across the combination band envelope have similar intensities makes it a useful way to determine the participation of various sites in extended H-bonding networks.
Collapse
Affiliation(s)
- Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Rachel M Huchmala
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
31
|
Palchowdhury S, Mukherjee K, Maroncelli M. Rapid Water Dynamics Structures the OH-Stretching Spectra of Solitary Water in Ionic Liquids and Dipolar Solvents. J Chem Phys 2022; 157:084502. [DOI: 10.1063/5.0107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a recent study [ J. Phys. Chem. B 126, 4584 (2022)] we used infrared spectroscopy to investigate the solvation and dynamics of solitary water in ionic liquids and dipolar solvents. Complex shapes observed for water OH-stretching bands common to all high-polarity solvents were assigned to water in several solvation states. In the present study, classical molecular dynamics simulations of a single water molecule in four ionic liquids and three dipolar solvents were used to test and refine this interpretation. Consistent with past assignments, simulations show solitary water usually donates two hydrogen bonds to distinct solvent molecules. Such symmetrically solvated water produces the primary pair of peaks identified in the OH spectra of water in nearly all solvents. We had further proposed that additional features flanking this main peak are due to asymmetric solvation states, states in which only one OH group makes a hydrogen bond to solvent. Such states were found in significant concentrations in all of the systems simulated. Simulations of the OH stretching spectra using a semiclassical description and the vibrational map developed by Auer and Skinner [ J. Chem. Phys. 128, 224511 (2008)] provided semi-quantitative agreement with experiment. Analysis of species-specific spectra also confirmed assignment of the additional features in the experimental spectra to asymmetrically solvated water. The simulations also showed that rapid water motions cause a marked motional narrowing compared to the inhomogeneous limit, and that this narrowing is largely responsible for making the additional features due to minority solvation states manifest in the spectra.
Collapse
Affiliation(s)
- Souarv Palchowdhury
- The Pennsylvania State University - University Park Campus, United States of America
| | - Kallol Mukherjee
- The Pennsylvania State University - University Park Campus, United States of America
| | - Mark Maroncelli
- Department of Chemsitry, The Pennsylvania State University - University Park Campus, United States of America
| |
Collapse
|
32
|
Liu H, Chen Y, Liu G, Zhou M. Pressure-induced Fermi resonance between fundamental modes in phthalic anhydride. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:204002. [PMID: 35193125 DOI: 10.1088/1361-648x/ac577c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
In situhigh-pressure Raman spectra of phthalic anhydride (PA) have been measured up to 16 GPa through diamond anvil cell technique. The results show that all the Raman bands are blue-shifted with the increase of pressure, accompanied by appearance of some new bands. A Fermi resonance phenomenon of the two Raman fundamental modes of PA at 773 cm-1and 801 cm-1is proposed at pressures above 6.6 GPa, where a possible first-order phase transition occurs. The pressure-induced changes of Fermi resonance parameters, e.g., intensity ratio, coupling coefficient and frequency gap of unperturbed transition, are discussed.
Collapse
Affiliation(s)
- HaiRui Liu
- College of physics, Jilin University, Changchun, 130012, People's Republic of China
| | - YinQi Chen
- College of physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Guangtao Liu
- College of physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Mi Zhou
- College of physics, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
33
|
Brünig FN, Geburtig O, Canal AV, Kappler J, Netz RR. Time-Dependent Friction Effects on Vibrational Infrared Frequencies and Line Shapes of Liquid Water. J Phys Chem B 2022; 126:1579-1589. [PMID: 35167754 PMCID: PMC8883462 DOI: 10.1021/acs.jpcb.1c09481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
From ab initio simulations
of liquid water, the time-dependent
friction functions and time-averaged nonlinear effective bond potentials
for the OH stretch and HOH bend vibrations are extracted. The obtained
friction exhibits not only adiabatic contributions at and below the
vibrational time scales but also much slower nonadiabatic contributions,
reflecting homogeneous and inhomogeneous line broadening mechanisms,
respectively. Intermolecular interactions in liquid water soften both
stretch and bend potentials compared to the gas phase, which by itself
would lead to a red-shift of the corresponding vibrational bands.
In contrast, nonadiabatic friction contributions cause a spectral
blue shift. For the stretch mode, the potential effect dominates,
and thus, a significant red shift when going from gas to the liquid
phase results. For the bend mode, potential and nonadiabatic friction
effects are of comparable magnitude, so that a slight blue shift results,
in agreement with well-known but puzzling experimental findings. The
observed line broadening is shown to be roughly equally caused by
adiabatic and nonadiabatic friction contributions for both the stretch
and bend modes in liquid water. Thus, the quantitative analysis of
the time-dependent friction that acts on vibrational modes in liquids
advances the understanding of infrared vibrational frequencies and
line shapes.
Collapse
|
34
|
Laity PR, Holland C. Seeking Solvation: Exploring the Role of Protein Hydration in Silk Gelation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020551. [PMID: 35056868 PMCID: PMC8781151 DOI: 10.3390/molecules27020551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation. In this work, we used several techniques to explore the role of a hydration shell bound to the fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius) around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution was observed above 65 °C, matching the gelation temperature of more concentrated solutions and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised, with similar changes in hydration following gelation by freezing or heating. It was found that the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively simple thermodynamic model for the stability of the protein hydration shell, which suggests that the affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B. mori, comparisons with published work on silk proteins from other silkworms and spiders, globular proteins and peptide model systems suggest that our findings may be of much wider significance.
Collapse
|
35
|
Efimov YY. VIBRATIONAL SPECTRA OF WATER: ROLE OF EXTREMUMS IN THE ENERGY OF HYDROGEN BONDS O–H…O AND IN THE DEGENERACY OF THEIR GEOMETRIC STATES. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Vazquez de Vasquez MG, Carter-Fenk KA, McCaslin LM, Beasley EE, Clark JB, Allen HC. Hydration and Hydrogen Bond Order of Octadecanoic Acid and Octadecanol Films on Water at 21 and 1 °C. J Phys Chem A 2021; 125:10065-10078. [PMID: 34761931 DOI: 10.1021/acs.jpca.1c06101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The temperature-dependent hydration structure of long-chain fatty acids and alcohols at air-water interfaces has great significance in the fundamental interactions underlying ice nucleation in the atmosphere. We present an integrated theoretical and experimental study of the temperature-dependent vibrational structure and electric field character of the immediate hydration shells of fatty alcohol and acid headgroups. We use a combination of surface-sensitive infrared reflection-absorption spectroscopy (IRRAS), surface potentiometry, and ab initio molecular dynamics simulations to elucidate detailed molecular structures of the octadecanoic acid and octadecanol (stearic acid and stearyl alcohol) headgroup hydration shells at room temperature and near freezing. In experiments, the alcohol at high surface concentration exhibits the largest surface potential; yet we observe a strengthening of the hydrogen-bonding for the solvating water molecules near freezing for both the alcohol and the fatty acid IRRAS experiments. Results reveal that the hydration shells for both compounds screen their polar headgroup dipole moments reducing the surface potential at low surface coverages; at higher surface coverage, the polar headgroups become dehydrated, which reduces the screening, correlating to higher observed surface potential values. Lowering the temperature promotes tighter chain packing and an increase in surface potential. IRRAS reveals that the intra- and intermolecular vibrational coupling mechanisms are highly sensitive to changes in temperature. We find that intramolecular coupling dominates the vibrational relaxation pathways for interfacial water determined by comparing the H2O and the HOD spectra. Using ab initio molecular dynamics (AIMD) calculations on cluster systems of propanol + 6H2O and propionic acid + 10H2O, a spectral decomposition scheme was used to correlate the OH stretching motion with the IRRAS spectral features, revealing the effects of intra- and intermolecular coupling on the spectra. Spectra calculated with AIMD reproduce the red shift and increase in intensity observed in experimental spectra corresponding to the OH stretching region of the first solvation shell. These findings suggest that intra- and intermolecular vibrational couplings strongly impact the OH stretching region at fatty acid and fatty alcohol water interfaces. Overall, results are consistent with ice templating behavior for both the fatty acid and the alcohol, yet the surface potential signature is strongest for the fatty alcohol. These findings develop a better understanding of the complex surface potential and spectral signatures involved in ice templating.
Collapse
Affiliation(s)
- Maria G Vazquez de Vasquez
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Kimberly A Carter-Fenk
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Emma E Beasley
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jessica B Clark
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
37
|
Li D, Zhu Z, Sun DW. Quantification of hydrogen bonding strength of water in saccharide aqueous solutions by confocal Raman microscopy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117498] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Hanson MD, Readnour JA, Hassanali AA, Corcelli SA. Coupled Local-Mode Approach for the Calculation of Vibrational Spectra: Application to Protonated Water Clusters. J Phys Chem Lett 2021; 12:9226-9232. [PMID: 34529914 DOI: 10.1021/acs.jpclett.1c02254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spectroscopic studies of protonated water clusters (PWCs) have yielded enormous insights into the fundamental nature of the hydrated proton. Here, we introduce a new coupled local-mode (CLM) approach to calculate PWC OH stretch vibrational spectra. The CLM method combines a sampling of representative configurations from density functional theory (DFT)-based ab initio molecular dynamics (AIMD) simulations with DFT calculations of local-mode vibrational frequencies and couplings. Calculations of inhomogeneous OH stretch vibrational spectra for H+(H2O)4 and H+(H2O)21 agree well with experiment and higher-level calculations, and decompositions of the calculated spectra in terms of the coupled modes aids in the interpretation of the spectra. This observation is consistent with the idea that capturing anharmonicity and coupling is as important to accuracy as the underlying level of electronic structure theory. The CLM calculations can easily discern the configuration that dominates the experimental measurement for H+(H2O)5, which can adopt several low-energy conformations.
Collapse
Affiliation(s)
- Matthew D Hanson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Janel A Readnour
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ali A Hassanali
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera, 11 I - 34151 Trieste, Italy
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
39
|
Hack JH, Dombrowski JP, Ma X, Chen Y, Lewis NHC, Carpenter WB, Li C, Voth GA, Kung HH, Tokmakoff A. Structural Characterization of Protonated Water Clusters Confined in HZSM-5 Zeolites. J Am Chem Soc 2021; 143:10203-10213. [PMID: 34210123 DOI: 10.1021/jacs.1c03205] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A molecular description of the structure and behavior of water confined in aluminosilicate zeolite pores is a crucial component for understanding zeolite acid chemistry under hydrous conditions. In this study, we use a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and ab initio molecular dynamics (AIMD) to study H2O confined in the pores of highly hydrated zeolite HZSM-5 (∼13 and ∼6 equivalents of H2O per Al atom). The 2D IR spectrum reveals correlations between the vibrations of both terminal and H-bonded O-H groups and the continuum absorption of the excess proton. These data are used to characterize the hydrogen-bonding network within the cluster by quantifying single-, double-, and non-hydrogen-bond donor water molecules. These results are found to be in good agreement with the statistics calculated from an AIMD simulation of an H+(H2O)8 cluster in HZSM-5. Furthermore, IR spectral assignments to local O-H environments are validated with DFT calculations on clusters drawn from AIMD simulations. The simulations reveal that the excess charge is detached from the zeolite and resides near the more highly coordinated water molecules in the cluster. When they are taken together, these results unambiguously assign the complex IR spectrum of highly hydrated HZSM-5, providing quantitative information on the molecular environments and hydrogen-bonding topology of protonated water clusters under extreme confinement.
Collapse
Affiliation(s)
- John H Hack
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - James P Dombrowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Ilinois 60208-3120, United States
| | - Xinyou Ma
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yaxin Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Ilinois 60208-3120, United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - William B Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chenghan Li
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Harold H Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Ilinois 60208-3120, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
40
|
Ishiyama T. Ab initio molecular dynamics study on energy relaxation path of hydrogen-bonded OH vibration in bulk water. J Chem Phys 2021; 154:204502. [PMID: 34241149 DOI: 10.1063/5.0050078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vibrational energy relaxation paths of hydrogen-bonded (H-bonded) OH excited in pure water and in isotopically diluted (deuterated) water are elucidated via non-equilibrium ab initio molecular dynamics (NE-AIMD) simulations. The present study extends the previous NE-AIMD simulation for the energy relaxation of an excited free OH vibration at an air/water interface [T. Ishiyama, J. Chem. Phys. 154, 104708 (2021)] to the energy relaxation of an excited H-bonded OH vibration in bulk water. The present simulation shows that the excited OH vibration in pure water dissipates its energy on a timescale of 0.1 ps, whereas that in deuterated water relaxes on a timescale of 0.7 ps, consistent with the experimental observations. To decompose these relaxation energies into the components due to intramolecular and intermolecular couplings, constraints are introduced on the vibrational modes except for the target path in the NE-AIMD simulation. In the case of pure water, 80% of the total relaxation is attributed to the pathway due to the resonant intermolecular OH⋯OH stretch coupling, and the remaining 17% and 3% are attributed to intramolecular couplings with the bend overtone and with the conjugate OH stretch, respectively. This result strongly supports a significant role for the Förster transfer mechanism of pure water due to the intermolecular dipole-dipole interactions. In the case of deuterated water, on the other hand, 36% of the total relaxation is due to the intermolecular stretch coupling, and all the remaining 64% arises from coupling with the intramolecular bend overtone.
Collapse
Affiliation(s)
- Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
41
|
Efimov YY, Naberukhin YI. Coupling of three intramolecular vibration modes of liquid H 2O molecules in the framework of the fluctuation theory of hydrogen bonding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118772. [PMID: 32846302 DOI: 10.1016/j.saa.2020.118772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Vibrational spectra of liquid water contain a wealth of information about its structure and dynamics but there are no generally acknowledged interpretation of their band profiles, unfortunately. We have tried to calculate them taking into account only the coupling of three intramolecular vibrations in the set of H2O molecules with different initial oscillator frequencies and intensities. The matter is that each water molecule forms hydrogen bonds of different strengths; thus the OH stretching band spans several hundreds of wave numbers (the fluctuation theory of hydrogen bonding). This distribution overlaps with the similar band of the first overtone of the HOH bending frequencies thus triggering a Fermi resonance between three vibrations. There were some problems causing some simplifications in previous theoretical modeling of vibrational transitions in condensed water. To solve them we extract the statistical distribution of OH frequencies of H2O molecules directly from the experimental spectra of HOD molecules at the same conditions instead of defining it theoretically. Also the bending overtone is allowed to have non-zero intrinsic intensity when calculating the Fermi resonance. The test calculation of the isotropic component of the Raman spectrum which is most critical for interpretation shows that our algorithm can reproduces the characteristic peculiarities of the experiment. The spectrum consists of three non-Gaussian contours. The overtone of bending vibration, being strengthened by Fermi resonance, makes the greatest contribution to the dominating low-frequency spectrum component that was previously attributed to intermolecular coupling of adjacent OH oscillators by some authors. Further we plan to calculate similar band profiles in the IR and also Raman isotropic and anisotropic spectra of Н2О and D2О molecules within a wide temperature range for their quantitative comparison with experiment.
Collapse
Affiliation(s)
- Yu Ya Efimov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia.
| | - Yu I Naberukhin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
42
|
Vibrational couplings and energy transfer pathways of water's bending mode. Nat Commun 2020; 11:5977. [PMID: 33239630 PMCID: PMC7688972 DOI: 10.1038/s41467-020-19759-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Coupling between vibrational modes is essential for energy transfer and dissipation in condensed matter. For water, different O-H stretch modes are known to be very strongly coupled both within and between water molecules, leading to ultrafast dissipation and delocalization of vibrational energy. In contrast, the information on the vibrational coupling of the H-O-H bending mode of water is lacking, even though the bending mode is an essential intermediate for the energy relaxation pathway from the stretch mode to the heat bath. By combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopies for isotopically diluted water with ab initio molecular dynamics simulations, we find the vibrational coupling of the bending mode differs significantly from the stretch mode: the intramode intermolecular coupling of the bending mode is very weak, in stark contrast to the stretch mode. Our results elucidate the vibrational energy transfer pathways of water. Specifically, the librational motion is essential for the vibrational energy relaxation and orientational dynamics of H-O-H bending mode. Vibrational energy transfer in water involves intermolecular coupling of O-H stretching modes, but much less is known about the role of the bending modes. Here the authors, combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopy and ab initio molecular dynamics simulations, provide insight into the energy dynamics of the bend vibrations.
Collapse
|
43
|
Li D, Zhu Z, Sun DW. Visualization of the in situ distribution of contents and hydrogen bonding states of cellular level water in apple tissues by confocal Raman microscopy. Analyst 2020; 145:897-907. [PMID: 31820748 DOI: 10.1039/c9an01743g] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman spectroscopy has been employed for studying the hydrogen bonding states of water molecules for decades, however, Raman imaging data contain thousands of spectra, making it challenging to obtain information on water with different hydrogen bonds. In the current study, a novel method combining confocal Raman microscopy (CRM) imaging with the iterative curve fitting algorithms was developed to determine the distribution of water contents at the cellular level and water states with different hydrogen bonds in apple tissues. Raman imaging data ranging from 2700 to 3800 cm-1 were acquired from whole cells in the apple tissue, which were then decomposed into seven sub-peaks using the fixed-position Gaussian iterative curve fitting (FPGICF) algorithm. The content and hydrogen bonding states of cellular water were calculated as the area sum of the OH stretching vibration and the area ratio of DA-OH over DDAA-OH stretching vibration or the number of hydrogen bonds of each water molecule, respectively. Finally, the area of each sub-peak, the area sum of the OH stretching vibration, and the area ratio of DA-OH over DDAA-OH stretching vibration were used to visualize the distribution of each sub-peak, water contents and water states with different hydrogen bonds, respectively. In addition, it was found that the number of hydrogen bonds of each water molecule could also be considered as a criterion to describe the hydrogen bond states of water in apple tissues. The availability of such information should provide new insights for future study of cellular water in other food materials.
Collapse
Affiliation(s)
- Dongmei Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | |
Collapse
|
44
|
Samala N, Agmon N. Temperature and Nuclear Quantum Effects on the Stretching Modes of the Water Hexamer. J Phys Chem A 2020; 124:8201-8208. [PMID: 32870682 PMCID: PMC7586398 DOI: 10.1021/acs.jpca.0c05557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Indexed: 11/30/2022]
Abstract
The water hexamer has many low-lying isomers, e.g., ring, book, cage, and prism, shifting from two- to three-dimensional structures. We show that this dimensionality change is accompanied by a drop in the quantum nature of the cluster, as manifested in the red shift of the quantal OH stretching modes as compared with their classical counterparts. We obtain this "nuclear quantum effect" (NQE) as the mean deviation between the OH stretch frequencies from velocity autocorrelation Fourier transforms from classical trajectories on a high-level water potential (MB-pol) as compared with scaled harmonic frequencies from high-level quantum chemistry calculations. With a universal scaling factor, the predicted OH frequencies agree with experiment to a mean absolute deviation ≤10 cm-1, which allows unequivocal isomer assignments. By assuming temperature-independent NQEs, we produce the temperature dependence of the cage isomer OH stretch spectrum below 70 K, where it is the dominant structure. All bands widen and blue-shift with increasing temperature, most conspicuously the reddest mode, which thus constitutes a "vibrational thermometer".
Collapse
Affiliation(s)
- Nagaprasad
Reddy Samala
- The Fritz Haber Research
Center, Institute of Chemistry, The Hebrew
University of Jerusalem, Jerusalem 9190401, Israel
| | - Noam Agmon
- The Fritz Haber Research
Center, Institute of Chemistry, The Hebrew
University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
45
|
Seki T, Chiang KY, Yu CC, Yu X, Okuno M, Hunger J, Nagata Y, Bonn M. The Bending Mode of Water: A Powerful Probe for Hydrogen Bond Structure of Aqueous Systems. J Phys Chem Lett 2020; 11:8459-8469. [PMID: 32931284 PMCID: PMC7584361 DOI: 10.1021/acs.jpclett.0c01259] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/15/2020] [Indexed: 05/16/2023]
Abstract
Insights into the microscopic structure and dynamics of the water's hydrogen-bonded network are crucial to understand the role of water in biology, atmospheric and geochemical processes, and chemical reactions in aqueous systems. Vibrational spectroscopy of water has provided many such insights, in particular using the O-H stretch mode. In this Perspective, we summarize our recent studies that have revealed that the H-O-H bending mode can be an equally powerful reporter for the microscopic structure of water and provides more direct access to the hydrogen-bonded network than the conventionally studied O-H stretch mode. We discuss the fundamental vibrational properties of the water bending mode, such as the intermolecular vibrational coupling, and its effects on the spectral lineshapes and vibrational dynamics. Several examples of static and ultrafast bending mode spectroscopy illustrate how the water bending mode provides an excellent window on the microscopic structure of both bulk and interfacial water.
Collapse
Affiliation(s)
- Takakazu Seki
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chun-Chieh Yu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaoqing Yu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Masanari Okuno
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Johannes Hunger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
46
|
Hutzler D, Stallhofer K, Kienberger R, Riedle E, Iglev H. Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate. J Phys Chem A 2020; 124:5784-5789. [PMID: 32574493 DOI: 10.1021/acs.jpca.0c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrogen bond network accounts for many of the extraordinary physical properties of liquid water and ice. Its vibrational dynamics are quite complex in their entirety but can be accessed in detail by investigating small groups of only a few water molecules. Here, aqueous salt hydrates turned out to be an exceptional model system for water molecules arranged in well-defined geometrical structures that can be accessed by means of femtosecond spectroscopy of the OH stretching vibration. In this study, we find striking resemblance between the vibrational properties of three water molecules connected via strong hydrogen bonds in the trihydrate of LiNO3 and those of ordinary ice Ih. As in ice, the vibrations of the hydrate water molecules show ultrafast excited state dynamics that are strongly accelerated when proceeding from deuterated to neat H2O samples. The latter is analyzed by means of an additional relaxation channel that is due to Fermi resonance between the OH stretching vibration and the bend overtone accompanied by delocalization of the vibration over neighboring water molecules in the H2O species. Moreover, in the hydrate and ice samples severe spectral broadening is examined when comparing fundamental and excited state absorption bands. Here, proton delocalization along the strong hydrogen bonds is given as a possible underlying mechanism.
Collapse
Affiliation(s)
- Daniel Hutzler
- Physik-Department E11, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Klara Stallhofer
- Physik-Department E11, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Reinhard Kienberger
- Physik-Department E11, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Eberhard Riedle
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität München, Oettingenstraßsse 67, 80538 München, Germany
| | - Hristo Iglev
- Physik-Department E11, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| |
Collapse
|
47
|
Karmakar S, Keshavamurthy S. Intramolecular vibrational energy redistribution and the quantum ergodicity transition: a phase space perspective. Phys Chem Chem Phys 2020; 22:11139-11173. [DOI: 10.1039/d0cp01413c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The onset of facile intramolecular vibrational energy flow can be related to features in the connected network of anharmonic resonances in the classical phase space.
Collapse
Affiliation(s)
- Sourav Karmakar
- Department of Chemistry
- Indian Institute of Technology
- Kanpur
- India
| | | |
Collapse
|
48
|
Acquah C, Zhang Y, Dubé MA, Udenigwe CC. Formation and characterization of protein-based films from yellow pea ( Pisum sativum) protein isolate and concentrate for edible applications. Curr Res Food Sci 2019; 2:61-69. [PMID: 32914112 PMCID: PMC7473362 DOI: 10.1016/j.crfs.2019.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study investigated the properties of films or bioplastics fabricated using a wet processing method from yellow pea protein isolate (YPI) and protein concentrate (YPC) for potential application in food packaging. The wet processing method included mixing the protein with water and glycerol followed by casting and drying the films in a humidity- and temperature-controlled chamber. Whey protein isolate (WPI) and a film from a blend of equal amounts of YPI and WPI, labelled as YPI + WPI, were also studied. Fourier transform-infra red analysis revealed that films from YPI, YPC, WPI and YPI + WPI were formed by protein polymerisation with the plasticiser, glycerol, via hydrophobic and hydrophilic interactions. The protein films had contact angles of <90° demonstrating that they had a hydrophilic surface, with YPC < YPI < YPI + WPI < WPI. The pattern of ultraviolent light transmission of the films was WPI > YPC > YPI + WPI > YPI, whereas the mechanical and thermal resilience of films formulated from YPI, YPC and the protein blend were comparable to the properties of WPI-based films. The findings demonstrate that yellow pea proteins can be used as biomaterials to develop protein and protein-blend films or bioplastics for food packaging and edible applications. Bioplastics were fabricated from yellow pea protein isolate and concentrate, with glycerol. Contact angles of pea protein films indicate more hydrophobic surface than whey protein films. Pea protein films had more surface structure homogeneity and limited light transmission. Pea + whey protein blend did not produce synergistic effects in film property. Film physico-mechanical properties are promising for food packaging application.
Collapse
Affiliation(s)
- Caleb Acquah
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Yujie Zhang
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Marc A Dubé
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
49
|
Seki T, Sun S, Zhong K, Yu CC, Machel K, Dreier LB, Backus EHG, Bonn M, Nagata Y. Unveiling Heterogeneity of Interfacial Water through the Water Bending Mode. J Phys Chem Lett 2019; 10:6936-6941. [PMID: 31647677 PMCID: PMC6844124 DOI: 10.1021/acs.jpclett.9b02748] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 05/28/2023]
Abstract
The water bending mode provides a powerful probe of the microscopic structure of bulk aqueous systems because its frequency and spectral line shape are responsive to the intermolecular interactions. Furthermore, interpreting the bending mode response is straightforward, as the intramolecular vibrational coupling is absent. Nevertheless, bending mode has not been used for probing the interfacial water structure, as it has been yet argued that the signal is dominated by bulk effects. Here, through the sum-frequency generation measurement of the water bending mode at the water/air and water/charged lipid interfaces, we demonstrate that the bending mode signal is dominated not by the bulk but by the interface. Subsequently, we disentangle the hydrogen-bonding of water at the water/air interface using the bending mode frequency distribution and find distinct interfacial hydrogen-bonded structures, which can be directly related to the interfacial organization of water. The bending mode thus provides an excellent probe of aqueous interfacial structure.
Collapse
Affiliation(s)
- Takakazu Seki
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shumei Sun
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Kai Zhong
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chun-Chieh Yu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kevin Machel
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lisa B. Dreier
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
50
|
Multistate Reactive Molecular Dynamics Simulations of Proton Diffusion in Water Clusters and in the Bulk. J Phys Chem B 2019; 123:9846-9861. [PMID: 31647873 DOI: 10.1021/acs.jpcb.9b03258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular mechanics with proton transfer (MMPT) force field is combined with multistate adiabatic reactive molecular dynamics (MS-ARMD) to describe proton transport in the condensed phase. Parametrization for small protonated water clusters based on electronic structure calculations at the MP2/6-311+G(2d,2p) level of theory and refinement by comparing with infrared spectra for a protonated water tetramer yields a force field which faithfully describes the minimum energy structures of small protonated water clusters. In protonated water clusters up to (H2O)100H+, the proton hopping rate is around 100 hops/ns. This rate converges for 21 ≤ n ≤ 31, and no further speedup in bulk water is found. This indicates that bulklike behavior requires the solvation of a Zundel motif by ∼25 water molecules, which corresponds to the second solvation sphere. For smaller cluster sizes, the number of available states (i.e., the number of proton acceptors) is too small and slows down proton-transfer rates. The cluster simulations confirm that the excess proton is typically located on the surface. The free-energy surface as a function of the weights of the two lowest states and a configurational parameter suggests that the "special pair" plays a central role in rapid proton transport. The barriers between this minimum-energy structure and the Zundel and Eigen minima are sufficiently low (∼1 kcal/mol, consistent with recent experiments and commensurate with a hopping rate of ∼100/ns or 1 every 10 ps), leading to a highly dynamic environment. These findings are also consistent with recent experiments which find that Zundel-type hydration geometries are prevalent in bulk water.
Collapse
|